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Abstract

Measuring and making sequences is central to modern biology and biomedicine. From evolution-

ary biology to immunology to therapeutics and beyond, scientists collect massive datasets of DNA,

RNA and protein sequences, and create new sequences in the laboratory through large-scale DNA

synthesis or genome editing. This dissertation is about the problem of learning frommeasurements

of complex sequence data and predicting unobserved or future sequences that can be made in the

laboratory. The dissertation describes new generative statistical methods for biological sequences,

working within the framework of Bayesian statistics and probabilistic machine learning, and es-

tablishes theoretical guarantees on these methods using frequentist analysis. Part I proposes new

tools for building biological sequence models, critiquing biological sequence models, and designing

experiments to synthesize samples from biological sequence models. Part II deals with the use of

misspecified models in biological sequence analysis and beyond, developing a new understanding of

how such “wrong” models can be used effectively for estimation and discovery. Overall, the disserta-

tion contributes principles and methods for reliable and accurate prediction, analysis and design of

biological sequences across biology and biomedicine.
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0
Introduction

Measuring and making sequences is central to modern biology and biomedicine. The past decades

have seen twin revolutions in technology for reading and writing DNA, with dramatic decreases in

cost and increases in scale. High-throughput sequencing technology has led to the creation of mas-

sive sequence datasets, including measurements of genomes from organisms across the tree of life; of

human genomes from around the world; of bacterial genomes from in and on the human body; of

1



viral genomes from decades of evolution; and of much more. Meanwhile, high-throughput synthe-

sis technology has led to the routine creation of vast numbers of precisely defined sequences in the

laboratory, which can be tested in parallel using modern assays. Efficient genome editing technology

has enabled precise modification of existing sequences inside the cells of humans and other organ-

isms. This dissertation is about statistical methods for learning from sequence data, and forming

predictions of new sequences that can be made in vitro or in vivo using synthesis or genome edit-

ing. It is about understanding measurements of sequences in enough detail to be able to make new

sequences.

The statistical methods presented fall under the framework of probabilistic machine learning,

and are specifically Bayesian (with a few exceptions). They revolve centrally around the construction

of generative probabilistic models of sequences, building on a fundamental recipe known as “Box’s

loop”26 (Fig. 1):

1. Hypothesize a model of the data, in the form of a probability distribution over measured

sequencesX1, . . . , XN and hidden variables θ, i.e. p(X1:N , θ).

2. Infer the values of the hidden variables, i.e. compute the posterior p(θ | X1:N ). Examining

the posterior gives us insight into the data through the lens of our hypothesized model.

3. Criticize the model to determine whether or not it accurately captures the data. (If it fails,

return to step 1.)

4. Generate new sequences from the posterior predictive distribution of the model that can be

made in the laboratory, i.e. X ′
1, X

′
2, . . . ∼ p(x | X1:N ).

2



From measuring to making sequences 

9

... ...

Model Inference

Criticism

Experimental 
Design

Measure Make

Figure 1: Box’s loop 26 provides a framework for going frommeasurements of sequences to experimental designs for new

sequences that can bemade in the laboratory.

We can thus use generative probabilistic models to analyze complex sequence data and predict new

sequences that can be synthesized experimentally.

While generative methods for biological sequence statistics have existed for decades, they are far

from the dominant approach to biological sequence analysis. Instead, existing methods are more

commonly either (a) entirely non-probabilistic, with no formally defined estimand, instead simply

processing the data through a series of heuristics or (b) focused on predicting some property from

sequences, i.e. interested only in conditional distributions p(y | x)where y is a covariate of interest

(e.g. a phenotype). Generative Bayesian methods allow us to, among other things:

1. Predict and forecast unobserved or future sequences on the basis of past sequence data.

2. Handle uncertainty in inferences drawn from sequence data.

3. Replace heuristic data analysis methods with rigorous and formal statistical methods, whose

properties can be analyzed theoretically.

4. Test predictions experimentally, through the construction of novel sequences.

The next section illustrates in more detail why these properties are desirable.

3



0.1 Applications of generative biological sequence statistics

Our primary goal is to enable new kinds of scientific studies of biological sequences, that are diffi-

cult or impossible to perform using current methodology. To illustrate, consider three case studies

drawn from virology, immunology and evolutionary biology.

0.1.1 Forecasting pathogen evolution

Rapidly evolving pathogens such as influenza or SARS-CoV-2 are difficult to diagnose, immu-

nize against, and treat, in part because their genome sequences change quickly over time163,150.

We would therefore like to forecast future genome sequences, to prepare diagnostics, vaccines,

and drugs preemptively. In particular, one approach is to (1) assemble a dataset of past sequences

collected from different patients at different times, i.e. (X1, t1), . . . , (XN , tN ), (2) construct

p(x | tfuture), a prediction of the viral sequences that will be observed at some future time tfuture,

and then (3) make samplesX1, X2, . . . ∼ p(x | tfuture) in the laboratory, so that drugs or di-

agnostics can be tested against these future sequences. It is especially important that we can form

reasonable predictions even with relatively little past sequence data, in order to deal with emerging

pathogens. It is also important that we can accurately handle uncertainty, since failure to consider

the possibility of a variant that later emerges can have serious real-world consequences: failed diag-

nostics, failed vaccines, and failed drugs.

Chapter 1 develops new methods for generative sequence regression, i.e. new methods of con-

structing distributions p(x | t) that more accurately account for uncertainty as compared to

4



commonly-used heuristics. We demonstrate these methods by constructing the first generative fore-

cast of pathogen sequence evolution, focusing on the influenza hemagglutinin protein, the key site

of interaction between influenza and the human immune system. Chapter 3 develops an experimen-

tal design strategy to efficiently construct large numbers of samplesX ′
1, X

′
2, . . . ∼ p(x | tfuture)

from generative sequence models in the laboratory. Our overall approach makes possible, for in-

stance, large scale testing of antibody drugs or patient sera against likely future viral antigens, and is

generalizable to describe other pathogens or to account for other covariates besides time.

0.1.2 Designing personalized immunotherapies

Cell therapies are a successful and rapidly developing class of therapeutics for cancer and other dis-

eases131. TCR T cell therapies use a T cell receptor (TCR) to direct an engineered T cell to kill tar-

get cells, e.g. cancer cells. Creating such therapies requires synthesizing TCRs that not only bind

specific antigens, but also (1) do not bind any self-antigens in the patient, since this would cause off-

target effects and (2) look like the natural TCR sequences found in the patient, to avoid immune

rejection of the cell therapy131. One possible approach to creating such patient-specific TCRT cell

therapies is to (1) measure the repertoire of natural TCR sequences present in a patient or a closely

related donor, i.e. record a dataset of sequencesX1, . . . , XN , (2) estimate the underlying, patient-

specific distribution of sequences p(x), and (3) synthesize samplesX ′
1, X

′
2, . . . ∼ p(x) and deliver

them into cells to create candidate therapies that can be screened for activity against the tumor. It

is crucial in this application that the synthesized sequences accurately match the distribution of pa-

tient sequences: we want a high diversity of sequences, to ensure a binder exists, but we also need the

5



sequences to look like patient TCRs.

Chapters 1 and 2 develop newmethods for sequence density estimation, i.e. new methods of esti-

mating distributions p(x) describing sequence samplesX1, . . . , XN . These are applied to TCR se-

quencing data, providing a detailed model and map of individual patients’ immune systems. Chap-

ter 3 develops new experimental design methods to construct large-scale libraries of approximate

samples frommodels,X ′
1, X

′
2, . . . ∼ p(x). We apply this method to TCRmodels, and estab-

lish that the resulting libraries can accurately match patients’ TCR repertoires using statistical tests

developed in Chapter 2. Detailed simulations suggest that our generative statistical methods can

potentially yield many orders-of-magnitude more patient-specific binders for TCRT cell therapy as

compared to previous techniques.

0.1.3 The past and future of life

Understanding the long-term future evolution of life on Earth is a fundamental biological question.

Although difficult to address in general, the question is more tractable when we focus not on entire

genomes but on individual proteins whose structure and function has been well-conserved across

billions of years of evolution. Here, a commonmodel of long-term evolution describes sequences

diffusing over a fixed fitness landscape; under this hypothesis, sequences in the far future can be de-

scribed as samples from the stationary distribution of the diffusion230,110. We would like to estimate

the stationary distribution to understand past and future evolution. In particular, given a dataset

of present-day genome sequences from across the tree of life, i.e. X1, . . . , XN , we would like to es-

timate the stationary distribution p∞(x) and then assay samples from the stationary distribution

6



X ′
1, X

′
2, . . . ∼ p∞(x) in the laboratory to determine their properties. A crucial challenge is to re-

move biases that come from recent phylogenetic history, in order to form a reliable estimate of the

underlying landscape that constrains molecular evolution and determines long-run outcomes.

Chapter 4 analyzes a model of long-termmolecular evolution, taking into account fitness land-

scapes and phylogenetic history. It establishes fundamental limits on what we can learn from present-

day observational sequence data, and demonstrates how phylogenetic bias can be reduced across a

wide range of example protein families.

0.1.4 Conclusions

The above examples are only case studies, representing some specific applications of the methods

developed in this dissertation that we have so far explored. Similar questions, however, can be asked

in many other subfields of biology: we may be interested in how organisms adapt to climate change,

and so want to predict sequences based on temperature or other environmental variables; we may be

interested in developing novel therapeutics based on individuals’ gut microbiomes, and so want to

construct large sequence libraries based on metagenomic data; or we may be interested in the future

evolution of a tumor, and want to predict oncogene sequences that could emerge. The methods

developed in this dissertation are grounded in underlying statistical and biophysical theory, and can

thus be widely applied to address these questions and many more.

7



0.2 Statistical foundations

In this section, we review some of the key statistical questions that this dissertation addresses, taking

a frequentist perspective on Bayesian methodology. Our presentation is general, and holds for any

type of data; in Section 0.3 we introduce crucial concepts that arise when working with biological

sequence data specifically. Note that our presentation throughout this introduction is heuristic, and

we gloss over edge cases and measure-theoretic definitions in an effort to clarify the essential ideas.

0.2.1 Estimating and testing distributions

We assume that sequence data is drawn from some true data generating distribution p0(x) as inde-

pendently and identically distributed samples,

X1, X2, . . .
i.i.d.∼ p0(x), (1)

where eachXi ∈ X is a sequence from e.g. a particular individual, species, cell, etc. Density estima-

tion is the problem of estimating p0(x) given a dataset of samples,D = {X1, . . . , XN}.

Say we have some other distribution p1(x) over sequences, for instance from a model. Goodness-

of-fit-tests asks whether or not p1(x) = p0(x), given samples from p0(x), and given p1(x). Two-

sample tests ask the same question, given only samples from p1(x) rather than the density p1(x)

itself.

We often have covariates Yi with each sequenceXi, such as the time or place the sequence was

8



collected, or a property that the sequence possesses, such as whether it binds something or catalyzes

a certain chemical reaction. In this case we assume that (X1, Y1), (X2, Y2), . . . ∼i.i.d. p0(x, y).

Regression is the the problem of estimating the conditional distribution p0(x | y) given a dataset

D = {(X1, Y1), . . . , (XN , YN )}.

This dissertation introduces new density estimation methods, regression methods, goodness-of-

fit tests and two-sample tests for biological sequences. Such methods are fundamental tools through-

out statistics, and can be used to solve more complex problems. For instance, if we are interested

in understanding the causal impact of sequence changes on protein function, in the presence of

confounders, we may want to use a propensity score method, which would require a method for

sequence regression120. Although this dissertation does not go into depth on such downstream uses,

they represent an important area of future application.

0.2.2 Models

Models consist of sets of probability distributions, with elements indexed by a parameter, i.e.M =

{pθ(x) : θ ∈ Θ}. In parametricmodels, the dimension ofΘ is finite; in nonparametricmodels, the

dimension ofΘ is infinite. The goal of inference is to find an element ofM that is close to p0, given

a dataset of samples fromD. This tells us a latent parameter value and distribution that can explain

the observed data. We say a model is well-specified if p0 ∈ M, so the model can exactly match the

data generating distribution. We say a model ismisspecified if p0 /∈ M, in which case we can only

hope to find an element ofM that is close to p0 according to some distance metric or divergence.
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0.2.3 Bayesian inference

Bayesian inference is a method for estimating parameters from data. It proceeds by positing a prior

distribution π(θ) over parameters of a modelM and then applying Bayes’ rule to construct a poste-

rior distribution over parameters, given the data. For instance, with a dataset of samplesX1, . . . , XN

from p0(x), we have the posterior

Π(θ|X1, . . . , XN ) = π(θ)
∏N

i=1 pθ(Xi)∫
Θ π(θ)

∏N
i=1 pθ(Xi)dθ

. (2)

Bayesian inference is useful because it quantifies uncertainty in possible values of θ, given finite data,

providing a distribution over possible parameter values. With infinite data, the posterior will (in

general) converge to a delta function at θ0, where pθ0 = p0 if the modelM is well-specified. If the

model is misspecified, we have pθ0 = argminpθ∈Mkl(p0‖pθ), where

kl(p0‖pθ) =
∫

X
p0(x) log[p0(x)/pθ(x)]dx

is theKullback-Leibler (KL) divergence. In the misspecified case θ0 is sometimes referred to as the

“pseudo-true” parameter rather than the “true” parameter. Analogous results hold in the regression

setting, where we have samples (X1, Y1), (X2, Y2), . . . ∼i.i.d. p0(x, y).

Computing the posterior and sampling likely parameters from the posterior is often challenging.

In this case, we will typically use variational inference to approximate the posterior. Variational

inference proceeds by first positing a variational family V = {qϕ(θ) : ϕ ∈ Φ}where qϕ(θ) ∈
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P(Θ). Elements qϕ of the variational family V are chosen to be easy to sample from; for example,

they could be Gaussian distributions. Variational inference then proceeds by finding an element of

V that approximates the posterior (Eqn. 2) by minimizing a KL divergence,

qϕ∗ = argminqϕ∈V kl (qϕ(θ)‖Π(θ|X1, . . . , XN )) . (3)

The resulting distribution qϕ∗(θ) is a tractable approximation to the posterior.

0.3 Sequence space and distributions

So far we have considered statistical questions and methods in the abstract, for any type of data. In

this section we focus on the specifics of biological sequence data, describing key spaces and metrics.

0.3.1 Sequence space

A fundamental consideration in statistics is the mathematical space in which the data lies, i.e. X

whereX1, X2, . . . ∈ X . A general definition of the spaceX of biological sequences is the set of

finite length strings of letters drawn from a fixed alphabet. For DNA the alphabet would be the four

nucleotides, and for proteins it would be the twenty amino acids. AllowingX to contain all finite

length strings allows us to model the vast majority of genetic elements, including genes, mRNA,

proteins, promoters, chromosomes, etc., though note that it does not cover multi-chromosome

genomes or other “sequences” that in fact consist of multiple DNA or polypeptide molecules.

Crucially, we will avoid the overly restrictive assumption thatX is the space of fixed length strings.
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While widespread in the field in the field of biological sequence analysis, such an assumption typi-

cally rests on heuristic data preprocessing methods – such as multiple sequence alignment for pro-

teins, or variant calling for genomes – that manipulate variable length sequence data to force it into

the space of fixed length strings. These methods are often problematic in that they either make un-

tenable assumptions about future data (e.g. that it has probability zero of being longer than previ-

ously observed data), destroy information (e.g. ignore structural variation in genomes) or both.

We will also avoid the assumption thatX is the space of infinite length strings. Although this

assumption is common in the analysis of phylogenetic sequence models, it is a poor description of

reality, particularly when working with protein-length rather than genome-length sequences. More-

over, we are interested in predicting unobserved sequences based on previously observed sequences,

rather than predicting the end of a sequence given its start; the relevant asymptotic limit is therefore

the limit of large numbers of sequences, not very long sequences.

0.3.2 Sequence distributions

Another important consideration is the set of distributions over sequence spaceX that a dataset of

sequences might be drawn from, i.e. the setP(X ), where we assume p0 ∈ P(X ). We will in general

try to avoid the common but overly restrictive assumption that our parametric modelsM are well-

specified, i.e. thatP(X ) ⊆ M. However, allowingP(X ) to be all possible distributions over finite

strings is often too weak an assumption to be tractable theoretically or practically, primarily because

of the difficulties of working with extreme variation in sequence length. We therefore introduce

plausible assumptions that control the distribution over sequence length.
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For many biological sequence datasets, it is appropriate to assume that while there may be vari-

ation in sequence length, this variation is not heavy-tailed. Functional constraints, for instance,

often restrict variation in sequence length as molecules evolve, e.g. a protein must maintain its

three-dimensional shape to perform a particular function and so cannot easily mutate to become

extremely long (Sec. 0.4.2). In Chapter 2, we introduce and study sub-exponential sequence distribu-

tions, which consist of any distribution p(x) for which, for some t > 0, we have EX∼p(x)[exp(t|X|)] <

∞, where |X| is the length ofX .

More restrictive assumptions onP(X ) can be relevant when modeling DNA synthesis. In par-

ticular, many synthesis technologies cannot produce arbitrary length sequences, and so in studying

these technologies is appropriate to assume that the distribution over sequences that they produce is

bounded, i.e. the probability of synthesizing a sequence with length above some maximum value is

zero. We study bounded sequence distributions in Chapter 3.

0.3.3 Metrics on sequence distributions

To evaluate methods for estimating or approximating sequence distributions, it is important to

consider what it might mean for two distributions to be similar or different. In generative biological

sequence statistics, we often want to approximate a distribution p(x) closely enough that sequences

sampled from our approximation p̃(x) have the same properties as those sampled from p(x), as

measured by some downstream experimental assay. This leads to a natural class of distance metrics

on sequence distributions. In particular, let f(x) be a function describing a sequence property; for

instance, f(x) could be a quantitative measure of the binding strength of an antibody sequence x,

13



or a binary indicator for whether or not the antibody x has binding strength above some threshold.

We can quantify the distance between p(x) and p̃(x) using an integral probability metric (IPM),

defined as

IPMF (p̃, p) = supf∈F

∣∣∣∣EX∼p[f(X)]− EX∼p̃[f(X)]
∣∣∣∣, (4)

whereF is a set of functions. IPMs measure the worst-case difference in an average property of

sequences sampled from each distribution, over all possible assay functions f ∈ F . A small IPM

value guarantees that when we synthesize a library of sequences from our approximation p̃, they will

have similar properties to the target distribution p, even when we do not know the assay function f .

IPMs depend crucially on the choice of function classF , which in turn depends on what we can

safely assume about the downstream assay function f . In practice, virtually all high-throughput

biological assays have limited dynamical range, i.e. there is some lowest possible and highest possible

value that they can measure. A naturalF for biological sequence distributions is thus the set of

bounded functions, i.e. F = {f : ‖f‖∞ ≤ u}where ‖f‖∞ = supx∈X |f(x)| and u is an upper

bound. In this case, IPMF is (up to a constant factor u) the total variation (TV) distance242. Since

the TV distance can be difficult to work with practically, we will try to make sure the TV distance is

small by controlling the KL divergence (Chapters 1, 3 and 4), which upper bounds the TV distance,

or the Hellinger distance (Chapter 2), which upper and lower bounds the TV distance.

It is useful to draw a contrast here with other areas of statistics, and especially to applications

where the data are continuous and we are not interested in physically making and measuring samples

from a distribution. In such applications a common goal is to approximate summary statistics of a
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target distribution p(x), such as its mean and variance. In this case, TV distance is not so useful: a

small TV distance does not ensure a small difference in means |EX∼p[X] − EX∼p̃[X]|, since for

f(x) = xwithX unbounded we have ‖f‖∞ = ∞. Instead, theWasserstein distance is often

used115. By the Kantorovich-Rubinstein duality, the Wasserstein distance is equivalent (up to a

constant factor u) to an IPMwithF the set of functions with bounded Lipschitz semi-norm, i.e.

F = {f : ‖f‖L ≤ u}where ‖f‖L = supx,x′∈X |f(x) − f(x′)|/d(x, x′), with d(·, ·) a distance

metric242. Small Wasserstein distances imply accurate mean approximations: for f(x) = x and

d(x, x′) = |x − x′|we have ‖f‖L = 1 < ∞. However, bounding theWasserstein distance is

not especially useful in biological sequence statistics. There are many examples of proteins where a

single mutation abolishes function, i.e. a very small change in sequence leads to a very large change

in a key property (see Ding et al. 56 for an example). Thus in practice for a real assay function f we

can expect ‖f‖L to often be large, even as large as ‖f‖∞. In biological sequence statistics, therefore,

we do not expect the Wasserstein distance to offer much tighter bounds on the difference in assay

output |EX∼p[f(X)]− EX∼p̃[f(X)]| as compared to the TV distance.

0.3.4 Entropy of sequence distributions

A useful way of measuring and comparing sequence distributions is in terms of the diversity of se-

quences that they generate. We will focus on a particular version of the distribution entropy, the

per-residue perplexity (PRP),

exp
(
−EX∼p(x)

[ 1
|X|

log(p(X))
])

, (5)
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where recall |X| is the length of the sequenceX . PRP is useful because it is directly comparable

between distributions that produce sequences of different lengths, and because it is interpretable as

the “effective” number of amino acid or nucleotides that the distribution generates at each position

of the sequence, on average across positions.

PRP is an absolute scale on which we can place sequence distributions. Here we give a brief tour

of the PRP scale for proteins. The minimum PRP is 1, corresponding to a p(x) that is just a delta

function at a single sequence (no diversity). Meanwhile, the PRP for a uniform distribution over

all 20 amino acids is 20. We can perform back-of-the-envelope calculations to get a rough sense of

the PRP of distributions studied in different areas of biological sequence statistics (calculations in

Sec. A.5).

1. All of life: A distribution p(x) that generates amino acids sequentially, based on the fre-

quency at which they are observed across all of life, will have a PRP of 17.92.

2. Evolutionary protein families: Simple models of evolutionary protein families, i.e. similar

or homologous proteins from across life, often rely on the BLOSUM substitution matrices;

with the BLOSUM62 matrix, we expect a PRP of 11.00.

3. Human population: Based on the number of single nucleotide polymorphisms observed in

individual humans relative to the reference genome, we can estimate the PRP of the distribu-

tion over human genomes as 1.02.

These calculations are based on simple models of real distributions; a more accurate model of the

distribution of sequences across life, for instance, will no doubt have lower PRP than 17.92. Nonethe-
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less, they are useful as a rough guess for what PRPs can be expected in different estimation and mod-

eling problems. This dissertation focuses primarily on distributions with higher PRP than the hu-

man population but lower PRP than all of life, with typical estimates ranging between 1.5 and 8.

0.3.5 Conclusions

Biological sequence data is not like other kinds of data, and occupies an unusual and challenging

position in statistics. Biological sequences cannot be handled with the theory of vector data (e.g.

X = {1, . . . , B}M ), since they are variable in length. Nor can sequences be handled using the the-

ory of time series data (e.g. X = {1, . . . , B} × {1, . . . , B} × . . .), since they are finite. Partially

as a consequence of length variation, it is difficult to define sensible distance metrics d(x, x′) over

sequence spaceX . Moreover, while in other fields a top priority is estimating expectations of known

functions – i.e. key distributional summary statistics such as mean and variance – in biological se-

quence statistics we care more about expectations of unknown functions, which are unlikely to be

smooth with respect to any sequence distance we might define a priori.

0.4 Biophysical foundations

To build effective statistical methods for biological sequence data we must consider the underlying

biophysics of sequence evolution. In this section we describe a broad framework for stochastic mod-

els of sequence evolution, accounting for three key phenomena: mutation, fitness and phylogeny.

Many existing models can be thought of as special cases, modifications, or extensions of this frame-

work. In particular, although the focus is on describing how species change over evolutionary time,
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the same ideas can be applied with modification to a variety of other biological phenomena, such as

the development of immune receptor repertoires or tumors within a single organism, or experimen-

tal evolution systems.

0.4.1 Mutation

We start by examining models of howDNAmutates over time, as organisms reproduce. Such mod-

els typically take the form of a Markov process, with a transition probability function P τ (x,X0)

describing the probability that an initial sequenceX0 mutates into another sequence x after time τ

(where time may be either discretized or continuous).

The most widely important and well-studied class of mutations are substitutions, in which a letter

at a particular position in a sequence is replaced with another letter, e.g. because of errors during

DNA replication. A standard model says the probability of observing a substitution in a descen-

dent sequenceX , at a particular position j, depends only on the letter in that same position in the

ancestor, i.e. X0j , and the length of time or number of generations τ that has elapsed since the an-

cestor. This can be summarized with a transition probability distributionX ∼ P τ (x,X0), using a

substitution matrix S,

Xj ∼ Categorical(X0j · Sτ ) for all j ∈ {1, . . . , |X|}, (6)

where j indexes the position in a sequence, Sτ is the matrix S raised to the power τ , and we rep-

resentX0 with a one-hot encoding, i.e. if the bth letter of the alphabet is at position j ofX , then
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X0jb = 1 andXjb′ = 0 for b′ 6= b. This independent model is simple and widely used, particularly

in phylogenetics, though note that it ignores more complex statistical dependencies that may affect

substitution probability, such as the wider sequence context.

A second important class of mutations are insertions and deletions (indels), in which letters are

be added or removed from a sequence at a particular position, creating a longer or shorter sequence.

While this process is straightforward to simulate – i.e. it is easy to write down implicit models180

where insertions and deletions are randomly added over time to an ancestral sequence – it is non-

trivial to construct probabilistic models with explicit analytic likelihoods over future sequences,

P τ (x,X0)107. This problem has been extensively studied in biological sequence analysis; a gen-

eralized solution for fixed τ appears in Chapter 1. A closely related problem is that of alignment:

inferring, given two or more sequences, which positions in each sequence are evolutionarily related

via substitution mutations (“conserved sites”) rather than indels.

Although indels and substitutions are in general the most extensively studied classes of mutations

in biological sequence analysis, there are of course other types of mutations, many of which have

been understudied primarily because of limitations in sequencing technology rather than biological

importance; these include, in particular, mechanisms of large-scale cutting and joining of DNA,

such as recombination, structural variation, etc.

0.4.2 Fitness

We next consider the effects of natural selection. To analyze how selection alters the evolution of

sequences, we move from the level of individual organisms to that of populations. We again work
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with a transition distribution on sequences P τ (x,X0), but now, rather than describing how indi-

vidual sequences change over time when an organism reproduces, it describes how a population of

genomes changes. In particular, let P τ (x,X0) be the probability that a population where genome

X0 is fixed – i.e. the most recent common ancestor of every organism in the population had se-

quenceX0 – transitions such that x is fixed, after time τ .

In general P τ (x,X0)will depend on both sequence mutation and selection. A fitness landscape

F (·) : X → R+ describes the relationship between sequence and selection. The (absolute) fitness

exp[F (x)] of a genome sequence x is the number of offspring that organisms with that sequence

produce on average. We will consider a simple set of population genetics assumptions, with haploid

organisms reproducing according to a Wright process, and the mutation rate assumed to be small rel-

ative to the population size. In these conditions, Sella &Hirsh 230 show that the transition operator

for a single timestep can be approximated as

P 1(x,X0) =


Nµ(x,X0) 1−exp(2[F (X0)−F (x)])

1−exp(2N [F (X0)−F (x)]) if x 6= X0,

1−
∑

x′ 6=X0 P
1(x′, X0) otherwise,

(7)

whereN is the population size and µ(x,X0) is the probability of mutating fromX0 to x, accord-

ing to e.g. a substitution or indel model (Sec. 0.4.1). Eqn. 7 combines the effects of mutation (via

µ) with the effects of selection (via F ) to produce a modified transition distribution describing se-

quence evolution over time in a population of organisms.

A key consequence of these evolutionary dynamics is their asymptotic behavior in the long-time
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limit. Sella &Hirsh 230 show under general assumptions that the stationary distribution takes the

form of a Boltzmann distribution with log fitness playing the role of energy,

P τ (x,X0) τ→∞−−−→ p∞(x) = 1
Z
exp(βF (x)), (8)

where the inverse temperature β = 2(N − 1) depends on population size andZ is the normaliza-

tion constant. Thus, given enough time, we expect the population to have a random fixed genotype

X ∼ p∞(x), with the log probability of the sequence log p∞(x) proportional to the log fitness of

the sequence F (x). Estimating the stationary distribution p∞ from data is a key problem because it

provides information about the underlying fitness landscape F .

The structure of the fitness landscape function F is of particular importance. We will primar-

ily study the fitness landscapes of individual biomolecules. This can be justified using an additivity

assumption, namely that F (x) = F (m)(x(m)) + F (e)(x(e))where F (m)(x(m)) is the contri-

bution of the molecule of interest x(m) (e.g. a particular protein encoded within the genome) to

the overall fitness F (x), and F (e)(x(e)) is the contribution of everything else in the genome. Un-

der this assumption, the stationary distribution p∞(x) factors as p∞(x) = p∞(x(m))p∞(x(e)),

so that the molecule of interest x(m) is independent of the rest of the genome, and can be studied

in isolation. A further assumption is that the fitness is additive within the molecule of interest, i.e.

F (x) =
∑|x|

j=1 Fj(xj) (notationally, for the rest of the dissertation we will be focused on individual

molecules, so we drop the superscript (m)). For instance, if x is a protein, its biological activity may

depend critically on the right kind of amino acid being in each position. In this case the stationary
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distribution p∞(x) is independent across positions, and is thus an instance of a “sitewise indepen-

dent model”. A more flexible assumption on F is that it can also depend on pairs of positions, i.e.

F (x) =
∑|x|

j=1 Fj(xj) +
∑|x|

j=1
∑|x|

j′>j Fjj′(xj , xj′). For instance, if amino acids at two sites in-

teract in three-dimensional space, the function of the protein can depend on having a correct pair

of amino acids at these positions, e.g. one positively and one negatively charged. In this case the sta-

tionary distribution p∞(x) is the celebrated Potts model of proteins168,110. More complex fitness

functions can arise, however, particularly when there is length variation.

Evolutionary dynamics are complex, and the basic Sella &Hirsh 230 model can break down when

mutation rates are high, when there are asymmetries in mutational biases, when the population has

substructure, when fitness changes as a function of time, etc..

0.4.3 Phylogeny

So far we have described models of sequence evolution at the level of individual organisms, and at

the level of individual populations of organisms, all of the same species. We now turn to models of

multiple populations, each corresponding to separate species. This necessitates understanding the

effects of phylogeny, the history of species.

A phylogenetic tree describes the history of species formally. It consists of a directed and rooted

full binary treeH = (V,E, T )with edgesE and nodes V , along with time labels for the nodes,

T : V → R+ (Fig. 4.1A). Each node v corresponds to a particular species, with the sequence

Xv fixed in the species’ population. Each species derives from its ancestor asXv ∼ P∆t(x,Xv0),

whereXv0 is the sequence of the parent node (the ancestor), v is the child node (the descendent),
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and∆t = T (v0) − T (v1) is the length of the edge between them (Fig. 4.1B). The evolutionary dy-

namics of individual populations P τ (x,X0) thus give rise to the evolutionary dynamics of multiple

species through a branching process. A central challenge in phylogenetics is inferring the latent tree

structure given only sequences from present-day species, i.e. the leaves of the phylogenetic tree.

Note that this basic model fails to take into account a number of important biological phenom-

ena, including especially horizontal gene transfer. It also ignores situations where the definition

of separate populations/species is not clear cut, as well as situations where the transition operator

P τ (x,X0) varies across branches.

0.4.4 Conclusions

We have outlined a framework for models of molecular evolution, building up from the individual

organism to the population to the multispecies level, taking into account mutations, fitness and

phylogeny. At the broadest level, these models pair a description of sequence dynamics in terms of a

Markov transition probability function – which is determined by mutation rates and has a station-

ary distribution that reflects the fitness landscape – with a description of species’ history over time

in terms of a binary branching tree. Attempting to take into account the full picture – mutations,

fitness and phylogeny – typically leads to models that are both highly complex (requiring many

parameters) and incomplete (ignoring the possibility of more complex mutational dynamics, popu-

lation dynamics, etc.). A fundamental challenge is to instead construct models that simultaneously

capture key phenomena of interest while remaining robust to biological complexity and scalable to

large datasets. For instance, a standard approach to learning evolutionary histories is to use a transi-
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tion operator that describes substitution mutations and ignores fitness; but ignoring fitness effects

can distort phylogenetic tree estimates, and ignoring indels typically relies on preprocessing methods

that violate the i.i.d. data assumption and get in the way of sequence prediction (Sec. 0.3.1; Chap-

ters 1 and 4). A standard approach to learning fitness landscapes is to ignore phylogenetics and treat

the data as coming from the stationary fitness distribution (Eqn. 8); but phylogenetic effects can

distort fitness inferences arbitrarily, so these methods are not necessarily robust (Chapter 4).

0.5 Outline of the dissertation

The dissertation consists of five chapters organized into two parts. Here we briefly review the con-

tribution of each chapter, placing them in the larger context of generative biological sequence statis-

tics.

0.5.1 Part I: Box’s loop for sequences

Box’s loop (Fig. 1) is an idealized virtuous feedback loop of improved scientific understanding, in

which probabilistic models are proposed, refined, and then applied. However, Box’s loop has been

challenging to implement in practice in the context of biological sequences. The purpose of Part I

of this dissertation is to help remove existing barriers to Box’s loop, developing powerful and scal-

able tools to build, infer, criticize, and design experiments based on generative biological sequence

models.

Chapter 1, based onWeinstein &Marks 284 , develops a new tool for building generative sequence

models, a structured observation distribution which we call the “mutational emission” (MuE) dis-
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tribution. Observation distributions (also called “error”, “emission” or “output” distributions) are

a ubiquitous tool in statistics and machine learning, and provide a systematic way of working with

data in a particular spaceX , with a particular form of variability. Given a covariate or a latent vari-

ableZ , we can model an observed datapointX asX ∼ Observation(g(Z))where Observation(·)

is the observation distribution and g is a function we can choose (a linear function, a deep neural

network, etc.). For instance ifX were count data, recording the number of times a rare event oc-

curred, a standard choice of observation distribution would be the Poisson distribution. TheMuE

is an observation distribution for biological sequence data, whereX is in the set of finite length

stringsX (Sec. 0.3.1). It explicitly accounts for mutational variability, in particular substitutions

and indels (Sec. 0.4.1). Methodologically, MuE observation models are intended as an alternative

to a ubiquitous preprocessing procedure – multiple sequence alignment (MSA) – that manipu-

lates the data to have standardized length; MuE observation models can be interpreted similarly to

MSA-based models (i.e. in terms of variation at conserved sites and indels), but have the virtue of

providing valid predictions over unobserved or future sequences, enabling fully generative sequence

modeling (Sec. 0.3.1). We develop fast variational inference strategies for MuE observation models

(Sec. 0.2.3), taking advantage of parallel scan algorithms. MuE observation models and inference

algorithms are now part of the Pyro probabilistic programming language, allowing them to be eas-

ily constructed and used in combination with other models for other kinds of data23. We apply

MuE observation models to build a generative forecast of pathogen sequence evolution (Sec. 0.1.1),

as well as detailed maps of immune receptor repertoires in individual patients (Sec. 0.1.2), and im-

proved descriptions of disordered protein families.
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Chapter 2, based on Amin et al. 12 , develops a new generative sequence model, the Bayesian em-

bedded autoregressive (BEAR) model. BEARmodels can be used both for density estimation and

for model criticism, in particular goodness-of-fit and two-sample testing (Sec. 0.2.1). They combine

a nonparametric BayesianMarkov model with a structured prior, centered on the predictions of a

parametric autoregressive model. We develop fast empirical Bayes inference algorithms for BEAR

models, which take advantage of powerful database construction tools for biological sequences.

These algorithms are scalable to whole genome and even metagenome datasets – terabytes of data

or more – and we find BEARmodels exhibit excellent predictive performance in both the small and

large data regimes. We prove theoretically that BEARmodels are asymptotically consistent non-

parametric density estimators: their posterior converges to any data generating distribution p0, in

terms of Hellinger distance (Sec. 0.3.3), so long as p0 is sub-exponential (Sec. 0.3.2). Since we can

tractably compute the marginal likelihood of BEARmodels, they can also be used for goodness-of-

fit testing and two-sample testing, and we prove the asymptotic correctness of these tests as well. We

demonstrate BEARmodels on whole genome sequencing data from plants (whose genomes have

notoriously complex structural variation), metagenomic data from patients with irritable bowel

syndrome, and single cell RNA sequencing data from tumors. We apply BEAR two-sample tests

to evaluate changes in the microbiome of patients before and after kidney transplantation, and to

criticize simulator models of whole genome sequencing data.

Chapter 3, based onWeinstein et al. 282 , turns to the problem of designing experiments based

on generative sequence models, and in particular, synthesizing samples frommodels in the labo-

ratory. A standard approach, which we term “Monte Carlo (MC) synthesis”, is to draw samples
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from the model computationally, and then synthesize these samples individually in the laboratory;

this approach is typically limited by synthesis costs. We propose an alternative strategy, “variational

synthesis”, which relies on stochastic synthesis techniques, or biochemical methods that produce a

diverse set of product molecules from single reactions rather than a pure product. Stochastic synthe-

sis methods can produce a massive number of unique DNAmolecules in a single test tube, vastly

more than could be synthesized individually, but the molecules are randomized. We propose to

(1) model the distribution over product molecules with another generative probabilistic model

qθ(x), with parameters θ corresponding to quantities over which the experimentalist has control,

and then (2) choose the optimal θ∗ such that qθ∗ ≈ p. Running the synthesis protocol in the labo-

ratory with the optimized parameters θ∗ will then produce a large number of approximate samples

from p(x). We model the distribution of product sequences in terms of underlying substitution

and recombination mutations (Sec. 0.4.1); the full distribution qθ(x) takes the form of a mixture

model. We optimize θ by minimizing a KL divergence with the target model distribution, in partic-

ular θ∗ = argminθkl(p‖qθ). Using integral probability metrics (Sec. 0.3.3), we provide theoretical

guarantees that variational synthesis will produce large numbers of hits in downstream assays, as

compared toMC synthesis. We further show that some, but not all, stochastic synthesis technolo-

gies can approximate arbitrary target distributions p(x) arbitrarily well, where p(x) is assumed to be

bounded (Sec. 0.3.2). We then demonstrate a complete Box’s loop pipeline: building models with

the MuE observation distribution, criticizing models with BEAR two-sample tests, and designing

experiments with variational synthesis. We show, using simulated assay functions trained on held-

out sequence-to-function data, that using variational synthesis instead of MC synthesis can lead to

27



> 400× increase in the number of hits in example fluorescent protein and T cell receptor engineer-

ing problems (Sec. 0.1.2).

0.5.2 Part II: Using misspecified models for estimation and discovery

The goal of Box’s loop is to produce an accurate probabilistic model of a given dataset. From this

perspective, misspecified models are a major problem: they are “wrong”, in the sense that they can-

not accurately capture the underlying data generating distribution (Sec. 0.2.2). Misspecified models

should therefore be avoided if possible, and used with caution if necessary, when modeling com-

plex data. Although this attitude is something of a truism in probabilistic modeling, our efforts to

replace heuristic and semi-heuristic biological sequence analysis methods with more rigorous sta-

tistical methods led to a number of examples where such conventional wisdom breaks down or is

incomplete. We first present an example where misspecified models are a powerful tool for accurate

estimation, even with infinite data. We then consider a situation where the scientific goal is not to

produce an accurate model of the entire dataset, but rather only a piece of the dataset.

Chapter 4, based onWeinstein et al. 281 , considers the problem of estimating fitness landscapes

from evolutionary sequence data (Sec. 0.4.2). Existing methods ignore the effects of phylogeny,

treating the dataset of sequences as if it consisted of i.i.d. samples from the stationary distribution

p∞ (Sec. 0.4.3). In particular, they proceed by fitting a parametric modelM = {pθ : θ ∈ Θ}

to data, and then using the log probability of a sequence under the inferred model as an estimate of

its log fitness (applying Eqn. 8). We show that the effects of phylogeny can distort the data gener-

ating distribution p0 away from the stationary distribution p∞, and there are fundamental limits
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on what we can learn about p∞ given samples from p0. Further, we show that when the assump-

tion that there are no phylogenetic effects is violated, using a misspecified model can result in better

estimates of p∞ as compared to a well-specified model: the model distribution at the pseudo-true

parameter, pθ0 , may be closer to p∞ than p0 (Sec. 0.2.2). Applying the BEARmodel to estimate

p0, we develop a hypothesis test to determine whether or not this effect holds in practice. Across

over a hundred separate datasets, we show that using misspecified models results in systematically

improved fitness estimation. Our results have implications for our ability to engineer new proteins

and diagnose genetic disease, as well as for our understanding of the long term past and future of

evolution (Sec. 0.1.3).

Finally, Chapter 5, based onWeinstein &Miller 285 , turns to a more general statistical problem,

motivated by common heuristic methods in biological sequence analysis and other fields of compu-

tational biology. Given a complex phenomena, scientists often proceed by developing working mod-

els for various special cases and subsets; thus, a natural question is where and when a given work-

ing model applies. We formalize this as the “data selection” problem: finding a lower-dimensional

statistic (such as a subset of dimensions) that is well fit by a given parametric model of interest. In

biological sequence statistics, for instance, there are a variety of heuristic methods for determining

sets of subsequences that are well fit by a profile hiddenMarkov model69. Since the data selection

problem has not been studied systematically before, we focus on the more standard statistical setting

of continuous real vector data, rather than sequence data. We introduce a Bayesian approach to data

selection, and study its asymptotic behavior, revealing that it quantifies a simple logic: we should

apply our working model to explain as much of the data as it can, and no more. We then develop an
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alternative to the fully Bayesian approach, with analogous asymptotic behavior, that is faster to com-

pute. We demonstrate our method on single cell RNA sequencing datasets, determining where and

when a simple biophysical model of gene expression actually applies. Our results set the stage for fu-

ture work developing rigorous Bayesian data selection methods specifically for biological sequences.
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1
A Structured Observation Distribution

Generative probabilistic modeling of biological sequences has widespread existing and potential

application across biology and biomedicine, from evolutionary biology to epidemiology to protein

design. Many standard sequence analysis methods preprocess data using a multiple sequence align-

ment (MSA) algorithm, one of the most widely used computational methods in all of science270.

However, as we show in this article, training generative probabilistic models with MSA preprocess-
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ing leads to statistical pathologies in the context of sequence prediction and forecasting. To address

these problems, we propose a principled drop-in alternative to MSA preprocessing in the form of

a structured observation distribution (the “MuE” distribution). We prove theoretically that the

MuE distribution comprehensively generalizes popular methods for inferring biological sequence

alignments, and provide a precise characterization of how such biological models have differed from

natural language latent alignment models. We show empirically that models that use the MuE as

an observation distribution outperform comparable methods across a variety of datasets, and apply

MuEmodels to a novel problem for generative probabilistic sequence models: forecasting pathogen

evolution.

This chapter presents work with Debora S. Marks, published at the International Conference on

Machine Learning (2021)284. E.N.W. conceived the research, performed the research and wrote the

paper; D.S.M. supervised the research at all stages.

1.1 Introduction

High-throughput sequencing is pervasive across biology and biomedicine, and critical to both past

and ongoing discoveries and technological advancements. Analyzing large scale sequence data, mak-

ing predictions about unobserved or future sequences, and generating new functional sequences,

are major and growing challenges with relevance to epidemiology (predicting pathogen evolution),

immunology (characterizing antibody repertoires), molecular evolution (mapping substructure

within protein families), protein design, and many more subfields of biology and biomedicine. In
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principal, generative probabilistic modeling enables (a) modular and uncertainty-aware data analysis,

(b) formal mathematical statement of underlying assumptions, and (c) generation of new samples,

which in the case of sequences can be synthesized and tested in the laboratory (taking advantage

of recent rapid progress in high-throughput synthesis)147,224. However, although machine learn-

ing and statistics offer an extraordinary array of generative probabilistic models, extending existing

methods to apply to biological sequences while accounting for domain-specific prior knowledge is

nontrivial.

When analyzing biological sequence data, a standard approach is to preprocess the data before

building any models by constructing a multiple sequence alignment (MSA). MSA algorithms are

among the most widely used methods in all of science; according to a 2014 analysis, the 10th most

cited scientific article of all time is anMSA algorithm, ahead of all other computational data analysis

and statistics articles270,256,255. Recent major advances in machine learning and statistical methods

for protein structure prediction, variant effect prediction for clinical genetics, protein design, epi-

demiological tracking, and more have continued to rely onMSAs168,79,224,99. AlthoughMSAs are

a powerful tool for understanding sequence evolution, in Section 1.4.1 of this article we show that

employingMSAs as preprocessing introduces statistical pathologies in the context of generative

sequence prediction and forecasting.

As a principled, drop-in alternative to MSA preprocessing, this article provides a structured ob-

servation distribution for biological sequences, the “mutational emission” (“MuE”) distribution.

Observation distributions are a common general-purpose technique for extending continuous-space

models to other types of data, perhaps most familiar in the context of generalized linear models,
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YMSA,i
<latexit sha1_base64="NziNNiHYNeqv7frUL0sWAdLrV2s=">AAAB+3icbVDLSgMxFM3UV62vsS7dBIvgQspMFXRZdeNGqGgf0g5DJs20oUlmSDJiGeZX3LhQxK0/4s6/MW1noa0HAodz7uWenCBmVGnH+bYKS8srq2vF9dLG5tb2jr1bbqkokZg0ccQi2QmQIowK0tRUM9KJJUE8YKQdjK4mfvuRSEUjca/HMfE4GggaUoy0kXy7/OCnPY70UPL05u4iO6aZb1ecqjMFXCRuTiogR8O3v3r9CCecCI0ZUqrrOrH2UiQ1xYxkpV6iSIzwCA1I11CBOFFeOs2ewUOj9GEYSfOEhlP190aKuFJjHpjJSUw1703E/7xuosNzL6UiTjQReHYoTBjUEZwUAftUEqzZ2BCEJTVZIR4iibA2dZVMCe78lxdJq1Z1T6q129NK/TKvowj2wQE4Ai44A3VwDRqgCTB4As/gFbxZmfVivVsfs9GCle/sgT+wPn8A++OUZg==</latexit>
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Vi
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Figure 1.1: (A) A standard approach to building biological sequencemodels is to preprocess the data by constructing an

MSA. (B)We proposemodifying themodel instead of the data using theMuE distribution.

where they are sometimes also referred to as “error”, “emission”, or “output” distributions. For in-

stance, to predict count data, one might use a Poisson as an observation distribution, or to predict

positive continuous data, one might use a Gamma. Good observation distributions account for

both the support of the data and common forms of variability or noise in the data. For biological

sequences, we propose using the MuE as an observation distribution. TheMuE takes the form of a

latent alignment model in which the regressor sequence can also be latent52.*

The major contributions of the article are (1) identification of statistical pathologies introduced

by widely-usedMSA preprocessing methods, (2) a drop-in general purpose alternative, the MuE

distribution, (3) a unified and comprehensive theoretical framework for cataloging and rederiving

existing biological latent alignment models from theMuE and (4) a novel application of genera-

tive probabilistic sequence models enabled by these advancements: forecasting pathogen evolution.

At the most practical level, our approach provides a complete recipe for applying one’s generative

model of choice to biological sequence data while avoiding the pathologies of MSA preprocessing:

*Wewill refer to biological alignments (diagrammatic representations of relatedness between sequences)
as “multiple sequence alignments”67. We will refer to machine learning alignments (latent variables which
indicate which positions in one sequence generate which positions in another sequence) as “latent align-
ments”52.
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1.2 Method

1.2.1 Background: MSA Preprocessing

MSA algorithms are applied to families of evolutionarily related biological sequences (proteins,

RNA or DNA) in order to infer sites in each sequence that are likely to be related to one another,

meaning that they descend from a common ancestor. MSAs can be used as the basis for extrapola-

tion: for instance, knowledge about one region in one sequence can be used to make guesses about

related regions in related sequences. MSAs can also be used to understand biological function: for

instance, if particular amino acids at particular sites are highly conserved across sequences, it may

be evidence that they are crucial to biological function. Generative probabilistic models of MSAs

have seen widespread success on these and many other tasks, including predicting the clinical im-

pacts of genetic mutations, inferring three-dimensional protein and RNA structure, and designing

new proteins79,168,280,224. We next briefly describe how suchMSA-based models are built, as well as

their advantages and flaws. In Section 1.2.2 we introduce our alternative, MuE observation models,

which directly generate sequences rather thanMSAs. MuE observation models infer related sites

but also simultaneously (1) account for uncertainty in which sites are related, (2) allow rigorous

model evaluation and (3) enable prediction and forecasting of sequences.

Let {Y1, . . . , YN} be a dataset ofN sequences, which may each be different in length, and let

B denote the alphabet (e.g. B = {A, T,G,C} for DNA). MSA algorithms convert the sequence
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dataset into anN by J matrix, anMSA, adding gap symbols “−” such that sites in the same ma-

trix column are those inferred to be related (Figure 1.1A). Mathematically, MSA algorithms can be

summarized as nonlinear functions fMSA that take in datasets of sequences and return processed

datasets, {YMSA,1, . . . YMSA,N} := fMSA({Y1, . . . , YN}); for each i ∈ {1, . . . , N}, we have

YMSA,i ∈ (B ∪ {−})J . Note J itself will depend on the input dataset.

Preprocessing sequence data by constructing anMSA is useful in that it (1) converts the data

into a matrix, and (2) adjusts for common sources of variability in biological sequence data, in par-

ticular insertion and deletion mutations. MSA preprocessing makes building statistical models of

sequences more straightforward. For instance, starting from an arbitrary model pθ that generates

continuous matrices Vi ∈ RJ×(B+1), whereB := |B|, one general strategy is to employ a softmax

linker function and a categorical observation distribution (softmax(Vi)j := exp(Vi,j,b)/
∑

b′ exp(Vi,j,b′)

for j ∈ {1, . . . , J}). The complete approach is (Figure 1.1A),

Preprocess: {YMSA,1, . . . YMSA,N} := fMSA({Y1, . . . , YN}),

Model: Vi ∼ pθ

YMSA,i ∼ Categorical(Xi := softmax(Vi)).

(1.1)

By allowing arbitrary pθ, this method enables, for example, the application of generative image mod-

els (such as variational autoencoders) to biological sequence data215. However, as we describe in

depth in Section 1.4.1, MSA preprocessing introduces substantial problems: each row of the output

matrix YMSA,i depends via fMSA on the entire input dataset {Y1, . . . , YN} and we cannot know
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k <latexit sha1_base64="S3l8nnBLDerjgmOsR9KRP3N3+lk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5rhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f09OM8w==</latexit>

k0
<latexit sha1_base64="kExAGAkguoA5roEpTo57MjT+CBg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KkkV9Fj04rGK/YA2lM120y7dbMLuRCih/8CLB0W8+o+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpYXTWK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbphJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymb5O+0JyhHFtCmRb2VsKGVFOGNpyiDcFbfHmZNKsV76JSvb8s127yOApwDCdwDh5cQQ3uoA4NYBDCM7zCmzNyXpx352PeuuLkM0fwB87nDzRNjSQ=</latexit> x

<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

c
<latexit sha1_base64="0jIMiY3Xg6FeHydWT6UzrJgEy0o=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJuuXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSrlW9i2qteVmp3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHx7OM6w==</latexit>
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<latexit sha1_base64="BGIvv1Que1aISVw+1pGEuT4uC1M=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCmhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qnn9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AELeI2j</latexit>

w2
<latexit sha1_base64="k9TH6JRVGzznxlg0BHK2AhK6Dh8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCmhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindeqd5dlGvXeRwFOIYTOAMPLqEGt1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QMM/I2k</latexit>

w3
<latexit sha1_base64="Jqap7piIcWW5up2+v3ATn2Y9lBE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xyiOBDZkdemHC7OxmZlZDCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStmrlit3F6XadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8ADoCNpQ==</latexit>

w4
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<latexit sha1_base64="+8rmszECI9EV3GoxPs4y4O59cp8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF48Y5ZHAhswODUyYnd3MzGrIhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8HoZuo3H1FpHskHM47RD+lA8j5n1Fjp/ql70S2W3LI7A1kmXkZKkKHWLX51ehFLQpSGCap123Nj46dUGc4ETgqdRGNM2YgOsG2ppCFqP52dOiEnVumRfqRsSUNm6u+JlIZaj8PAdobUDPWiNxX/89qJ6V/5KZdxYlCy+aJ+IoiJyPRv0uMKmRFjSyhT3N5K2JAqyoxNp2BD8BZfXiaNStk7K1fuzkvV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNEc6L8+58zFtzTjZzCH/gfP4AEYiNpw==</latexit>
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<latexit sha1_base64="BGIvv1Que1aISVw+1pGEuT4uC1M=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCmhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qnn9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AELeI2j</latexit>
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<latexit sha1_base64="k9TH6JRVGzznxlg0BHK2AhK6Dh8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCmhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindeqd5dlGvXeRwFOIYTOAMPLqEGt1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QMM/I2k</latexit>
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<latexit sha1_base64="Jqap7piIcWW5up2+v3ATn2Y9lBE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xyiOBDZkdemHC7OxmZlZDCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStmrlit3F6XadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8ADoCNpQ==</latexit>
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<latexit sha1_base64="BGIvv1Que1aISVw+1pGEuT4uC1M=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCmhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qnn9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AELeI2j</latexit>

w2
<latexit sha1_base64="k9TH6JRVGzznxlg0BHK2AhK6Dh8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCmhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindeqd5dlGvXeRwFOIYTOAMPLqEGt1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QMM/I2k</latexit>

w3
<latexit sha1_base64="Jqap7piIcWW5up2+v3ATn2Y9lBE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xyiOBDZkdemHC7OxmZlZDCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStmrlit3F6XadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8ADoCNpQ==</latexit>

w4
<latexit sha1_base64="Z4Vsfm+PU1V5LIAy0eW8WRtO420=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4xyiOBDZkdemHC7OxmZlZDCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7KFfuqqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEASNpg==</latexit>

w5
<latexit sha1_base64="+8rmszECI9EV3GoxPs4y4O59cp8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF48Y5ZHAhswODUyYnd3MzGrIhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8HoZuo3H1FpHskHM47RD+lA8j5n1Fjp/ql70S2W3LI7A1kmXkZKkKHWLX51ehFLQpSGCap123Nj46dUGc4ETgqdRGNM2YgOsG2ppCFqP52dOiEnVumRfqRsSUNm6u+JlIZaj8PAdobUDPWiNxX/89qJ6V/5KZdxYlCy+aJ+IoiJyPRv0uMKmRFjSyhT3N5K2JAqyoxNp2BD8BZfXiaNStk7K1fuzkvV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNEc6L8+58zFtzTjZzCH/gfP4AEYiNpw==</latexit>

TACGC
<latexit sha1_base64="najlmvKIJOH9hCqziaj5Ipu/CLI=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0nqQY/VHvRYoV/QhLLZbtqlm03Y3Qgl7d/w4kERr/4Zb/4bt2kO2vpg4PHeDDPz/JgzpW372ypsbG5t7xR3S3v7B4dH5eOTjooSSWibRDySPR8rypmgbc00p71YUhz6nHb9SWPhd5+oVCwSLT2NqRfikWABI1gbyXWN589at437xmxQrthVOwNaJ05OKpCjOSh/ucOIJCEVmnCsVN+xY+2lWGpGOJ2X3ETRGJMJHtG+oQKHVHlpdvMcXRhliIJImhIaZerviRSHSk1D33SGWI/VqrcQ//P6iQ5uvJSJONFUkOWiIOFIR2gRABoySYnmU0MwkczcisgYS0y0ialkQnBWX14nnVrVuarWHmuV+l0eRxHO4BwuwYFrqMMDNKENBGJ4hld4sxLrxXq3PpatBSufOYU/sD5/AIpSkVk=</latexit>

w4
<latexit sha1_base64="Z4Vsfm+PU1V5LIAy0eW8WRtO420=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4xyiOBDZkdemHC7OxmZlZDCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7KFfuqqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEASNpg==</latexit>

TAGC
<latexit sha1_base64="Jb650VR/+PEGRUXtgw95exdsZnM=">AAAB8nicbVA9TwJBEJ3DL8Qv1NJmIzGxIndYaIlSaIkJXwlcyN6yBxv2di+7eybk4GfYWGiMrb/Gzn/jAlco+JJJXt6bycy8IOZMG9f9dnIbm1vbO/ndwt7+weFR8fikpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2Ma3O//USVZlI0zCSmfoSHgoWMYGOlbs96wbRxe1+b9oslt+wugNaJl5ESZKj3i1+9gSRJRIUhHGvd9dzY+ClWhhFOZ4VeommMyRgPaddSgSOq/XRx8gxdWGWAQqlsCYMW6u+JFEdaT6LAdkbYjPSqNxf/87qJCW/8lIk4MVSQ5aIw4chINP8fDZiixPCJJZgoZm9FZIQVJsamVLAheKsvr5NWpexdlSuPlVL1LosjD2dwDpfgwTVU4QHq0AQCEp7hFd4c47w4787HsjXnZDOn8AfO5w/72pEM</latexit>

TACGC
<latexit sha1_base64="najlmvKIJOH9hCqziaj5Ipu/CLI=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0nqQY/VHvRYoV/QhLLZbtqlm03Y3Qgl7d/w4kERr/4Zb/4bt2kO2vpg4PHeDDPz/JgzpW372ypsbG5t7xR3S3v7B4dH5eOTjooSSWibRDySPR8rypmgbc00p71YUhz6nHb9SWPhd5+oVCwSLT2NqRfikWABI1gbyXWN589at437xmxQrthVOwNaJ05OKpCjOSh/ucOIJCEVmnCsVN+xY+2lWGpGOJ2X3ETRGJMJHtG+oQKHVHlpdvMcXRhliIJImhIaZerviRSHSk1D33SGWI/VqrcQ//P6iQ5uvJSJONFUkOWiIOFIR2gRABoySYnmU0MwkczcisgYS0y0ialkQnBWX14nnVrVuarWHmuV+l0eRxHO4BwuwYFrqMMDNKENBGJ4hld4sxLrxXq3PpatBSufOYU/sD5/AIpSkVk=</latexit>

Example generated 
sequences Y<latexit sha1_base64="NRADBWhidLrGKbqT5Fr94wkW5hw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkYeBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJb3ZpygH9GB5CFn1Fip/tArltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+ALiLjOE=</latexit>
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w6

<latexit sha1_base64="MBbxfBHJTcxkoMwZ56palcchCnQ=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF48Y5ZHAhswODUyYnd3MzGrIhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8HoZuo3H1FpHskHM47RD+lA8j5n1Fjp/ql70S2W3LI7A1kmXkZKkKHWLX51ehFLQpSGCap123Nj46dUGc4ETgqdRGNM2YgOsG2ppCFqP52dOiEnVumRfqRsSUNm6u+JlIZaj8PAdobUDPWiNxX/89qJ6V/5KZdxYlCy+aJ+IoiJyPRv0uMKmRFjSyhT3N5K2JAqyoxNp2BD8BZfXiaNStk7K1fuzkvV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNEc6L8+58zFtzTjZzCH/gfP4AEwyNqA==</latexit>

TACTGC
<latexit sha1_base64="8aGUhWYoSvCfXqg1rNBwNz6qReQ=">AAAB9HicbVBNT8JAEJ3iF+IX6tHLRmLiibR40CPKQY+YlI8EGrJdtrBhu627WxJS+B1ePGiMV3+MN/+NC/Sg4EsmeXlvJjPz/JgzpW3728ptbG5t7+R3C3v7B4dHxeOTpooSSWiDRDySbR8rypmgDc00p+1YUhz6nLb8UW3ut8ZUKhYJV09i6oV4IFjACNZG8rrG86fubc29r017xZJdthdA68TJSAky1HvFr24/IklIhSYcK9Vx7Fh7KZaaEU5nhW6iaIzJCA9ox1CBQ6q8dHH0DF0YpY+CSJoSGi3U3xMpDpWahL7pDLEeqlVvLv7ndRId3HgpE3GiqSDLRUHCkY7QPAHUZ5ISzSeGYCKZuRWRIZaYaJNTwYTgrL68TpqVsnNVrjxWStW7LI48nME5XIID11CFB6hDAwg8wTO8wps1tl6sd+tj2ZqzsplT+APr8wczBpG3</latexit>

BA
Constraints on transition matrix Corresponding pairwise 

sequence alignments

TACTGC
<latexit sha1_base64="8aGUhWYoSvCfXqg1rNBwNz6qReQ=">AAAB9HicbVBNT8JAEJ3iF+IX6tHLRmLiibR40CPKQY+YlI8EGrJdtrBhu627WxJS+B1ePGiMV3+MN/+NC/Sg4EsmeXlvJjPz/JgzpW3728ptbG5t7+R3C3v7B4dHxeOTpooSSWiDRDySbR8rypmgDc00p+1YUhz6nLb8UW3ut8ZUKhYJV09i6oV4IFjACNZG8rrG86fubc29r017xZJdthdA68TJSAky1HvFr24/IklIhSYcK9Vx7Fh7KZaaEU5nhW6iaIzJCA9ox1CBQ6q8dHH0DF0YpY+CSJoSGi3U3xMpDpWahL7pDLEeqlVvLv7ndRId3HgpE3GiqSDLRUHCkY7QPAHUZ5ISzSeGYCKZuRWRIZaYaJNTwYTgrL68TpqVsnNVrjxWStW7LI48nME5XIID11CFB6hDAwg8wTO8wps1tl6sd+tj2ZqzsplT+APr8wczBpG3</latexit>

TAC-GC
<latexit sha1_base64="7nqecWx7ucfd+9R+9gAHpxvNioU=">AAAB9HicbVA9TwJBEJ3DL8Qv1NJmIzGxkdxBoSVKoSUmfCVwIXvLHmzY2zt390jIwe+wsdAYW3+Mnf/GBa5Q8CWTvLw3k5l5XsSZ0rb9bWU2Nre2d7K7ub39g8Oj/PFJU4WxJLRBQh7KtocV5UzQhmaa03YkKQ48TlveqDr3W2MqFQtFXU8i6gZ4IJjPCNZGcrvG86b12+rVfXXayxfsor0AWidOSgqQotbLf3X7IYkDKjThWKmOY0faTbDUjHA6y3VjRSNMRnhAO4YKHFDlJoujZ+jCKH3kh9KU0Gih/p5IcKDUJPBMZ4D1UK16c/E/rxNr/8ZNmIhiTQVZLvJjjnSI5gmgPpOUaD4xBBPJzK2IDLHERJucciYEZ/XlddIsFZ1ysfRYKlTu0jiycAbncAkOXEMFHqAGDSDwBM/wCm/W2Hqx3q2PZWvGSmdO4Q+szx/3ZpGQ</latexit>

TA-GC
<latexit sha1_base64="pqUMqGuwGxhkQNRHdHACvdVZYII=">AAAB83icbVBNT8JAEJ3iF+IX6tHLRmLiRdLCQY8oBz1iwldCG7JdtrBhu212tyak8De8eNAYr/4Zb/4bF+hBwZdM8vLeTGbm+TFnStv2t5Xb2Nza3snvFvb2Dw6PiscnbRUlktAWiXgkuz5WlDNBW5ppTruxpDj0Oe344/rc7zxRqVgkmnoSUy/EQ8ECRrA2kusaz582b6/u69N+sWSX7QXQOnEyUoIMjX7xyx1EJAmp0IRjpXqOHWsvxVIzwums4CaKxpiM8ZD2DBU4pMpLFzfP0IVRBiiIpCmh0UL9PZHiUKlJ6JvOEOuRWvXm4n9eL9HBjZcyESeaCrJcFCQc6QjNA0ADJinRfGIIJpKZWxEZYYmJNjEVTAjO6svrpF0pO9Vy5bFSqt1lceThDM7hEhy4hho8QANaQCCGZ3iFNyuxXqx362PZmrOymVP4A+vzB2i4kUM=</latexit>

TACGC
<latexit sha1_base64="najlmvKIJOH9hCqziaj5Ipu/CLI=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0nqQY/VHvRYoV/QhLLZbtqlm03Y3Qgl7d/w4kERr/4Zb/4bt2kO2vpg4PHeDDPz/JgzpW372ypsbG5t7xR3S3v7B4dH5eOTjooSSWibRDySPR8rypmgbc00p71YUhz6nHb9SWPhd5+oVCwSLT2NqRfikWABI1gbyXWN589at437xmxQrthVOwNaJ05OKpCjOSh/ucOIJCEVmnCsVN+xY+2lWGpGOJ2X3ETRGJMJHtG+oQKHVHlpdvMcXRhliIJImhIaZerviRSHSk1D33SGWI/VqrcQ//P6iQ5uvJSJONFUkOWiIOFIR2gRABoySYnmU0MwkczcisgYS0y0ialkQnBWX14nnVrVuarWHmuV+l0eRxHO4BwuwYFrqMMDNKENBGJ4hld4sxLrxXq3PpatBSufOYU/sD5/AIpSkVk=</latexit>

TACGC
<latexit sha1_base64="najlmvKIJOH9hCqziaj5Ipu/CLI=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0nqQY/VHvRYoV/QhLLZbtqlm03Y3Qgl7d/w4kERr/4Zb/4bt2kO2vpg4PHeDDPz/JgzpW372ypsbG5t7xR3S3v7B4dH5eOTjooSSWibRDySPR8rypmgbc00p71YUhz6nHb9SWPhd5+oVCwSLT2NqRfikWABI1gbyXWN589at437xmxQrthVOwNaJ05OKpCjOSh/ucOIJCEVmnCsVN+xY+2lWGpGOJ2X3ETRGJMJHtG+oQKHVHlpdvMcXRhliIJImhIaZerviRSHSk1D33SGWI/VqrcQ//P6iQ5uvJSJONFUkOWiIOFIR2gRABoySYnmU0MwkczcisgYS0y0ialkQnBWX14nnVrVuarWHmuV+l0eRxHO4BwuwYFrqMMDNKENBGJ4hld4sxLrxXq3PpatBSufOYU/sD5/AIpSkVk=</latexit>

TACGC
<latexit sha1_base64="najlmvKIJOH9hCqziaj5Ipu/CLI=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0nqQY/VHvRYoV/QhLLZbtqlm03Y3Qgl7d/w4kERr/4Zb/4bt2kO2vpg4PHeDDPz/JgzpW372ypsbG5t7xR3S3v7B4dH5eOTjooSSWibRDySPR8rypmgbc00p71YUhz6nHb9SWPhd5+oVCwSLT2NqRfikWABI1gbyXWN589at437xmxQrthVOwNaJ05OKpCjOSh/ucOIJCEVmnCsVN+xY+2lWGpGOJ2X3ETRGJMJHtG+oQKHVHlpdvMcXRhliIJImhIaZerviRSHSk1D33SGWI/VqrcQ//P6iQ5uvJSJONFUkOWiIOFIR2gRABoySYnmU0MwkczcisgYS0y0ialkQnBWX14nnVrVuarWHmuV+l0eRxHO4BwuwYFrqMMDNKENBGJ4hld4sxLrxXq3PpatBSufOYU/sD5/AIpSkVk=</latexit>

A(y)
<latexit sha1_base64="u22idr/4XTUZ9c0+ZJU5zixAvLU=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahbkpSBV1W3bisYB/QxjKZTtqhkwczE6XEfIobF4q49Uvc+TdO2iy09cDA4Zx7uWeOG3EmlWV9G4WV1bX1jeJmaWt7Z3fPLO+3ZRgLQlsk5KHoulhSzgLaUkxx2o0Exb7LacedXGd+54EKycLgTk0j6vh4FDCPEay0NDDLfR+rMcE8uUzvk+r0JB2YFatmzYCWiZ2TCuRoDsyv/jAksU8DRTiWsmdbkXISLBQjnKalfixphMkEj2hP0wD7VDrJLHqKjrUyRF4o9AsUmqm/NxLsSzn1XT2ZBZWLXib+5/Vi5V04CQuiWNGAzA95MUcqRFkPaMgEJYpPNcFEMJ0VkTEWmCjdVkmXYC9+eZm06zX7tFa/Pas0rvI6inAIR1AFG86hATfQhBYQeIRneIU348l4Md6Nj/lowch3DuAPjM8fIDeT6A==</latexit>

A(x)
<latexit sha1_base64="0poNQYoCSyL0ha/O34Ig9Z6wW/s=">AAAB+nicbVC7TsMwFL3hWcorhZElokIqS5UUJBgLLIxFog+pDZXjOq1Vx4lsB6hCPoWFAYRY+RI2/ganzQAtR7J0dM69usfHixiVyra/jaXlldW19cJGcXNre2fXLO21ZBgLTJo4ZKHoeEgSRjlpKqoY6USCoMBjpO2NrzK/fU+EpCG/VZOIuAEacupTjJSW+mapFyA1woglF+ldUnk8Tvtm2a7aU1iLxMlJGXI0+uZXbxDiOCBcYYak7Dp2pNwECUUxI2mxF0sSITxGQ9LVlKOASDeZRk+tI60MLD8U+nFlTdXfGwkKpJwEnp7Mgsp5LxP/87qx8s/dhPIoVoTj2SE/ZpYKrawHa0AFwYpNNEFYUJ3VwiMkEFa6raIuwZn/8iJp1arOSbV2c1quX+Z1FOAADqECDpxBHa6hAU3A8ADP8ApvxpPxYrwbH7PRJSPf2Yc/MD5/AB6xk+c=</latexit>

A(y)
<latexit sha1_base64="u22idr/4XTUZ9c0+ZJU5zixAvLU=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahbkpSBV1W3bisYB/QxjKZTtqhkwczE6XEfIobF4q49Uvc+TdO2iy09cDA4Zx7uWeOG3EmlWV9G4WV1bX1jeJmaWt7Z3fPLO+3ZRgLQlsk5KHoulhSzgLaUkxx2o0Exb7LacedXGd+54EKycLgTk0j6vh4FDCPEay0NDDLfR+rMcE8uUzvk+r0JB2YFatmzYCWiZ2TCuRoDsyv/jAksU8DRTiWsmdbkXISLBQjnKalfixphMkEj2hP0wD7VDrJLHqKjrUyRF4o9AsUmqm/NxLsSzn1XT2ZBZWLXib+5/Vi5V04CQuiWNGAzA95MUcqRFkPaMgEJYpPNcFEMJ0VkTEWmCjdVkmXYC9+eZm06zX7tFa/Pas0rvI6inAIR1AFG86hATfQhBYQeIRneIU348l4Md6Nj/lowch3DuAPjM8fIDeT6A==</latexit>

A(x)
<latexit sha1_base64="0poNQYoCSyL0ha/O34Ig9Z6wW/s=">AAAB+nicbVC7TsMwFL3hWcorhZElokIqS5UUJBgLLIxFog+pDZXjOq1Vx4lsB6hCPoWFAYRY+RI2/ganzQAtR7J0dM69usfHixiVyra/jaXlldW19cJGcXNre2fXLO21ZBgLTJo4ZKHoeEgSRjlpKqoY6USCoMBjpO2NrzK/fU+EpCG/VZOIuAEacupTjJSW+mapFyA1woglF+ldUnk8Tvtm2a7aU1iLxMlJGXI0+uZXbxDiOCBcYYak7Dp2pNwECUUxI2mxF0sSITxGQ9LVlKOASDeZRk+tI60MLD8U+nFlTdXfGwkKpJwEnp7Mgsp5LxP/87qx8s/dhPIoVoTj2SE/ZpYKrawHa0AFwYpNNEFYUJ3VwiMkEFa6raIuwZn/8iJp1arOSbV2c1quX+Z1FOAADqECDpxBHa6hAU3A8ADP8ApvxpPxYrwbH7PRJSPf2Yc/MD5/AB6xk+c=</latexit>

A(y)
<latexit sha1_base64="u22idr/4XTUZ9c0+ZJU5zixAvLU=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBahbkpSBV1W3bisYB/QxjKZTtqhkwczE6XEfIobF4q49Uvc+TdO2iy09cDA4Zx7uWeOG3EmlWV9G4WV1bX1jeJmaWt7Z3fPLO+3ZRgLQlsk5KHoulhSzgLaUkxx2o0Exb7LacedXGd+54EKycLgTk0j6vh4FDCPEay0NDDLfR+rMcE8uUzvk+r0JB2YFatmzYCWiZ2TCuRoDsyv/jAksU8DRTiWsmdbkXISLBQjnKalfixphMkEj2hP0wD7VDrJLHqKjrUyRF4o9AsUmqm/NxLsSzn1XT2ZBZWLXib+5/Vi5V04CQuiWNGAzA95MUcqRFkPaMgEJYpPNcFEMJ0VkTEWmCjdVkmXYC9+eZm06zX7tFa/Pas0rvI6inAIR1AFG86hATfQhBYQeIRneIU348l4Md6Nj/lowch3DuAPjM8fIDeT6A==</latexit>

A(x)
<latexit sha1_base64="0poNQYoCSyL0ha/O34Ig9Z6wW/s=">AAAB+nicbVC7TsMwFL3hWcorhZElokIqS5UUJBgLLIxFog+pDZXjOq1Vx4lsB6hCPoWFAYRY+RI2/ganzQAtR7J0dM69usfHixiVyra/jaXlldW19cJGcXNre2fXLO21ZBgLTJo4ZKHoeEgSRjlpKqoY6USCoMBjpO2NrzK/fU+EpCG/VZOIuAEacupTjJSW+mapFyA1woglF+ldUnk8Tvtm2a7aU1iLxMlJGXI0+uZXbxDiOCBcYYak7Dp2pNwECUUxI2mxF0sSITxGQ9LVlKOASDeZRk+tI60MLD8U+nFlTdXfGwkKpJwEnp7Mgsp5LxP/87qx8s/dhPIoVoTj2SE/ZpYKrawHa0AFwYpNNEFYUJ3VwiMkEFa6raIuwZn/8iJp1arOSbV2c1quX+Z1FOAADqECDpxBHa6hAU3A8ADP8ApvxpPxYrwbH7PRJSPf2Yc/MD5/AB6xk+c=</latexit>

C

D

TAC-GC
<latexit sha1_base64="7nqecWx7ucfd+9R+9gAHpxvNioU=">AAAB9HicbVA9TwJBEJ3DL8Qv1NJmIzGxkdxBoSVKoSUmfCVwIXvLHmzY2zt390jIwe+wsdAYW3+Mnf/GBa5Q8CWTvLw3k5l5XsSZ0rb9bWU2Nre2d7K7ub39g8Oj/PFJU4WxJLRBQh7KtocV5UzQhmaa03YkKQ48TlveqDr3W2MqFQtFXU8i6gZ4IJjPCNZGcrvG86b12+rVfXXayxfsor0AWidOSgqQotbLf3X7IYkDKjThWKmOY0faTbDUjHA6y3VjRSNMRnhAO4YKHFDlJoujZ+jCKH3kh9KU0Gih/p5IcKDUJPBMZ4D1UK16c/E/rxNr/8ZNmIhiTQVZLvJjjnSI5gmgPpOUaD4xBBPJzK2IDLHERJucciYEZ/XlddIsFZ1ysfRYKlTu0jiycAbncAkOXEMFHqAGDSDwBM/wCm/W2Hqx3q2PZWvGSmdO4Q+szx/3ZpGQ</latexit>

TA--GC
<latexit sha1_base64="JZ7ieKN0KbhRmleN2ISfZ4nLvFc=">AAAB9HicbVA9TwJBEJ3DL8Qv1NJmIzGxgdxhoSVKoSUmfCVwIXvLHmzY2zt390jIwe+wsdAYW3+Mnf/GBa5Q8CWTvLw3k5l5XsSZ0rb9bWU2Nre2d7K7ub39g8Oj/PFJU4WxJLRBQh7KtocV5UzQhmaa03YkKQ48TlveqDr3W2MqFQtFXU8i6gZ4IJjPCNZGcrvG86b122Lxvjrt5Qt2yV4ArRMnJQVIUevlv7r9kMQBFZpwrFTHsSPtJlhqRjid5bqxohEmIzygHUMFDqhyk8XRM3RhlD7yQ2lKaLRQf08kOFBqEnimM8B6qFa9ufif14m1f+MmTESxpoIsF/kxRzpE8wRQn0lKNJ8Ygolk5lZEhlhiok1OOROCs/ryOmmWS85VqfxYLlTu0jiycAbncAkOXEMFHqAGDSDwBM/wCm/W2Hqx3q2PZWvGSmdO4Q+szx/VtpF6</latexit>

TACTGC
<latexit sha1_base64="8aGUhWYoSvCfXqg1rNBwNz6qReQ=">AAAB9HicbVBNT8JAEJ3iF+IX6tHLRmLiibR40CPKQY+YlI8EGrJdtrBhu627WxJS+B1ePGiMV3+MN/+NC/Sg4EsmeXlvJjPz/JgzpW3728ptbG5t7+R3C3v7B4dHxeOTpooSSWiDRDySbR8rypmgDc00p+1YUhz6nLb8UW3ut8ZUKhYJV09i6oV4IFjACNZG8rrG86fubc29r017xZJdthdA68TJSAky1HvFr24/IklIhSYcK9Vx7Fh7KZaaEU5nhW6iaIzJCA9ox1CBQ6q8dHH0DF0YpY+CSJoSGi3U3xMpDpWahL7pDLEeqlVvLv7ndRId3HgpE3GiqSDLRUHCkY7QPAHUZ5ISzSeGYCKZuRWRIZaYaJNTwYTgrL68TpqVsnNVrjxWStW7LI48nME5XIID11CFB6hDAwg8wTO8wps1tl6sd+tj2ZqzsplT+APr8wczBpG3</latexit>

Corresponding 
multiple sequence 

alignment

a(t)
<latexit sha1_base64="jo1YusjEmJlgkW7rJ7zRPNdT4Q8=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEYwTwgWcPsZJIMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFR00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwvp35rSeujYjUA05i7od0qMRAMIpWatHHtIzn016x5FbcOcgq8TJSggz1XvGr249YEnKFTFJjOp4bo59SjYJJPi10E8NjysZ0yDuWKhpy46fzc6fkzCp9Moi0LYVkrv6eSGlozCQMbGdIcWSWvZn4n9dJcHDtp0LFCXLFFosGiSQYkdnvpC80ZygnllCmhb2VsBHVlKFNqGBD8JZfXiXNasW7qFTvL0u1myyOPJzAKZTBgyuowR3UoQEMxvAMr/DmxM6L8+58LFpzTjZzDH/gfP4A2tqPQA==</latexit>

w
<latexit sha1_base64="K+iivrhdeUPnWoxmB5CJQNdKl6I=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZlZDCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOYDjP8=</latexit>

Figure 1.2: (A) Condition 1.2.2 allows only the positions ofa(t) in dark purple to be non-zero. (B) Example latent state

pathsw taken by theMarkovmodel in theMuE, and sequencesY that they can generate, givenx is a one-hot encoding
of the DNA sequence TACGC. Rows correspond to positions 1, . . . , L, columns correspond to latent states 1, . . . ,K .

(C)w defines a pairwise alignment betweenX andY via Definition 1.4.3. (D) The collection ofw values describe a

multiple sequence alignment of the generated sequencesY (Section 1.4.2).

ahead of time how future raw data YN+1 will change preprocessed past data YMSA,i≤N . This makes

likelihood-based model evaluation on newly observed or heldout data ill-defined.

1.2.2 TheMutational Emission Distribution

As a drop-in alternative to MSA preprocessing, we introduce the “mutational emission” (“MuE”)

distribution. TheMuE can be used in place of the Categorical observation distribution in Equa-

tion 1.1,

Model: Vi ∼ pθ

Yi ∼ MuE(Xi := softmax(Vi), c, ℓ, a(0), a(t)),
(1.2)
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where c, ℓ, a(0), and a(t) are parameters of the MuE, and Vi ∈ RM×D whereM andD are hyperpa-

rameters rather than dimensions of the input data. TheMuE avoids the pathologies of MSA prepro-

cessing by directly generating complete, variable-length sequences (Figure 1.1B). We refer generically

to models that use a MuE observation distribution, such as Equation 1.2, as “MuE observation”

models. (See Figure A.1 for a diagram of MuE observation models and Table A.1 for a notation ref-

erence.) In the limiting case whereXi is a one-hot encoding of a sequence (i.e. Xi,m,d ∈ {0, 1} and∑
dXi,m,d = 1), the MuE can be interpreted biologically as generating a mutant Yi of the “ances-

tral” sequenceXi, with some probability of insertion and deletion mutations (controlled by c, a(0),

and a(t)) and of substitution mutations (controlled by ℓ) (Section 1.2.3). A latent variableWi in

the MuE determines which positions in the regressorXi – intuitively, which sites in the “ancestral”

sequence – generate which positions in Yi, and can be interpreted as defining a pairwise alignment

betweenXi and Yi. The latent variablesW1, . . . ,WN define a multiple sequence alignment of the

dataset Y1, . . . , YN (Section 1.4.2). Intuitively, the MuE “adds in”, through a generative process,

the same mutations that MSA algorithms are intended to “filter out” of the data via preprocessing.

TheMuE is a hiddenMarkov model (HMM) with block-structured emission and transition ma-

trices. Let∆D denote theD − 1 dimensional simplex,∆D := {v : v ∈ RD, vd ≥ 0,
∑D

d=1 vd =

1}.

Definition 1.2.1 (MuE). MuE(x, c, ℓ, a(0), a(t)) is an HMMwithK = 2M + 1 latent states.

The initial probability of each latent state is given by a(0) ∈ ∆K , the latent state transition matrix is
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a(t) ∈ (∆K)K , and the emission matrix is x̃ ∈ (∆D)K . The matrices have block structure

x̃ :=

x
c

 · ℓ, a(t) :=

A
(1,1) A(1,2)

A(2,1) A(2,2)

 ,

where x ∈ (∆D)M , c ∈ (∆D)M+1, ℓ ∈ (∆B)D ,A(1,1) ∈ RM×M , andA(2,2) ∈ R(M+1)×(M+1).

The transition matrix must satisfy Condition 1.2.2.

Condition 1.2.2 (Biological latent alignments). Entries ofA(1,1), A(1,2), A(2,1) andA(2,2) below

the main diagonal must be zero. Entries ofA(1,1) andA(1,2) on the main diagonal must also be zero.

Condition 1.2.2, an upper triangular restriction, is illustrated in Figure 1.2A and justified in

depth in Section 1.4.2. We usew to denote a latent state path taken by the HMM, whileWi de-

notes the specific latent state path taken when generating sequence Yi givenXi following Yi ∼

MuE(Xi, c, ℓ, a
(0), a(t)).

1.2.3 Biological Interpretation of theMuE

To describe the biological interpretation of the MuE and its parameters, we consider examples of

different latent pathsw = (w1, . . . , wL) through state space and the sequences Y ∼ pMuE(y|x,w)

that these paths will generate (Figure 1.2B). Assume to start thatD = B and ℓ = IB , where

IB is theB × B identity matrix, and consider the limiting case where x is a one-hot encoding of a

sequence (in Figure 1.2B, the DNA sequence TACGC). We consider three examplew values:
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1. w = (1, 2, . . . ,M) (no mutation). The generated Y will be an exact copy of x, i.e. Y = x if

Y is represented as a one-hot encoding (Figure 1.2B top).

2. w = (1, . . . ,m − 1,m + 1, . . . ,M) (deletion). The generated Y will be missing themth

letter of x, i.e. Y = (x1, . . . , xm−1, xm+1, . . . , xM ) (Figure 1.2B middle).

3. w = (1, . . . ,m,M + m + 1,m + 1, . . . ,M) (insertion). The generated Y will have an

additional letter inserted after themth letter of x, with a probability over letters determined

by cm+1, i.e. Y = (x1, . . . , xm, S, xm+1, . . . , xM )where S ∼ Categorical(cm+1)

(Figure 1.2B bottom).

Condition 1.2.2 guarantees that the states k ∈ {1, . . . ,M} corresponding to x are each visited at

most once and in sequential order. Paths such as {1, . . . ,m,m, . . . ,M} (repeat) and {1, . . . ,m +

1,m, . . . ,M} (backtracking) are not allowed under Condition 1.2.2. More general matrices ℓ ∈

(∆B)D allow for substitution mutations, with the probability of converting from letter d to letter b

given by ℓd,b. For example, ifw = (1, . . . ,M), then Y ∼ Categorical(x · ℓ), that is Y is a mutant

of xwith substitution probabilities determined by ℓ and no insertion or deletion mutations.

MuE observation models directly generalize models that use MSA preprocessing in the special

case where the dataset sequences are all the same length and the MSA algorithm does not add any

gap symbols (that is, when fMSA(·) is the identity). AssumeD = B, and consider the “no mutation

limit” where ℓ = IB , a
(0)
1 = 1, andA(1,1)

m,m+1 = 1 for allm ∈ {1, . . . ,M − 1}. In this case we find,

for samples Y of lengthM , that Y ∼ MuE(x, c, ℓ, a(0), a(t)) simplifies to Y ∼ Categorical(x).

Thus Equation 1.2 and Equation 1.1 become equivalent. In practice, we typically select priors on
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the MuE to favor the no mutation limit, since it serves as a null hypothesis.

1.2.4 Inference

The marginal likelihood of the MuE with the latent state variable of the HMM integrated out,

pMuE(y|x, c, ℓ, a(0), a(t)), is analytically tractable via the HMM forward algorithm and differen-

tiable. The standard forward algorithm requiresO(L) sequential matrix multiplications, whereL

is the length of the sequence (typically a few hundred amino acids in our setting), but it can also be

parallelized to achieveO(logL) time227,223. Using the MuEmarginal likelihood allows inference

with automatic differentiation variational inference, stochastic gradient MCMC, and related scal-

able approximate Bayesian inference algorithms (Section A.4.1)147,286. We have made available an

implementation of the MuE distribution as part of the probabilistic programming language Pyro,

making it straightforward to explore different MuE observation models and inference methods

(https://docs.pyro.ai/en/dev/contrib.mue.html, Section A.4.2)23.

1.3 Relatedwork

Methods that use MSA preprocessing.MSA preprocessing is widely used as a starting point

for biological sequence data analysis, perhaps most commonly in combination with other non-

probabilistic analysis methods. One very common class of probabilistic methods that nearly always

use MSA preprocessing is phylogenetic models, which are central to evolutionary biology and ge-

nomic epidemiology, and widely used in nearly every other area of biology99,75. Another is fitness

models, including Potts models and variational autoencoder models, which are used to infer the
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structure of proteins and RNA, predict the functional effects of clinical variants, design new pro-

teins, etc.168,110,79,224.

Standard methods that avoid MSA preprocessing. AlthoughMSA preprocessing is problem-

atic from the perspective of probabilistic modeling, the use of probabilistic models to infer multiple

sequence alignments – that is, in order to accomplish the preprocessing – is standard. Perhaps the

most widely used such method is the profile HMM, which, besides being used to infer multiple se-

quence alignments, is also at the core of modern sequence database search methods and is used to

define sequence families, among many other applications67,130,72. In Section 1.4.2 we show that

the MuE distribution generalizes a variety of popular methods including the profile HMM.While

connections between various methods have been described before, the generalization offered by

the MuE is both unified and comprehensive, delimiting the extent of the model class107. Note also

that some of these models can be trained by interpreting anMSA as a point estimate of the latent

alignment variable; this is distinct from the more common usage of MSA preprocessing described in

Section 1.4.1 and is not subject to the same pathologies. The most closely related method toMuE

observation models is the hidden Potts model287; we go further by providing a generalized approach

to building and inferring similar models.

Natural language processing methodsThere has been intense recent interest in applying ad-

vances from natural language processing to biological sequences217,235,9. TheMuE is a type of latent

alignment model, a key model class in natural language processing; Deng et al. 52 detail the close

relationship between latent alignment and popular attention network methods. MuE observation

models differ from standard latent alignment models in that (1) rather than regress on an observed
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TATGC
<latexit sha1_base64="qxjbT2cyndQDWfs3f5s9Hs3wzYw=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0nqQY/VHvRYoV/QhLLZbtqlm03Y3Qgl7d/w4kERr/4Zb/4bt2kO2vpg4PHeDDPz/JgzpW372ypsbG5t7xR3S3v7B4dH5eOTjooSSWibRDySPR8rypmgbc00p71YUhz6nHb9SWPhd5+oVCwSLT2NqRfikWABI1gbyXWN589at637xmxQrthVOwNaJ05OKpCjOSh/ucOIJCEVmnCsVN+xY+2lWGpGOJ2X3ETRGJMJHtG+oQKHVHlpdvMcXRhliIJImhIaZerviRSHSk1D33SGWI/VqrcQ//P6iQ5uvJSJONFUkOWiIOFIR2gRABoySYnmU0MwkczcisgYS0y0ialkQnBWX14nnVrVuarWHmuV+l0eRxHO4BwuwYFrqMMDNKENBGJ4hld4sxLrxXq3PpatBSufOYU/sD5/AKRJkWo=</latexit>

TATC
<latexit sha1_base64="dJm03PUM79X7LxBHt7KRKZQxt3s=">AAAB8nicbVA9T8MwEHX4LOWrwMhiUSExVUkZYCx0YSxSv6Q0qhzXaa06dmRfkKq0P4OFAYRY+TVs/BvcNgO0POmkp/fudHcvTAQ34Lrfzsbm1vbObmGvuH9weHRcOjltG5VqylpUCaW7ITFMcMlawEGwbqIZiUPBOuG4Pvc7T0wbrmQTJgkLYjKUPOKUgJX8nvXCafOuWZ/2S2W34i6A14mXkzLK0eiXvnoDRdOYSaCCGON7bgJBRjRwKtis2EsNSwgdkyHzLZUkZibIFifP8KVVBjhS2pYEvFB/T2QkNmYSh7YzJjAyq95c/M/zU4hug4zLJAUm6XJRlAoMCs//xwOuGQUxsYRQze2tmI6IJhRsSkUbgrf68jppVyvedaX6WC3X7vM4CugcXaAr5KEbVEMPqIFaiCKFntErenPAeXHenY9l64aTz5yhP3A+fwAPt5EZ</latexit>

TAGTC
<latexit sha1_base64="q+vedE+4GuRxb/BsbEmJpA1wxTY=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0nqQY/VHvRYoV/QhLLZbtqlm03Y3Qgl7d/w4kERr/4Zb/4bt2kO2vpg4PHeDDPz/JgzpW372ypsbG5t7xR3S3v7B4dH5eOTjooSSWibRDySPR8rypmgbc00p71YUhz6nHb9SWPhd5+oVCwSLT2NqRfikWABI1gbyXWN589at/etxmxQrthVOwNaJ05OKpCjOSh/ucOIJCEVmnCsVN+xY+2lWGpGOJ2X3ETRGJMJHtG+oQKHVHlpdvMcXRhliIJImhIaZerviRSHSk1D33SGWI/VqrcQ//P6iQ5uvJSJONFUkOWiIOFIR2gRABoySYnmU0MwkczcisgYS0y0ialkQnBWX14nnVrVuarWHmuV+l0eRxHO4BwuwYFrqMMDNKENBGJ4hld4sxLrxXq3PpatBSufOYU/sD5/AKQ8kWo=</latexit>

TAGTGC
<latexit sha1_base64="xl5LauTldLoFG4uAnCDJnQ8mddg=">AAAB9HicbVA9TwJBEJ3DL8Qv1NJmIzGxIndYYIlSYIkJXwlcyN6yBxv29s7dPRJy8DtsLDTG1h9j579xgSsUfMkkL+/NZGaeF3GmtG1/W5mt7Z3dvex+7uDw6Pgkf3rWUmEsCW2SkIey42FFORO0qZnmtBNJigOP07Y3ri789oRKxULR0NOIugEeCuYzgrWR3J7xvFnjrtaoVWf9fMEu2kugTeKkpAAp6v38V28QkjigQhOOleo6dqTdBEvNCKfzXC9WNMJkjIe0a6jAAVVusjx6jq6MMkB+KE0JjZbq74kEB0pNA890BliP1Lq3EP/zurH2b92EiSjWVJDVIj/mSIdokQAaMEmJ5lNDMJHM3IrICEtMtMkpZ0Jw1l/eJK1S0bkplh5Lhcp9GkcWLuASrsGBMlTgAerQBAJP8Ayv8GZNrBfr3fpYtWasdOYc/sD6/AE5JpG7</latexit>

TATGC
<latexit sha1_base64="qxjbT2cyndQDWfs3f5s9Hs3wzYw=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0nqQY/VHvRYoV/QhLLZbtqlm03Y3Qgl7d/w4kERr/4Zb/4bt2kO2vpg4PHeDDPz/JgzpW372ypsbG5t7xR3S3v7B4dH5eOTjooSSWibRDySPR8rypmgbc00p71YUhz6nHb9SWPhd5+oVCwSLT2NqRfikWABI1gbyXWN589at637xmxQrthVOwNaJ05OKpCjOSh/ucOIJCEVmnCsVN+xY+2lWGpGOJ2X3ETRGJMJHtG+oQKHVHlpdvMcXRhliIJImhIaZerviRSHSk1D33SGWI/VqrcQ//P6iQ5uvJSJONFUkOWiIOFIR2gRABoySYnmU0MwkczcisgYS0y0ialkQnBWX14nnVrVuarWHmuV+l0eRxHO4BwuwYFrqMMDNKENBGJ4hld4sxLrxXq3PpatBSufOYU/sD5/AKRJkWo=</latexit>

TAGTC
<latexit sha1_base64="q+vedE+4GuRxb/BsbEmJpA1wxTY=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0nqQY/VHvRYoV/QhLLZbtqlm03Y3Qgl7d/w4kERr/4Zb/4bt2kO2vpg4PHeDDPz/JgzpW372ypsbG5t7xR3S3v7B4dH5eOTjooSSWibRDySPR8rypmgbc00p71YUhz6nHb9SWPhd5+oVCwSLT2NqRfikWABI1gbyXWN589at/etxmxQrthVOwNaJ05OKpCjOSh/ucOIJCEVmnCsVN+xY+2lWGpGOJ2X3ETRGJMJHtG+oQKHVHlpdvMcXRhliIJImhIaZerviRSHSk1D33SGWI/VqrcQ//P6iQ5uvJSJONFUkOWiIOFIR2gRABoySYnmU0MwkczcisgYS0y0ialkQnBWX14nnVrVuarWHmuV+l0eRxHO4BwuwYFrqMMDNKENBGJ4hld4sxLrxXq3PpatBSufOYU/sD5/AKQ8kWo=</latexit>

TAT-C
<latexit sha1_base64="7aTKmaZaaOKeG/BTY+k20R7LeeA=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBiyWpBz1We/FYoV/QhLLZbtqlm03Y3Qgl7d/w4kERr/4Zb/4bt2kO2vpg4PHeDDPz/JgzpW372ypsbG5t7xR3S3v7B4dH5eOTjooSSWibRDySPR8rypmgbc00p71YUhz6nHb9SWPhd5+oVCwSLT2NqRfikWABI1gbyXWN589ad62rxmxQrthVOwNaJ05OKpCjOSh/ucOIJCEVmnCsVN+xY+2lWGpGOJ2X3ETRGJMJHtG+oQKHVHlpdvMcXRhliIJImhIaZerviRSHSk1D33SGWI/VqrcQ//P6iQ5uvZSJONFUkOWiIOFIR2gRABoySYnmU0MwkczcisgYS0y0ialkQnBWX14nnVrVua7WHmuV+n0eRxHO4BwuwYEbqMMDNKENBGJ4hld4sxLrxXq3PpatBSufOYU/sD5/AHytkVA=</latexit>

TA-TGC
<latexit sha1_base64="zbb+h90kMMygjzp4mgT3v8A87ag=">AAAB9HicbVA9TwJBEJ3DL8Qv1NJmIzGxkdxBoSVKoSUmfCVwIXvLHmzY2zt390jIwe+wsdAYW3+Mnf/GBa5Q8CWTvLw3k5l5XsSZ0rb9bWU2Nre2d7K7ub39g8Oj/PFJU4WxJLRBQh7KtocV5UzQhmaa03YkKQ48TlveqDr3W2MqFQtFXU8i6gZ4IJjPCNZGcrvG86b126v6fXXayxfsor0AWidOSgqQotbLf3X7IYkDKjThWKmOY0faTbDUjHA6y3VjRSNMRnhAO4YKHFDlJoujZ+jCKH3kh9KU0Gih/p5IcKDUJPBMZ4D1UK16c/E/rxNr/8ZNmIhiTQVZLvJjjnSI5gmgPpOUaD4xBBPJzK2IDLHERJucciYEZ/XlddIsFZ1ysfRYKlTu0jiycAbncAkOXEMFHqAGDSDwBM/wCm/W2Hqx3q2PZWvGSmdO4Q+szx8RVpGh</latexit>

TA-T-C
<latexit sha1_base64="TAD2dlGcDm3vL6LsQ3w75/RGFho=">AAAB9HicbVA9TwJBEJ3DL8Qv1NJmIzGxgdxBoSVKY4kJXwlcyN6yBxv29s7dPRJy8DtsLDTG1h9j579xgSsUfMkkL+/NZGaeF3GmtG1/W5mt7Z3dvex+7uDw6Pgkf3rWUmEsCW2SkIey42FFORO0qZnmtBNJigOP07Y3ri389oRKxULR0NOIugEeCuYzgrWR3J7xvFnjrtgo1mb9fMEu2UugTeKkpAAp6v38V28QkjigQhOOleo6dqTdBEvNCKfzXC9WNMJkjIe0a6jAAVVusjx6jq6MMkB+KE0JjZbq74kEB0pNA890BliP1Lq3EP/zurH2b92EiSjWVJDVIj/mSIdokQAaMEmJ5lNDMJHM3IrICEtMtMkpZ0Jw1l/eJK1yyamUyo/lQvU+jSMLF3AJ1+DADVThAerQBAJP8Ayv8GZNrBfr3fpYtWasdOYc/sD6/AHpq5GH</latexit>

TAGT-C
<latexit sha1_base64="CihuLLIHEgu1l01N8agEATLR5QM=">AAAB9HicbVA9TwJBEJ3DL8Qv1NJmIzGxkdxBoSVKoSUmfCVwIXvLHmzY2zt390jIwe+wsdAYW3+Mnf/GBa5Q8CWTvLw3k5l5XsSZ0rb9bWU2Nre2d7K7ub39g8Oj/PFJU4WxJLRBQh7KtocV5UzQhmaa03YkKQ48TlveqDr3W2MqFQtFXU8i6gZ4IJjPCNZGcrvG86b12/v6VXXayxfsor0AWidOSgqQotbLf3X7IYkDKjThWKmOY0faTbDUjHA6y3VjRSNMRnhAO4YKHFDlJoujZ+jCKH3kh9KU0Gih/p5IcKDUJPBMZ4D1UK16c/E/rxNr/8ZNmIhiTQVZLvJjjnSI5gmgPpOUaD4xBBPJzK2IDLHERJucciYEZ/XlddIsFZ1ysfRYKlTu0jiycAbncAkOXEMFHqAGDSDwBM/wCm/W2Hqx3q2PZWvGSmdO4Q+szx8RipGh</latexit>

TAGTGC
<latexit sha1_base64="xl5LauTldLoFG4uAnCDJnQ8mddg=">AAAB9HicbVA9TwJBEJ3DL8Qv1NJmIzGxIndYYIlSYIkJXwlcyN6yBxv29s7dPRJy8DtsLDTG1h9j579xgSsUfMkkL+/NZGaeF3GmtG1/W5mt7Z3dvex+7uDw6Pgkf3rWUmEsCW2SkIey42FFORO0qZnmtBNJigOP07Y3ri789oRKxULR0NOIugEeCuYzgrWR3J7xvFnjrtaoVWf9fMEu2kugTeKkpAAp6v38V28QkjigQhOOleo6dqTdBEvNCKfzXC9WNMJkjIe0a6jAAVVusjx6jq6MMkB+KE0JjZbq74kEB0pNA890BliP1Lq3EP/zurH2b92EiSjWVJDVIj/mSIdokQAaMEmJ5lNDMJHM3IrICEtMtMkpZ0Jw1l/eJK1S0bkplh5Lhcp9GkcWLuASrsGBMlTgAerQBAJP8Ayv8GZNrBfr3fpYtWasdOYc/sD6/AE5JpG7</latexit>

Y1
<latexit sha1_base64="COd9bgMQAyQeLiwwoaH4w8aIig0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/ZA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKwecJxwP6IDJULBKFrp/rHn9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AHdtY2F</latexit>

Y2
<latexit sha1_base64="4cQzjieBS+G8ib5bpdDogP/G1uE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/ZA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKwecJxwP6IDJULBKFrp/rFX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindeqd5dlGvXeRwFOIYTOAMPLqEGt1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QPfOY2G</latexit>

Y3
<latexit sha1_base64="eNjw15IPyYN35gfE5jtYW4C1Fd8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xysPAhswOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaHSPJYPZpygH9GB5CFn1Fjp/rFX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStmrlit3F6XadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8A4L2Nhw==</latexit>

Y4
<latexit sha1_base64="NAdFSyKacvuspZmuUB76jNebIKc=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4xysPAhswOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaHSPJYPZpygH9GB5CFn1Fjp/rFX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7KFfuqqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8A4kGNiA==</latexit>

Observe: 
Y1, Y2, Y3

<latexit sha1_base64="8VWCY3mpY7rwo3hN92kOg3zCTl0=">AAAB8nicbVBNSwMxEJ31s9avqkcvwSJ4kLLbCnosevFYwX6xXZZsmm1Ds8mSZIVS+jO8eFDEq7/Gm//GtN2Dtj4YeLw3w8y8KOVMG9f9dtbWNza3tgs7xd29/YPD0tFxS8tMEdokkkvVibCmnAnaNMxw2kkVxUnEaTsa3c389hNVmknxaMYpDRI8ECxmBBsr+d3Qu+yGVVu1sFR2K+4caJV4OSlDjkZY+ur1JckSKgzhWGvfc1MTTLAyjHA6LfYyTVNMRnhAfUsFTqgOJvOTp+jcKn0US2VLGDRXf09McKL1OIlsZ4LNUC97M/E/z89MfBNMmEgzQwVZLIozjoxEs/9RnylKDB9bgoli9lZEhlhhYmxKRRuCt/zyKmlVK16tUn24Ktdv8zgKcApncAEeXEMd7qEBTSAg4Rle4c0xzovz7nwsWtecfOYE/sD5/AFgdpAC</latexit>

Observe: 
Y4

<latexit sha1_base64="NAdFSyKacvuspZmuUB76jNebIKc=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4xysPAhswOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaHSPJYPZpygH9GB5CFn1Fjp/rFX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7KFfuqqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8A4kGNiA==</latexit>

Sequence data

YMSA,1
<latexit sha1_base64="vpJx6wqp//2OwYmWfX7QrenRU1o=">AAAB+3icbVDLSgMxFM3UV62vsS7dBIvgQspMFXRZdeNGqGgf0g5DJs20oUlmSDJiGeZX3LhQxK0/4s6/MW1noa0HAodz7uWenCBmVGnH+bYKS8srq2vF9dLG5tb2jr1bbqkokZg0ccQi2QmQIowK0tRUM9KJJUE8YKQdjK4mfvuRSEUjca/HMfE4GggaUoy0kXy7/OCnPY70UPL05u4iO3Yz3644VWcKuEjcnFRAjoZvf/X6EU44ERozpFTXdWLtpUhqihnJSr1EkRjhERqQrqECcaK8dJo9g4dG6cMwkuYJDafq740UcaXGPDCTk5hq3puI/3ndRIfnXkpFnGgi8OxQmDCoIzgpAvapJFizsSEIS2qyQjxEEmFt6iqZEtz5Ly+SVq3qnlRrt6eV+mVeRxHsgwNwBFxwBurgGjRAE2DwBJ7BK3izMuvFerc+ZqMFK9/ZA39gff4ApsuULg==</latexit>

YMSA,2
<latexit sha1_base64="//y+L290V7BzPkythBFTm+kCxUY=">AAAB+3icbVDLSgMxFM3UV62vsS7dBIvgQspMFXRZdeNGqGgf0g5DJs20oUlmSDJiGeZX3LhQxK0/4s6/MW1noa0HAodz7uWenCBmVGnH+bYKS8srq2vF9dLG5tb2jr1bbqkokZg0ccQi2QmQIowK0tRUM9KJJUE8YKQdjK4mfvuRSEUjca/HMfE4GggaUoy0kXy7/OCnPY70UPL05u4iO65lvl1xqs4UcJG4OamAHA3f/ur1I5xwIjRmSKmu68TaS5HUFDOSlXqJIjHCIzQgXUMF4kR56TR7Bg+N0odhJM0TGk7V3xsp4kqNeWAmJzHVvDcR//O6iQ7PvZSKONFE4NmhMGFQR3BSBOxTSbBmY0MQltRkhXiIJMLa1FUyJbjzX14krVrVPanWbk8r9cu8jiLYBwfgCLjgDNTBNWiAJsDgCTyDV/BmZdaL9W59zEYLVr6zB/7A+vwBqFCULw==</latexit>

YMSA,3
<latexit sha1_base64="RfmbE4SlhWDdUNGM9FJlDzkfi9s=">AAAB+3icbVDLSgMxFM34rPU11qWbYBFcSJlpBV1W3bgRKtqHtMOQSTNtaJIZkoxYhvkVNy4UceuPuPNvTNtZaOuBwOGce7knJ4gZVdpxvq2l5ZXVtfXCRnFza3tn194rtVSUSEyaOGKR7ARIEUYFaWqqGenEkiAeMNIORlcTv/1IpKKRuNfjmHgcDQQNKUbaSL5devDTHkd6KHl6c3eRndQy3y47FWcKuEjcnJRBjoZvf/X6EU44ERozpFTXdWLtpUhqihnJir1EkRjhERqQrqECcaK8dJo9g0dG6cMwkuYJDafq740UcaXGPDCTk5hq3puI/3ndRIfnXkpFnGgi8OxQmDCoIzgpAvapJFizsSEIS2qyQjxEEmFt6iqaEtz5Ly+SVrXi1irV29Ny/TKvowAOwCE4Bi44A3VwDRqgCTB4As/gFbxZmfVivVsfs9ElK9/ZB39gff4AqdWUMA==</latexit>

YMSA,4
<latexit sha1_base64="XD13VVi+LyVyk3yhav5GBenQnmI=">AAAB+3icbVDLSgMxFM34rPU11qWbYBFcSJmpBV1W3bgRKtqHtMOQSTNtaJIZkoxYhvkVNy4UceuPuPNvTNtZaOuBwOGce7knJ4gZVdpxvq2l5ZXVtfXCRnFza3tn194rtVSUSEyaOGKR7ARIEUYFaWqqGenEkiAeMNIORlcTv/1IpKKRuNfjmHgcDQQNKUbaSL5devDTHkd6KHl6c3eRndQy3y47FWcKuEjcnJRBjoZvf/X6EU44ERozpFTXdWLtpUhqihnJir1EkRjhERqQrqECcaK8dJo9g0dG6cMwkuYJDafq740UcaXGPDCTk5hq3puI/3ndRIfnXkpFnGgi8OxQmDCoIzgpAvapJFizsSEIS2qyQjxEEmFt6iqaEtz5Ly+SVrXinlaqt7Vy/TKvowAOwCE4Bi44A3VwDRqgCTB4As/gFbxZmfVivVsfs9ElK9/ZB39gff4Aq1qUMQ==</latexit>

YMSA,1
<latexit sha1_base64="vpJx6wqp//2OwYmWfX7QrenRU1o=">AAAB+3icbVDLSgMxFM3UV62vsS7dBIvgQspMFXRZdeNGqGgf0g5DJs20oUlmSDJiGeZX3LhQxK0/4s6/MW1noa0HAodz7uWenCBmVGnH+bYKS8srq2vF9dLG5tb2jr1bbqkokZg0ccQi2QmQIowK0tRUM9KJJUE8YKQdjK4mfvuRSEUjca/HMfE4GggaUoy0kXy7/OCnPY70UPL05u4iO3Yz3644VWcKuEjcnFRAjoZvf/X6EU44ERozpFTXdWLtpUhqihnJSr1EkRjhERqQrqECcaK8dJo9g4dG6cMwkuYJDafq740UcaXGPDCTk5hq3puI/3ndRIfnXkpFnGgi8OxQmDCoIzgpAvapJFizsSEIS2qyQjxEEmFt6iqZEtz5Ly+SVq3qnlRrt6eV+mVeRxHsgwNwBFxwBurgGjRAE2DwBJ7BK3izMuvFerc+ZqMFK9/ZA39gff4ApsuULg==</latexit>

YMSA,2
<latexit sha1_base64="//y+L290V7BzPkythBFTm+kCxUY=">AAAB+3icbVDLSgMxFM3UV62vsS7dBIvgQspMFXRZdeNGqGgf0g5DJs20oUlmSDJiGeZX3LhQxK0/4s6/MW1noa0HAodz7uWenCBmVGnH+bYKS8srq2vF9dLG5tb2jr1bbqkokZg0ccQi2QmQIowK0tRUM9KJJUE8YKQdjK4mfvuRSEUjca/HMfE4GggaUoy0kXy7/OCnPY70UPL05u4iO65lvl1xqs4UcJG4OamAHA3f/ur1I5xwIjRmSKmu68TaS5HUFDOSlXqJIjHCIzQgXUMF4kR56TR7Bg+N0odhJM0TGk7V3xsp4kqNeWAmJzHVvDcR//O6iQ7PvZSKONFE4NmhMGFQR3BSBOxTSbBmY0MQltRkhXiIJMLa1FUyJbjzX14krVrVPanWbk8r9cu8jiLYBwfgCLjgDNTBNWiAJsDgCTyDV/BmZdaL9W59zEYLVr6zB/7A+vwBqFCULw==</latexit>

YMSA,3
<latexit sha1_base64="RfmbE4SlhWDdUNGM9FJlDzkfi9s=">AAAB+3icbVDLSgMxFM34rPU11qWbYBFcSJlpBV1W3bgRKtqHtMOQSTNtaJIZkoxYhvkVNy4UceuPuPNvTNtZaOuBwOGce7knJ4gZVdpxvq2l5ZXVtfXCRnFza3tn194rtVSUSEyaOGKR7ARIEUYFaWqqGenEkiAeMNIORlcTv/1IpKKRuNfjmHgcDQQNKUbaSL5devDTHkd6KHl6c3eRndQy3y47FWcKuEjcnJRBjoZvf/X6EU44ERozpFTXdWLtpUhqihnJir1EkRjhERqQrqECcaK8dJo9g0dG6cMwkuYJDafq740UcaXGPDCTk5hq3puI/3ndRIfnXkpFnGgi8OxQmDCoIzgpAvapJFizsSEIS2qyQjxEEmFt6iqaEtz5Ly+SVrXi1irV29Ny/TKvowAOwCE4Bi44A3VwDRqgCTB4As/gFbxZmfVivVsfs9ElK9/ZB39gff4AqdWUMA==</latexit>

Multiple sequence 
alignment #1

Multiple sequence 
alignment #2

Figure 1.3: Themultiple sequence alignment of the initial datasetY1, Y2 andY3 can change asmore data,Y4, is added.

sequence (e.g. a sentence in a language to be translated), the model regresses on a latent sequenceXi,

and (2) the MuE is structured such that its latent alignment variable is interpretable as a biological

alignment, not an alignment in the more generic sense used in natural language processing (Sec-

tions 1.4.2 and 1.4.3). Note that while the MuE itself is a relatively simple latent alignment model

(an HMM), complex neural networks can be used to generate the latent sequenceXi; from a deep

learning perspective, the MuE can be thought of as a biologically interpretable final layer.

1.4 Theory

1.4.1 Pathologies inMSA Preprocessing

MSA preprocessing is typically applied to static sequence datasets and used for parameter inference

problems; its statistical pathologies emerge when when we attempt to predict unobserved or future

sequences. To explain these pathologies, we focus on the i.i.d. case.† Consider the following model-

ing assumption, which is ubiquitous in statistics:

Assumption 1.4.1 (I.i.d. data and model). Let p0(x) be a probability distribution defined over a

spaceX , i.e. p0(x) ∈ P(X ) whereP(X ) is the set of all probability distributions overX . We (1)

†Note that phylogenetic models, although not usually represented as i.i.d., are typically exchangeable and
so possess an i.i.d. representation by de Finetti’s theorem283.
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assume that we observe independently and identically distributed samplesX1, X2, . . . ∼ p0(x).

In order to describe this process, we introduce a modelM = {q(x|θ) : θ ∈ Θ}. We (2) assume

q(x|θ) ∈ P(X ) for all θ ∈ Θ.

Now consider models that use MSA preprocessing and take the following form, of which Equa-

tion 1.1 is a special case:

Preprocess: {YMSA,1, . . . , YMSA,N} := fMSA({Y1, . . . , YN}),

Model: YMSA,i
iid∼ p(yMSA),

where p(yMSA) ∈ P((B ∪ {−})J). If we attempt to employ Assumption 1.4.1 to describe the

preprocessed data YMSA,1, . . . , YMSA,N we see that it is violated. Part 1 of Assumption 1.4.1 fails

because the preprocessed data cannot consist of independent observations: if a datapoint YN+1

is added to the dataset, then past data, i.e. YMSA,1, . . . , YMSA,N , can be altered (Figure 1.3). For

instance, the new sequence may provide additional evidence to the MSA algorithm that sites in

previously observed sequences are related to one another. Part 2 of Assumption 1.4.1 fails because

the model is not defined over a space that encompasses future data: if a datapoint YN+1 is added

to the dataset, the value of J may change (Figure 1.3). For instance, the new sequence might be

longer than any seen before. These failures occur on real sequence datasets, for typical values of

N (Figure A.2). Practically, the fact that MSAmodels violate Assumption 1.4.1 makes rigorous

likelihood-based evaluation of their generalization capacity untrustworthy. If we do not know what

space future data lives in, or how past data will be altered with future measurements, it is hard to
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trust that the average log likelihood of our model on a held out test set is genuinely reflective of

future model performance. More technically, the violation of Assumption 1.4.1 causes standard

justifications for the use of Bayes factors, heldout likelihood, prequential evaluation, etc. to fail, see

e.g. Dawid 49 , Vapnik 271 , Dawid 50 .

Using MSA preprocessing also fails to account for uncertainty in the alignment292,261. The goal

of anMSA algorithm is to infer related sites among a set of sequences, but the resulting MSA is only

a point estimate of this quantity.

1.4.2 Inferring Alignments

In this section we connect the MuE distribution to previously proposed probabilistic and non-

probabilistic methods for inferring biological sequence alignments includingMSAs, and describe

howMuE observation models can be used to infer related sites andMSAs themselves. We start by

more formally describing a biological pairwise alignment between two sequencesX and Y , and

then establish a connection with the latent state variableW in the MuE. Pairwise alignments serve as

a diagrammatic representation of how two sequencesX and Y may be related via insertion, deletion

and substitution mutations.

Definition 1.4.2 (Biological pairwise alignment). LetX and Y be sequences of lengthM andL

respectively. A pairwise alignmentA ofX and Y with J columns is a matrix [A(x),A(y)]>, where

A(x) ∈ (B ∪ {−})J is a column vector of length J consisting of the letters ofX , in order, and in-

terspersed with gap symbols; similarly forA(y). The alignmentAmust satisfy the condition that for

every j ∈ {1, . . . , J} eitherA(x)
j ∈ B orA(y)

j ∈ B or both.
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Let jl be the column of the alignmentA in which the lth letter of Y falls, i.e. A(y)
jl

= Yl for

l ∈ {1, . . . , L}. Let gl indicate whether the column jl inA contains a gap, i.e. gl := I(A(x)
jl

= -),

where I(·) is the indicator function which takes value 1 when the expression is true and 0 otherwise.

GivenX and Y , the sets {j1, . . . , jL} and {g1, . . . , gL} together uniquely define an alignmentA

(Remark A.2.1). We can define a map from the latent state pathW to a pairwise alignmentA ofX

and Y .

Definition 1.4.3 (From latent states to biological alignments). GivenW ∼ pMuE(w|X,Y ), let

gl = I(Wl > M) and jl = Wl −Mgl +
∑l−1

l′=1 gl′ , for l ∈ {1, . . . , L}. Note that this map is

invertible.

Under this definition, when gl = 0, the letter Yl is generated based on a letterXWl
in the MuE,

and Yl andXm are placed in the same column of the pairwise alignmentA; when gl = 1, however,

Yl does not depend onX at all (it depends on c instead) andA(x)
jl

has the gap symbol (Figure 1.2C).

A zoo of probabilistic and non-probabilistic methods have been proposed for inferring biological

sequence alignments from data. Here we show that many of the most widely used methods can be

unified as special case examples of the MuE which use Definition 1.4.3 to convert fromW toA.‡

Proposition 1.4.4 (Unified). For different choices of parameters c, ℓ, a(0), and a(t), (1) the Thorne-

Kishino-Felsenstein model257, (2) the profile HMM, and (3) the conditional distribution of a sequence

Y given a sequenceX under the pair HMM67 are all special cases of the distribution

‡So far we have not specified a model for the lengthL of the sequence Y . In the following proposition, we
assume that there is some probability of the latent Markov chain terminating after each step l, and that this
probability depends on the current stateWl.
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MuE(X, c, ℓ, a(0), a(t)), with a state-specific probability of theMarkov chain terminating at each

step. For another choice of parameters, the maximum a posteriori estimator ŵ := argmaxwpMuE(Y |X,w)

corresponds to the Needleman-Wunsch alignment.

See Section A.2.2 for a proof. In the context of the profile HMM, point estimates of the latent

alignment variablesW1, . . . ,WN associated with each observed sequence Y1, . . . , YN are used to

construct a multiple sequence alignment of the dataset by effectively merging pairwise alignments;

sites in each Yi generated by the same position inX are considered related, and placed in the same

column. The same logic and algorithm can be applied toMuE observation models to define an

MSA based onW1, . . . ,WN (Figure 1.2D; Section A.2.3).

TheMuE offers not only a unified but also a comprehensive framework in the sense that HMMs

which fail to satisfy Constraint 1.2.2 cannot be interpreted, using Definition 1.4.3, as biological

alignments (proof in Section A.2.4):

Proposition 1.4.5 (Comprehensive). Consider the setup of Definition 1.4.3 and assume each latent

state k ∈ {1, . . . ,K} of theMuE isMarkov accessible under a(0) and a(t) (meaning that it can be

reached with non-zero probability). Condition 1.2.2 is both necessary and sufficient to guarantee that

with probability 1,W defines a valid pairwise alignment ofX and Y via Definition 1.4.3.

1.4.3 Comparison toNatural LanguageModels

Latent alignment models are used in natural language processing, often in combination with hard

attention methods for inference52. We can compare the MuE directly with a classic latent alignment
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DHFR PINE CDKN1B VE6 TCR

Figure 1.4: Predictive performance on a randomly heldout test set. Dotted linemarks theoretically expected perfor-

mance of the substitutionmatrix BLOSUM62 as a reference point (Section A.5).

model for statistical translation. The Vogel et al. 276 model takes the form of a MuEmodel whereX

and Y are sentences in different languages, except that Condition 1.2.2 is violated (Section A.2.5).

As a result latent alignments are allowed to “double back” and rearrange the ordering of words in the

regressor sentenceX to generate Y .

1.5 Experiments

1.5.1 Predictive Performance

We have seen that models that use MSA preprocessing cannot be rigorously evaluated for their abil-

ity to predict sequences. In this section we empirically compare the predictive performance of MuE

observation models to a standard model that possesses the same latent alignment structure, the pro-

file HMM (pHMM) (Proposition 1.4.4).

SurveyWe started by examining five datasets of related protein sequences, ranging in size from
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Table 1.1: Heldout perplexity on patient immune repertoire samples (eachwith 6,000 to 20,000 sequences). MS: multiple

sclerosis. HC: healthy control. HC 1 consists of B cell receptors, the rest T cell receptors.

Dataset HC 1 HC 2 HC 3 MS 1 MS 2 MS 3

pHMM 4.29 3.59 3.56 3.59 3.47 3.54
ICAMuE 2.87 2.33 2.34 2.45 2.19 2.26

1,000 to 10,000 sequences (Section A.6.1). Four were taken from non-redundant sequence databases:

sequences similar to dihydrofolate reductase (DHFR), serine recombinase (PINE), cyclin dependent

kinase inhibitor 1B (CDKN1B) and the human papillomavirus E6 protein (VE6)110,261,254. The

fifth dataset consisted of human T cell receptor (TCR) sequences from a healthy donor, obtained

using single cell sequencing.

We extended probabilistic PCA and VAEmodels using the MuE observation distribution; we

refer to these models as “FactorMuE” and “LatentNeuralMuE” respectively (model architectures

are detailed in Section A.3). We used stochastic variational inference, estimating the ELBO gradient

using automatic differentiation, the reparameterization trick, and an inference network, and opti-

mizing with Adam147,139,213,138. We evaluated model performance on a randomly held out 10% of

sequences, quantified in terms of per residue (that is, per letter) perplexity (Section A.5). The results

show that FactorMuEmodels offer a consistent improvement over the standard pHMMmodel in

every dataset, with an average change in perplexity of−1.50 and log Bayes factor> 103 across all

datasets (Figure 1.4; Section A.6.1). Meanwhile, the more complex LatentNeuralMuEmodel also

improves over the pHMM in each dataset and overall (average perplexity change−0.42), but under-

performs relative to the simpler FactorMuEmodel.
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Patient immune repertoiresWe next explored further the application of MuE observation

models to patient immune repertoire sequencing data, including both B and T cell receptors, taken

from patients with autoimmune disease (multiple sclerosis) and healthy controls (Section A.6.2)207.

Understanding immune receptor repertoires is of crucial biomedical importance, but MSAs are con-

sidered highly untrustworthy when applied to this kind of data (see e.g. Figure A.2). We extended

another continuous model, an independent component analysis (ICA) model, with a MuE ob-

servation distribution (“ICAMuE”; Section A.3.4). On a heldout 20% of data we find substantial

improvements in perplexity over the pHMM across all six datasets (Table 1.1).

Disordered proteinsRoughly∼50% of the human proteome contains regions classified as dis-

ordered, but common bioinformatic pipelines are often considered highly untrustworthy when

applied to disordered proteins because of uncertain MSAs. We examined 56 datasets, each consist-

ing of sequences evolutionarily related to a disordered region of a human protein, that had been

discarded in anMSA-based sequence modeling study261. The study had sought in part to deter-

mine whether epistatic correlation occurred between amino acids at aligned sites (columns of the

MSA), but was stymied in these particular datasets by highly uncertain MSAs. In a pHMM, condi-

tional on a latent alignmentWi, the probability of observing a particular amino acid at a particular

position in Yi is independent of all other positions. In MuE observation models such as the Factor-

MuE, LatentNeuralMuE and ICAMuE, however, pθ induces correlation between positions in Yi

conditional onWi
215. To infer whether there is indeed epistatic correlation in a dataset, therefore,

we can performmodel selection, comparing a MuE observation model and a pHMM. Note that

our approximate Bayesian inference procedure (for both models) integrates over all possible latent
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Figure 1.5: (A) Illustration of the TCRβ genomic locus; the TCRα locus is analogous, withCα in place ofCβ and noD seg-

ments (based on Abbas et al. 5 , Figure 8.7). (B) Inferred latent space representation of the TCR dataset, colored according

to supervised annotations. Left:Cα andCβ chains. Middle: V types,V2, . . . V30 (detailed legend in Figure A.7). Right:

J subtypes,J1-1,...,2-7 (detailed legend in Figure A.7). (C) V (green), J (yellow) and constant C (gray) regions of the TCRβ
chain in the reference structure PDB:2BNR, as well as V-J junction nucleotides (red) (Figure A.7). (D) Projections ν of
latent space vectors (left, in orange) into sequence space. Transparent areas correspond to the portion of the sequence

that is not measured in the experiment. Arrows indicate peaks in ν .

alignments, and that the pHMM is nested inside the MuE observation models in the sense of nested

model selection50. We found that on 19 datasets an ICAMuE outperformed a pHMM at predicting

a heldout 20% of sequences, finding evidence of epistatic correlation despite high alignment uncer-

tainty; among these 19 datasets, the median perplexity decrease was 1.3 (Table A.2, Section A.6.3).

1.5.2 Learning Complex Biology

We examined further what the FactorMuEmodel had learned from a dataset of TCR sequences. T

cell receptors are made up of two separate amino acid chains, α and β, which each develop accord-
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ing to a complex process of genome rearrangement termed V(D)J recombination, in which different

V, D and J segments in the genome are, with some randomness and additional mutations, joined

together with a constant region to produce a complete sequence (Figure 1.5A). We cross-referenced

the latent representations of each sequence recorded in the dataset against supervised annotations

of its segment types (Section A.7). We found that the latent space is divided evenly in two, with

one side containing TCRα sequences and one side TCRβ sequences (Figure 1.5B left). Each side

contains clusters, which correspond with the type of V segment found in each TCR sequence (Fig-

ure 1.5B middle). The shorter J segments are found uniformly distributed across their correspond-

ing α or β half, reflecting their ability to recombine with different V segments (Figure 1.5B right).

See Section A.7 for further results.

We next examined features learned by the FactorMuEmodel. In MuE observation models, we

can separate out variation at conserved positions from variation produced by insertions and dele-

tions by holding the latent alignment variableWi fixed. In particular, we calculated

νl :=
[ B∑

b=1

(
E[Yl,b|ŵref, z1]− E[Yl,b|ŵref, z0]

)2]1/2
(1.3)

where the expectation is with respect to the variational approximation to the posterior, z0 and z1

are the head and tail of a vector in the latent space, ŵref is the maximum a posteriori estimate ofWref

based on a reference sequence Yref, and l ∈ {1, . . . , Lref}whereLref is the length of Yref. We plotted

the vector ν on a TCR crystal structure for the reference sequence, and compared to a supervised an-

notation of the constant, V, D and J segments of the reference sequence (Figure 1.5CD). Consistent

with the annotation of the latent representation, the vector normal to the hyperplane separating
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Figure 1.6: (A) Predictive performancemeasured by heldout per residue perplexity; models are trained on data from

1968-2013, tested on 2014-2020. (B)Magnitude of the shift in amino acid preference over time ν , for the RegressMuE,

projected onto a reference HA1 structure (PDB:4O5N). The full hemagglutinin protein is shown on the left. (C) Classical

epitope regions of the HA1 protein. (D) Inferred latent representation from a FactorMuEmodel, with sequences colored

by the time at which the sample was collected (Section A.8). (E) Y-axis: orthogonal projection of the latent representation

of each sequence onto the least squares fit line relating z1 and z2. X-axis: time at which each sample was collected. Two

clusters of outliers aremarked by † and ‡.

TCRα from TCRβ chains in the latent space (vector 1 in Figure 1.5D) primarily alters the sequence

of the constant region, while the orthogonal vector (vector 2 in Figure 1.5D) primarily determines

the sequence of the V segment. Along vector 2, the region of largest variation (the largest peak in

νl) was the buried C-terminal end of the V segment, corresponding to the start of the CDR3 region,

the key specificity-determining region of the receptor. Interestingly, even along vector 1 we observe

high values of νl in the V segment, suggesting that there are systematic and heterogeneous differ-

ences between the V segment sequence distribution used in TCRα chains and in TCRβ chains (see

Section A.7 for further analysis).
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1.5.3 Evolutionary Forecasting

We explored a novel application of generative probabilistic sequence models, evolutionary fore-

casting, which takes advantage of the capacity of MuE observation models to predict future se-

quences. Influenza A is responsible for an estimated 500,000 deaths a year and is an ongoing pan-

demic threat124. It is also a model organism for understanding the dynamics of rapidly evolving

pathogens, and forecasting its evolution is crucial in preparing vaccines and designing therapeu-

tics163,150. Previous forecasting methods have focused on predicting the relative fitness of existing

strains in future years163,31, or the antigenic properties of newly emerged strains188,103. We instead

predict the full amino acid sequence of the HA1 protein, the primary site of interaction with the

immune system288. From the GISAID database we constructed a training set of influenza A(H3N2)

HA1 sequences collected from patient samples from 1968 through 2013, and evaluated our predic-

tions on sequences collected from 2014 through October 2019 (420 out of 2,042 sequences held

out, 21% of the dataset) (Section A.8)236. Insertions and deletions are considered rare, though not

absent, in patient samples, so this dataset also offers an opportunity to evaluate MuE observation

models in a distinct regime from that considered previously in Section 1.5.1.

As a benchmark we again used the pHMM, which can capture the observation that there exist

key highly variable sites in the HA1 protein, an underlying motivation behind previous prediction

methods such as Bush et al. 31 . We then incorporated sequence collection time as a covariate in new

MuE observation models, using a linear regression model (“RegressMuE”) and a neural network

(“NeuralMuE”) withMuE observation distributions (Section A.3). The pHMM achieves a per
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residue perplexity of 1.32 and the RegressMuE improves this to 1.24 (log Bayes factor> 103; Fig-

ure 1.6A). This per residue perplexity difference corresponds to a factor of∼1010 improvement in

per sequence perplexity. The NeuralMuE has similar per residue perplexity (1.26) to the Regress-

MuE.

Next we investigated in detail what the model can tell us about howHA1 proteins have changed

over time. We computed the magnitude of the shift in amino acid preference from 1968 to 2019

inferred by the model, with the latent MuE alignment variable kept fixed (quantified as νl, defined

analogously to Equation 1.3 with times t0 and t1 replacing latent representations z0 and z1) (Figure

1.6B; Section A.8). We found that sites with a large shift are often associated with antigenicity, con-

sistent with the hypothesis that immune evasion is a key driver of influenza evolution. Residues that

make up the classical epitope regions A-E of influenza show significantly larger shifts as compared

to residues outside these regions (mean νl of 0.54 in epitopes A-E versus 0.09 in non-epitope sites,

one sidedMann-Whitney U test p < 10−18; Figures 1.6C and A.12)288,184. The same observation

holds for residues identified as key determinants of immune escape in recent high-throughput muta-

tional antigenic profiling experiments (mean νl of 0.80 in sites with antigenic selection versus 0.24

elsewhere, one sidedMann-Whitney U test p < 10−4; Section A.8)152.

The latent space representation of the influenza HA1 dataset learned by the FactorMuEmodel

shows the data falling approximately along a line (Figure 1.6D; Section A.8). The position of a

sequence along this line is linearly proportional to the time at which the sequence was collected,

though this information was not included in the model (correlation coefficient ρ = 0.94; Fig-

ure 1.6E)189. Two clusters of outliers violate the proportionality rule. The first (marked by ‡) origi-
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nated frommis-annotated entries in the GISAID database (Section A.8). The second cluster (marked

by †) appears in the early 2010s, but the latent representation of these sequences is close to that of se-

quences from the mid-1990s to early 2000s. Among this cluster of sequences, the ones that have

been fully annotated were all collected from an outbreak in the United States of A(H3N2)v triple-

reassortant viruses containing matrix protein genes from pandemic A(H1N1)pdm09. In 1998,

A(H3N2)-derived viruses jumped from humans to swine, causing a large outbreak among swine,

before recombining with other strains to produce this A(H3N2)v outbreak among humans in the

2010s128,241. The epidemiological history is consistent with our unsupervised latent representation,

which shows that the cluster of outliers appearing in 2010-2013 most closely matches human sam-

ples last seen around 2000.

1.6 Discussion

MSAs are a powerful tool for analyzing biological sequences, but MSA preprocessing leads to sta-

tistical pathologies in generative models. MuE observation models offer a direct alternative to MSA

preprocessing that does not abandon the underlying biological ideas that have madeMSAs so suc-

cessful. We hope that the MuE will enable rigorous application of a wide variety of new models and

methodologies to biological sequence data.
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2
A Scalable Nonparametric Model

Generative probabilistic modeling of biological sequences has widespread existing and potential

use across biology and biomedicine, particularly given advances in high-throughput sequencing,

synthesis and editing. However, we still lack methods with nucleotide resolution that are tractable

at the scale of whole genomes and that can achieve high predictive accuracy in theory and practice.

In this article we propose a new generative sequence model, the Bayesian embedded autoregressive
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(BEAR) model, which uses a parametric autoregressive model to specify a conjugate prior over a

nonparametric BayesianMarkov model. We explore, theoretically and empirically, applications of

BEARmodels to a variety of statistical problems including density estimation, robust parameter

estimation, goodness-of-fit tests, and two-sample tests. We prove rigorous asymptotic consistency re-

sults including nonparametric posterior concentration rates. We scale inference in BEARmodels to

datasets containing tens of billions of nucleotides. On genomic, transcriptomic, and metagenomic

sequence data we show that BEARmodels provide large increases in predictive performance as com-

pared to parametric autoregressive models, among other results. BEARmodels offer a flexible and

scalable framework, with theoretical guarantees, for building and critiquing generative models at the

whole genome scale.

This chapter presents work with Alan N. Amin and Debora S. Marks, published at Neural Infor-

mation Processing Systems (2021)12. E.N.W. conceived and guided the research, contributed to the

theoretical and empirical results, and wrote the paper; A.N.A. contributed equally to E.N.W. overall,

in particular contributing the bulk of the theoretical and empirical results; D.S.M. supervised the

research at all stages.

2.1 Introduction

Measuring and making DNA is central to modern biology and biomedicine. Generative proba-

bilistic modeling offers a framework for learning from sequencing data and forming experimen-

tally testable predictions of unobserved or future sequences that can be synthesized in the labo-
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ratory67,110,224. Existing approaches to genome modeling typically preprocess the data to build a

matrix of genetic variants such as single nucleotide polymorphisms203,92. However, most modes of

sequence variation are more complex. Structural variation occurs widely within individuals (e.g. in

cancer), between individuals (e.g. in domesticated plant populations) and between species (e.g. in

the human microbiome), and methods for detecting and classifying structural variants are heuristic

and designed only for predefined types of sequence variation such as repeats277,248,161,45,183. Ideally,

we would be able to directly model genome sequencing data and/or assembled genome sequences.

However, building generative models that work with raw nucleotides, not matrices of alleles, raises

the extreme statistical challenges of having enough flexiblility to account for genomic complexity,

interpretability to reach scientific conclusions, and scalability to train on billions of nucleotides.

Given the relevance of genetic analysis to human health, models should also possess strong theoreti-

cal guarantees.

Autoregressive (AR) models are a natural starting point for generative genome modeling, since

they (1) have been successfully applied to biological sequences, as well as many other types of non-

biological sequential data, (2) can be designed to have interpretable parameters, and (3) can be scaled

to big datasets with very long sequences235,266. However, since ARmodels are parametric models,

they will in general suffer frommisspecification; as we show empirically in Section 2.6, for genomic

datasets misspecification can be a serious practical limitation not only for simple ARmodels but

even for deep neural networks.

As an alternative strategy for building generative probabilistic models at the genome scale, we

propose in Section 2.2 the nonparametric “Bayesian embedded autoregressive” (BEAR) model.
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BEARmodels are BayesianMarkov models, with a prior on the lag and conjugate Dirichlet priors

on the transition probabilities. The hyperparameters of the Dirichlet prior are controlled by an

“embedded” ARmodel with parameters θ and an overall concentration hyperparameter h, both of

which can be optimized via empirical Bayes. In Section 2.3 we show that BEARmodels can cap-

ture arbitrary data-generating distributions, and establish asymptotic consistency guarantees and

convergence rates for nonparametric density estimation. In Section 2.4, we show that the optimal h

provides a diagnostic for whether or not the embedded ARmodel is misspecified and if so by how

much, alerting the practitioner when the parameter estimates θ are untrustworthy. Besides estima-

tion problems, BEARmodels can also be used to construct goodness-of-fit tests and two-sample

tests, thanks to their analytic marginal likelihoods, and we prove consistency results for these tests in

Section 2.5. Finally we apply BEARmodels at large scale, to genomic datasets with tens of billions

of nucleotides, including whole genome, whole transcriptome, and metagenomic sequencing data;

we find that BEARmodels can have greatly improved performance over ARmodels (Section 2.6).

Crucial to our theoretical and empirical analysis is the statistical setting: we assume that the data

X1, . . . , XN consists of finite but possibly variable length strings (with small alphabets) drawn

i.i.d. from some underlying distribution p∗, and study the behavior of estimators and tests asN →

∞. This setup differs from common theoretical analyses of sequence models outside of biology,

which typically consider the limit as the length of an individual sequence goes to infinity95. In biol-

ogy, however, we observe finite sequences recorded frommany individual species, organisms, cells,

molecules, etc. and want to generalize to unseen sequences, makingN → ∞ the appropriate large

data limit.
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Figure 2.1: Overview of the BEARmodel. (A) BEARmodels employ a Dirichlet prior onMarkov transition probabilities

that is centered at the prediction of an ARmodel. (B) De Bruijn graphs showing BEAR transitions with non-zero probabil-

ity under an example data-generating distribution. As the lagL increases, themodel has higher resolution.

2.2 Bayesian embedded autoregressive models

We first briefly review autoregressive (AR) models as applied to sequences of discrete characters. Let

f(θ) denote an autoregressive function with parameter θ and letL denote the lag of the autoregres-

sive model; then the ARmodel generates data as

Xi|Xi−L:i−1 ∼ Categorical(fXi−L:i−1(θ)), (2.1)

where i indexes position in the sequenceX andXi−L:i−1 consists of the previousL letters in the

sequence. Since sequence length as well as nucleotide or amino acid content is relevant to biolog-

ical applications, we use a start symbol ∅ at the beginning and a stop symbol $ at the end of each

sequence; lettersXi are sampled sequentially starting from the start symbol and continuing until a

stop symbol is drawn.

We propose the Bayesian embedded autoregressive (BEAR) model, a BayesianMarkov model

61



that embeds an ARmodel into its prior. The BEARmodel takes the form,

L ∼ π(l), vk ∼ Dirichlet
(1
h
fk(θ)

)
for all k,

Xi|Xi−L:i−1 ∼ Categorical(vXi−L:i−1),
(2.2)

where π(l) is a prior on the lag with support up to infinity, h > 0 is a concentration hyperpa-

rameter, and k is a lengthL kmer. The BEARmodel has three key properties (Fig. 2.1). First, the

unrestricted transition parameter v and lagL allow the model to capture exact conditional dis-

tributions of p∗ to arbitrarily high order: p∗(Xi|Xi−1) atL = 1, then p∗(Xi|Xi−2, Xi−1) at

L = 2, etc.. This property allows the BEARmodel to be used for nonparametric density estimation

(Section 2.3). Second, in the limit where h → 0, the BEARmodel reduces to the embedded AR

model (Eqn. 2.1). The optimal h provides a measurement of the amount of misspecification in the

ARmodel (Section 2.4). Third, the choice of the conjugate Dirichlet prior allows the conditional

marginals p((Xn)N
n=1|L, h, θ) to be computed analytically, and (sinceL is one-dimensional) the

total marginal likelihood p((Xn)N
n=1|h, θ) to be estimated tractably. This allows BEARmodels to

be used for hypothesis testing (Section 2.5).

There are a variety of ways of performing inference in BEARmodels, but for most applications

we will focus on empirical Bayes methods that optimize point estimates ofL, h and θ. Let#(k, b)

denote the number of times the lengthL kmer k is seen followed by the letter or stop symbol b in

the dataset (Xn)N
n=1. Using a high-performance kmer counter optimized for nucleotide data, KMC,

we can compute the count matrix#(·, ·) for all observed kmers k in terabyte-scale datasets, even
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BEAR model

Figure 2.2: BEARmodels detect and avoidmisspecificationwithout sacrificing small dataset performance. (A) Estimated

KL divergence between simulated data-generating distribution p∗ andmodel posterior predictive distribution, as a

function of dataset sizeN . Five independent simulations were run; thin lines correspond to individual simulations, thick

lines to the average across simulations. (B) Thehmisspecification diagnostic as a function of dataset size, for varyingβ∗.

Dataset sizes at whichh is close to convergence forβ∗ = 0.6 (right) andβ∗ = 1.0 (left) aremarkedwith vertical lines.

when the matrix does not fit in main memory (Section B.8.2)142. To optimize h and θ, we take

advantage of the fact that the log conditional marginal likelihood can be written as a sum over ob-

served kmers,

log p((Xn)N
n=1|L, h, θ) =

∑
k:#k>0

log
[Γ(

∑
b

1
hfkb(θ))∏

b Γ( 1
hfkb(θ))

∏
b Γ( 1

hfkb(θ) + #(k, b))
Γ(
∑

b
1
hfkb(θ) + #(k, b))

]
. (2.3)

This decomposition lets us construct unbiased stochastic estimates of the gradient with respect to

h and θ by subsampling rows of the count matrix (Section B.8.1). Empirical Bayes in the BEAR

model therefore costs little extra time as compared to standard stochastic gradient-based optimiza-

tion of the original ARmodel. Code is available at https://github.com/debbiemarkslab/

BEAR.
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2.2.1 Toy example

We next briefly illustrate the properties and advantages of the BEARmodel in simulation. We gen-

erated samples from an ARmodel in which fk(θ) depends on k linearly as a function of both in-

dividual positions and pairwise interactions between positions, with the strength of the pairwise

interaction weighted by a parameter β∗ (Section B.7.1). We first fit (using maximum likelihood) a

linear ARmodel that lacks pairwise terms and is thus misspecified when β∗ > 0. Since the AR

model is misspecified, it does not asymptotically approach the true data-generating distribution p∗

(Fig. 2.2A, gray). We next computed the posterior of a vanilla BEARmodel without the embed-

ded AR in its prior, instead using the Jeffreys prior vk ∼iid Dirichlet(1/2, . . . , 1/2). The vanilla

BEARmodel asymptotically approaches the true data generating distribution, since it is a nonpara-

metric model; however, it underperforms the ARmodel in the low data regime (Fig. 2.2A, black).

Finally, we fit a BEARmodel with the misspecified linear ARmodel embedded, using our empirical

Bayes procedure. The BEARmodel performs just as well as its embedded ARmodel in the low data

regime, just as well as the vanilla model in the high data regime, and better than both at intermediate

values (Fig. 2.2A, blue and yellow).

When the ARmodel is well-specified, the empirical Bayes estimates of the parameters θ under

the BEARmodel match the maximum likelihood estimates of θ under the ARmodel nearly exactly

(Fig. B.7). When the ARmodel is misspecified, however, the BEARmodel provides a warning: the

empirical Bayes estimate of h converges to a non-zero value, rather than zero (Fig. 2.2B). This warn-

ing emerges early: h converges well before the vanilla model starts outperforming the misspecified
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ARmodel.

2.2.2 Relatedwork

The key idea behind BEARmodels is to nonparametrically perturb a parametric model177, follow-

ing a similar strategy to the Polya tree method proposed by Berger & Guglielmi 21 . As in Berger &

Guglielmi 21 , we use Dirichlet priors centered at the parametric model’s predictions, and construct

tractable goodness-of-fit tests by exploiting Dirichlet-categorical conjugacy. BEARmodels extend

these ideas from one-dimensional continuous data to finite-length sequences of discrete characters.

Markov and ARmodels have a long history and wide range of applications in biological sequence

analysis186,83,211. Compression methods, in particular, often rely on accurate density estimation and

use Markov or ARmodels to achieve it63,198,202,237. We establish theoretical guarantees for density

estimation with fully BayesianMarkov models (Section 2.3). ARmodels used for compression, like

other ARmodels, can be embedded into BEARmodels for improved statistical performance and to

measure misspecification.

BEARmodels are closely linked to non-generative genome analysis methods. Assembly algo-

rithms and variant callers often analyze paths in the de Bruijn graph of a sequence dataset; in the

limit h → ∞, samples from the posterior predictive distribution of the BEARmodel, conditional

onL, correspond to paths through theL-mer de Bruijn graph of the data44,123. Comparisons be-

tween genomes and other sequences are often made on the basis of kmer counts; our two-sample

test provides a generative perspective on this idea11,62,277.

BEARmodels are also connected to ideas in natural language processing, where kmers are re-
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ferred to as ngrams. Under the vanilla BEARmodel, the mean of the posterior predictive distribu-

tion conditional onL corresponds to an ngram additive smoothing model39. Comparisons between

datasets using their ngram counts are also common in model evaluation metrics such as the BLEU

score192.

2.3 Density estimation

The density estimation problem is that of estimating p∗ given data (Xn)N
n=1 drawn i.i.d. from p∗.

Density estimation is particularly crucial for biological sequence analysis due to its connections to

fitness estimation110,230. State-of-the-art mutation effect prediction methods and clinical variant

interpretation methods rely on density estimates of evolutionary sequence data215,80. Density es-

timation with generative models is particularly useful for protein design, as samples from accurate

density estimates are likely to be functional and can be synthesized in the laboratory224,235. Despite

all these applications, existing density estimation methods for biological sequences lack theoretical

guarantees on their accuracy and are often limited in their scale, being restricted to relatively short

sequences284. Here, we show that the posterior distribution of the BEARmodel is consistent and

will concentrate on p∗ asN → ∞, regardless of what p∗ actually is, so long as p∗ generates finite

length sequences almost surely (a.s.).

We first study the expressiveness of BEARmodels. LetML be the set of Markov models pv with

transition probabilities v and lagL that generate finite length strings a.s.. Note thatM1 ⊂ M2 ⊂

. . .. Define the unionM = ∪∞
L=1ML. We can compareM to the set of distributions over finite
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strings S, of which p∗ is a member. In Section B.2 we prove that,

Summary of Propositions B.2.1-B.2.4Not all possible distributions over S are inM. However,

M is dense on the space of probability distributions over S with the total variation metric.

The implication of this result is that although BEARmodels cannot exactly match arbitrary

data-generating distributions, they can approximate p∗ arbitrarily well asL increases. This makes

asymptotic consistency possible.

We now show that the posterior of the BEARwill in fact asymptotically concentrate on the true

p∗, i.e. it is consistent. For tractability, we assume in this section that the prior is fixed (we do not

use empirical Bayes). The result relies on the tools for understanding convergence rates of posteriors

developed in Ghosal et al. 87 . The most important assumption is that p∗ is subexponential, meaning

that for some t > 0,Ep∗ exp(t|X|) < ∞where |X| is the sequence length. LetΠ(·|(Xn)N
n=1)

denote the posterior over sequence distributions. LetB(p∗, δ) denote a ball of radius δ centered at

p∗, using the Hellinger distance.

Summary of Theorem B.6.16 GivenM > 0 large enough and ϵ ∈ (0, 1) small enough, we

have Π(B(p∗,MN− 1
2 ϵ)|(Xn)N

n=1)→ 1 in probability.

A proof is in Section B.6 and simulations in Section B.7.2. This result states that the posterior

distribution of the model converges to a delta function at the true distribution p∗ regardless of what

p∗ is. It also provides a rate of convergence: in a parametric model, the uncertainty would shrink

asN− 1
2 , but here the rate is slower,N− 1

2 ϵ, a price paid for the nonparametric model’s expressiv-

ity134,100,87. The proof includes a variety of new theoretical constructions and algorithms that are

used to approximate subexponential sequence distributions.
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2.4 Robust parameter estimation

To derive a biological understanding of mutational processes, evolutionary history, functional con-

straints, etc. from sequence data, researchers must estimate model parameters (not just density).

However, parameter estimates cannot in general be trusted when models are misspecified125. To

reach robust scientific conclusions, therefore, parameter estimates should ideally come with a warn-

ing about whether or not the model is misspecified and some measurement of the degree of misspec-

ification. Here, we study in BEARmodels the asymptotic behavior of empirical Bayes estimates of

the AR parameter θ, as well as the hyperparameter h, showing that h diagnoses misspecification in

the embedded ARmodel.

Our analysis builds off the study of empirical Bayes consistency in Petrone et al. 196 , which showed

that empirical Bayes will, in general, maximize the prior probability of the true data-generating

parameter value. Extending this theory to BEARmodels is nontrivial, since in BEARmodels the

standard Laplace approximation to the marginal likelihood can fail. For theoretical tractability, as

in many analyses of similar models, we fixL at some arbitrary and large value106. Define p∗(L) =

argminpv∈ML
kl(p∗‖pv) as the closest model inML to p∗, and define v∗ such that pv∗ = p∗(L)

(note p∗(L) → p∗ asL → ∞). We say that the ARmodel is misspecified “at resolutionL” if f

cannot approximate p∗(L), i.e. if there does not exist some sequence of parameter values θ̃N such

that pf(θ̃N ) → p∗(L) asN → ∞; otherwise, the ARmodel is well-specified at resolutionL. Now

we can study empirical Bayes estimates of h and θ, denoted hN and θN .

Summary of Propositions B.4.5-B.4.10 Let (hN )∞
N=1 and (θN )∞

N=1 be sequences maximiz-
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ing the BEARmarginal likelihood p((Xn)N
n=1|L, h, θ) for eachN . If the model is well-specified at

resolutionL, then hNN
1/4−ϵ → 0 for every ϵ > 0 and pf(θN ) → p∗(L) in distribution, with both se-

quences converging in probability. On the other hand, if the model is misspecified at resolutionL, then

hN is eventually bounded below by some positive (non-zero) number a.s..

Proofs are in Section B.4 and simulations in Section B.7.1. The implication of this result is that

when the ARmodel is well-specified, hN converges to zero (at a rate that is a power of the dataset

size) and θN converges to the parameter value θ∗ at which the ARmodel matches the data (Corol-

lary B.4.6). On the other hand, when the ARmodel is misspecified, hN does not converge to zero;

heuristically, we find instead that hN is approximately proportional to a divergence between p∗(L)

and the ARmodel,

hN ∝
∑

k∈accL(p∗)

kl(fk(θN )‖v∗
k) + log(N)

∑
b/∈suppL(p∗)|k

fk,b(θN )

 , (2.4)

where accL(p∗) = {k | p∗(#k > 0) > 0} is the set of kmers with non-zero probability and

suppL(p∗)|k = {b | p∗(#(k, b) > 0) > 0} is the set of transitions from k with non-zero proba-

bility. In summary: when fitting a BEARmodel by empirical Bayes, you get, along with a parameter

estimate θN , a value hN which tells you the amount (from zero to infinity) of misspecification in the

ARmodel. If hN is close to zero, you can trust the estimate θN .
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2.5 Hypothesis testing

2.5.1 Goodness-of-fit test

Amajor outstanding challenge in biological sequence analysis is to build models based on natu-

ral sequence data that are accurate enough to generate novel functional sequences164. A crucial

component of the problem is model evaluation: while relative model performance may be com-

pared on the basis of likelihood, absolute performance – whether or not the model in fact pro-

vides an accurate description of the data – is usually addressed solely on the basis of limited num-

bers of summary statistics, such as average amino acid hydrophobicity or sequence length235,224.

Given a dataset (Xn)N
n=1 ∼ p∗ i.i.d., a goodness-of-fit test asks whether or not the data distri-

bution p∗ matches a model distribution p̃. It takes into account all possible distributions p∗ in-

cluding those that differ from p̃ in a manner that cannot be captured by finitely many summary

statistics. We propose a goodness-of-fit test that compares the null hypothesisH0 : p∗ = p̃ to

the alternativeH1 : p∗ 6= p̃ using the Bayes factor BF = p((Xn)N
n=1|h, θ)/p̃(X1:n), where

p((Xn)N
n=1|h, θ) =

∑
L p((Xn)N

n=1|L, h, θ)π(L) is the marginal likelihood under the BEAR

model. Note that practically, the sum overL is straightforward to approximate by truncation, and

that the test can be computed in time linear in the amount of data.

We now prove the consistency of the test. As in comparable theoretical analyses of tests based on

Polya trees, for theoretical tractability we truncate the prior, setting π(L) = 0 forL larger than

some arbitrary L̃ but π(L) > 0 forL ≤ L̃106. We treat θ and h > 0 as fixed.
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Summary of Proposition B.5.1 If p̃ is at least as close to p∗ as p∗(L) is, as measured by kl(p∗‖·),

then BF→ 0 in probability asN →∞. On the other hand, if p∗(L) is closer than p̃, then BF→∞ in

probability. A proof is in Section B.5.1 and simulations in Section B.7.3.

An important practical limitation on nonparametric hypothesis testing is low power: since so

many alternative distributions must be considered, the null hypothesis can rarely be rejected. How-

ever, Proposition B.5.1 holds for the Bayes factor BF(L, h, θ) = p((Xn)N
n=1|L, h, θ)/p̃((Xn)N

n=1)

with any choice ofL, h > 0, and θ. Thus in practice to increase power we can maximize the value

of BF(L, h, θ) as a function ofL, h, and/or θ (note that this approach is heuristic, since we have

not proven the consistency of the maximized Bayes factor). Berger & Guglielmi 21 provide extensive

methodological guidance on using analogous tests constructed with Polya trees. Based on their rec-

ommendations, we suggest first choosing θ such that pf(θ) is as close as possible to p̃, then plotting

the Bayes factor as a function of h and/orL to identify the maximum value and confirm that any

conclusion is robust to changes in h and/orL.

Another challenge in nonparametric hypothesis testing is that it can be difficult to understand

how exactly a test reached its conclusion. To identify which sequences provided the most evidence

for or against the null hypothesis, we suggest examining the BEAR Bayes factor for each individual

sequence conditional on the rest of the dataset, in analogy to the witness function used in kernel-

based tests250,159.
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2.5.2 Two-sample test

A two-sample test asks whether or not two datasets (Xn)N
n=1 and (X ′

n)N ′
n=1 are drawn from the

same distribution. Efforts to compare different sequence datasets are widespread in biology: for in-

stance, researchers often wish to determine whether two microbiome samples, taken under different

conditions or at different timepoints, are the same up to sampling noise161. Two-sample tests can

also be used to evaluate generative sequence models that lack tractable likelihoods (for which the

goodness-of-fit test proposed above does not apply) such as energy-based models or implicit models

like GANs and biophysical simulators180,96,155. Assume (Xn)N
n=1 ∼ p1 and (X ′

n)N ′
n=1 ∼ p2 i.i.d..

Our BEAR test compares the null hypothesisH0 : p1 = p2 to the alternativeH1 : p1 6= p2 using

the Bayes factor

BF = p((Xn)N
n=1|h, θ)p((X ′

n)N ′
n=1|h, θ)/p((Xn)N

n=1, (X ′
n)N ′

n=1|h, θ).

As in the goodness-of-fit case, the test can be computed approximately in time linear in the amount

of data, and the same advice on increasing power and identifying important sequences holds here

too.

We next prove consistency, again truncating the prior at L̃ and fixing h and θ.

Summary of Proposition B.5.3 If p(L̃)
1 = p

(L̃)
2 , then BF → 0 asN → ∞ in probability.

Otherwise, if p(L̃)
1 6= p

(L̃)
2 , then BF → ∞ in probability. A proof is in Section B.5.2 and simulations

in Section B.7.3.
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Table 2.1: Heldout perplexity.Whole genome sequencing data: YSD1: A Salmonella phage. A. th.: Arabidopsis thaliana, a

plant (datasets represent different individuals). Single cell RNA sequencing data: PBMC: peripheral bloodmononuclear

cells, taken from a healthy donor. HL: Hodgkin’s lymphoma tumor cells. GBM: glioblastoma tumor cells. Metagenomic

sequencing data: HC: non-CD and non-UC controls. CD: Crohn’s disease. UC: ulcerative colitis. Full assembled genomes:

Bact.: Bacteria. ModelsVan.: Vanilla (Jeffreys prior). Lin.: Linear. CNN: convolutional neural network. Ref.: reference

genome/transcriptomemodel.

Dataset AR Lin. AR CNN ARRef. BEAR Van. BEAR Lin. BEARCNN BEARRef.

YSD1 3.953 3.873 1.266 1.165 1.144 1.144 1.145
A. th. 1 3.956 3.947 2.686 1.567 1.432 1.432 1.411
A. th. 2 3.953 3.949 1.982 1.650 1.463 1.462 1.441
A. th. 3 3.998 3.952 2.340 1.834 1.728 1.727 1.733

PBMC 3.991 3.974 2.097 1.402 1.372 1.372 1.374
HL 3.959 3.930 2.141 1.409 1.378 1.378 1.379
GBM 4.137 4.137 2.366 1.442 1.406 1.406 1.406

HC 3.966 3.946 - 1.652 1.465 1.464 -
CD 3.992 3.985 - 1.760 1.524 1.524 -
UC 3.989 3.986 - 1.644 1.481 1.481 -

Bact. 3.831 3.794 - 3.774 3.774 3.774 -

2.6 Results

2.6.1 Predicting sequences

We sought to evaluate BEARmodels as compared to ARmodels on the task of predicting real nu-

cleotide (nt) sequences. We considered eleven datasets of four different types: whole genome se-

quencing read data, single cell RNA sequencing read data (including from patient tumors), metage-

nomic sequencing read data (including from patient fecal samples) and full bacterial genomes from

across the tree of life (Section B.9). Datasets ranged in total size from∼ 107 − 1010 nt and in indi-

vidual sequence length from∼ 102 − 106 nt (Table B.1). 25% of data was randomly held out for
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testing, in the form of entire sequences (reads, genomes, etc., see Table B.2); our goal was to evaluate

BEARmodels as density estimators, so we did not use masking (a common holdout strategy in natu-

ral language processing). We considered a linear ARmodel and a deep convolutional neural network

(CNN) ARmodel with> 10×more parameters, both of which are commonmodels used across a

range of applications; we also designed a biologically-structured ARmodel which makes predictions

based on a reference genome and a Jukes-Cantor mutation model (Section B.10.1)237,202. We then

embedded each ARmodel to create a corresponding BEARmodel. The BEARmodels improve

over the ARmodels in nucleotide prediction according to both perplexity (Table 2.1) and accuracy

(Table B.3) in all datasets, even when the model lagL is held fixed for comparison (Section B.10.3).

In 10 out of 11 datasets, BEARmodels increase nucleotide prediction accuracy from near chance

values of 30−35% (in the case of the linear and CNNmodels) to 78−95%, bringing genome-scale

models into the realm of potential practical use (Table B.3). The training time for BEARmodels

is essentially identical to that of ARmodels, aside from the time required to build the transition

count matrix, which need only be done once before training all models (Fig. B.13). Remarkably,

the optimal lagL chosen by empirical Bayes is often quite short, less than 20 nt (Table B.4). The

improvements offered by BEARmodels that use an embedded ARmodel over the vanilla BEAR

model are modest for datasets of this size; however, sequencing experiments are often designed to

collect enough data for downstream analyses. We found in an example that, if sequencing coverage

was 3× instead of 100×, the improvement in prediction accuracy would have been greater than 10

percentage points instead of 0.1 (Section B.10.4; Fig. B.14).

Measuring misspecificationWhen conventional deep neural network methods fail to provide
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Table 2.2: Diagnostich. Abbreviations as in Table 2.1.

Dataset Lin. CNN Ref.

YSD1 5.528 5.461 4.183
A. th. 1 2.765 2.756 2.990
A. th. 2 2.643 2.633 2.326
A. th. 3 3.969 3.964 1.598

PBMC 4.167 4.145 3.762
HL 4.050 4.038 3.581
GBM 4.172 4.154 3.238

HC 4.668 4.651 -
CD 3.096 3.094 -
UC 3.843 3.835 -

Bact. 0.010 0.003 -

strong predictive performance, popular wisdom often ascribes the failure to too much model flexi-

bility or not enough training data, especially in scientific applications. Examining the hmisspecifica-

tion diagnostic in the BEARmodels described above, we see that this is not the case here (Table 2.2).

The large values of h suggest that where the CNN fails it is not because of too much flexibility but

rather too little: the model is not flexible enough to encompass the true data distribution, so it suf-

fers frommisspecification. Meanwhile, the reference-based model has only two learned parameters,

but is less misspecified than the CNN in all but one dataset. This too runs counter to popular wis-

dom in machine learning, which often assumes that when principled, low-flexibility scientific mod-

els outperform deep neural networks it is thanks to their low variance in the small data regime.
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Figure 2.3: Generation, visualization and testing. (A) Sample extrapolations, colored to denote distinct paths through the

L-mer de Bruijn graph. (B) Distribution of the perplexity of the nextMarkov transition under the BEARmodel, for each

position of the sampled extrapolations, with the per position average shown in black (Section B.11). (C) Log probability

of each read in the HL dataset under the BEARmodel and amodel built from the reference transcriptome. Reads are

colored bywhether or not theymap to the reference. (D) Latent representations of the reads highlighted in C, visualized

using tSNE, with clusters annotated as likely coming frommitochondria, the sequencing adapter, or transcripts of the

gene JUND (Section B.12). (E) Goodness-of-fit test Bayes factor as a function of hyperparameterh. (F) Two-sample test
Bayes factor as a function of lagL. Black line compares simulated data to simulated data; dashed lines compare subsam-
pled real data to subsampled real data; solid lines compare real data to simulated data. (G) Log probability of each read

under the real data BEARmodel minus the log probability under the simulated data BEARmodel (Section B.13).
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2.6.2 Generating samples

BEARmodels are generative and can be used to sample new sequences. We sampled extrapolations

from the end of a read sequence recorded in a plant (A. thaliana) whole genome sequencing exper-

iment, and compared to an alternative non-probabilistic extrapolation method that is widely used

in biology, local assembly (Fig. 2.3A; Section B.11). In this example the assembly algorithm SPAdes

returns four possible assemblies, a relatively large number compared to other reads in the dataset

(Fig. 2.3A stars)16. Samples from the BEARmodel include these four possibilities, but also many

more, some with higher probability. The distribution over possible nucleotide choices under the

BEARmodel is much wider than the number of assemblies would suggest: it has a perplexity of 1.4

per position (on average across samples) at the beginning of the extrapolation, and a perplexity of

2.7 at 50 nucleotides (Fig. 2.3B). These observations suggest that SPAdes, which does not provide a

measurement of uncertainty, may not be capturing the full range of possible sequences.

2.6.3 Visualizing data

Methods for learning local representations or features of biological sequences can be powerful

tools for visualization and semisupervised learning25. One approach to extracting such represen-

tations is to learn a generative model q(X1, . . . , XL+1) of kmers, for instance using a variational

autoencoder. While such models are not autoregressive, the small size of the DNA alphabet makes it

tractable to estimate the conditional q(XL+1|X1:L) by Bayes’ rule, and this conditional can then be

embedded into a BEARmodel. We applied this strategy to probabilistic PCA.We visualized in low
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dimensions the inferred latent representation for a model trained on a single cell RNA sequencing

dataset (HL), and were able to assign annotations to clusters, including those containing unmapped

reads (Fig. 2.3CD; Section B.12). The BEARmodel however raises the warning that the model is

misspecified (h = 4.836), suggesting there may be richer latent structure yet to discover.

2.6.4 Testing hypotheses

The question of when and howmicrobiomes change is widespread, but has in the past relied on

summary statistics of sequencing datasets161. Schreiber et al. 229 studied changes in patient urine

microbiomes before and after kidney transplant, and performed both unbiased metagenomic se-

quencing and diagnostic quantitative polymerase chain reaction (qPCR) for a specific virus as-

sociated with complications (JC polyomavirus). They found evidence of donor-to-recipient viral

transmission in 5 cases out of 14. We applied the BEAR two-sample test to patients’ metagenomic

sequencing data before and after transplantation, using the vanilla Jeffreys prior and integrating

over lags, in order to detect changes; the test rejects the null hypothesis in all 5 cases where there was

transmission, and accepts the null hypothesis in all but one of the remaining 9 cases (Table B.6; Sec-

tion B.13.1). These results show, in a small example, that the two-sample test has sufficient power to

detect microbiome changes in real data, and can be consistent with more specific tests.

We next applied BEAR hypothesis tests to evaluate generative models. We evaluated the reference-

based ARmodel described above using the BEAR goodness-of-fit test. The test identifies consid-

erable evidence (log Bayes factor> 108) for misspecification in each A. thalianawhole genome se-

quencing dataset, and this conclusion is robust to a wide range of h values (Fig. 2.3E; Section B.13.2).
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Next, we evaluated a detailed simulation model (ART) that is intended to generate likely reads of a

given reference genome111. The model lacks tractable likelihoods, so we use the BEAR two-sample

test. When integrating over all lags, the test accepts the null hypothesis, suggesting that the simula-

tion model is accurate; if we examine the test results for individual lagsL to increase power, how-

ever, we can see some evidence of differences (Fig. 2.3F; Section B.13.2). Note that asL increases,

there is a tradeoff: tests with larger lag can detect more subtle differences between the two distribu-

tions, but have less statistical power since they must consider a larger set of possible distributions.

Thus the Bayes factor first increases and then decreases with lag, reaching a peak at intermediate

values where there is the most evidence of difference. To understand in detail the source of the de-

tected differences between the data and the simulation model, we examined the conditional Bayes

factor for individual reads, discovering clusters of reads that are poorly explained by the simulation

model (Fig. 2.3G). One group mapped to chloroplasts, an organelle with its own genome that is

variable in copy number; reads mapping to centromeres, an area of the plant genome for which the

reference genome is considered unreliable, were also poorly explained by the simulation model. In

one dataset we found a cluster of outliers that did not map to A. thaliana at all, and instead mapped

to a common soil bacteria, Bacillus cereus, presumably a contaminant in the experiment (Fig. 2.3G,

left). These results illustrate how BEAR hypothesis tests can be used not only for testing but also for

detailed model criticism.
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2.7 Discussion

In this article we proposed the nonparametric BEARmodel, studied its theoretical properties, and

developed algorithms and implementations for terabyte-scale inference. BEARmodels substantially

outperform standard ARmodels on a variety of datasets, and come with extensive theoretical guar-

antees, including for density estimation, misspecification detection, and hypothesis testing. BEAR

models are closely connected to non-probabilistic genome analysis methods, such as de Bruijn graph

assembly, but provide an alternative that is uncertainty-aware. Note, however, that BEARmodels

do not explicitly account for paired-end read information, or other sources of long-distance infor-

mation; this is an important area for future work. While there has been little previous empirical or

theoretical work in the machine learning literature on generative models of full genomic, transcrip-

tomic or metagenomic sequences, we hope BEARmodels provide a useful starting point.
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3
Variational Synthesis

Generative probabilistic models of biological sequences have widespread existing and potential ap-

plications in analyzing, predicting and designing proteins, RNA and genomes. To test the predic-

tions of such a model experimentally, the standard approach is to draw samples, and then synthesize

each sample individually in the laboratory. However, often orders of magnitude more sequences

can be experimentally assayed than can be affordably synthesized individually. In this article, we pro-
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pose instead to use stochastic synthesis methods, such as mixed nucleotides or trimers. We describe

a black-box algorithm for optimizing stochastic synthesis protocols to produce approximate samples

from any target generative model. We establish theoretical bounds on the method’s performance,

and validate it in simulation using held-out sequence-to-function predictors trained on real exper-

imental data. We show that using optimized stochastic synthesis protocols in place of individual

synthesis can increase the number of hits in protein engineering efforts by orders of magnitude, e.g.

from zero to a thousand.

This chapter presents work done in collaboration with Alan N. Amin, Will Grathwohl, Daniel

Kassler, Jean Disset and Debora S. Marks, published at the International Conference on Artificial

Intelligence and Statistics (2022)282. E.N.W. conceived the research, performed the research and

wrote the paper. A.N.A. and J.D. contributed code, and A.N.A contributed to the theoretical re-

sults. W.G. and D.K. contributed to preliminary experiments. D.S.M. supervised the research at all

stages.

3.1 Introduction

Large-scale nucleic acid sequencing and synthesis is integral to modern biology and biomedicine,

from biotechnology to epidemiology to neuroscience to agriculture to evolutionary biology and

beyond. Generative probabilistic modeling offers a rigorous framework for analyzing large scale se-

quencing data and forming predictions of new sequences that can be synthesized in the laboratory.

Generative models have been used, for instance, to infer underlying structural and functional con-
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straints on protein evolution, to predict pathogen sequences that may emerge in the future, and to

predict novel enzyme sequences with desired functional properties168,110,284,224. In order to assay

the properties of predicted sequences and discover novel functional sequences, samples from genera-

tive models must be synthesized in the laboratory at scale. Large libraries are particularly important

for protein engineering applications, where they are screened for hits with rare properties, e.g. a par-

ticular catalytic or binding activity.

Unfortunately, synthesizing large numbers of samples from generative sequence models is chal-

lenging. The standard approach, which we refer to as “Monte Carlo (MC) synthesis”, is to (1) sam-

ple from the model computationally, and then (2) synthesize each sample individually224,235,164. In

practice, however, MC synthesis is limited by cost: despite recent advances in synthesis technology,

gene-length libraries typically do not exceed 104 unique sequences145. Far larger libraries, on the

order of 106 − 1013, can be screened in many high-throughput assays. The set of likely sequences

predicted by state-of-the-art generative models is often vastly larger still: a protein model with per-

residue perplexity of 2 across sequences of length 100 predicts effectively 2100 ≈ 1030 sequences.

Thus MC synthesis often will come nowhere near comprehensive exploration of a model’s predic-

tions.

In principal, combinatorial and stochastic synthesis methods – such as error prone PCR and

mixed nucleotides – offer an alternative approach capable of producing much larger numbers of

unique sequences for the same cost. However, the sequences produced by these methods are ran-

dom, and so it is unclear how to use stochastic synthesis to gain insight into the predictions of a

given generative sequence model.
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Figure 3.1: The standard synthesis approach for generative sequencemodels (Monte Carlo synthesis) is to sample se-

quences in silico and synthesize samples individually in vitro. The proposed approach (variational synthesis) is to optimize

the experimental parameters of a stochastic synthesis protocol in silico and then run the protocol in vitro or in vivo to

produce a larger number of samples.

In this article, we describe an experimental design method – “variational synthesis” – that lever-

ages stochastic DNA synthesis to overcome the limitations of MC synthesis. The basic idea is to

optimize the parameters of the laboratory synthesis protocol to produce samples from a distribution

close to the distribution of the target generative model. Variational synthesis is a rigorous approach

to building ultra-large scale libraries based on generative sequence models, and can dramatically ac-

celerate the discovery of novel functional sequences.

3.2 Method

We consider an arbitrary target generative model that describes a probability distribution p(x) over

sequences x. We are interested in assaying samples from the model experimentally. The standard

method, MC synthesis, is to (1) draw samplesX1, ..., XN0 ∼ p i.i.d. computationally and then
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(2) synthesize each sequence in the laboratory, deterministically. This approach is limited by the

number of sequencesN0 that can be affordably synthesized deterministically, typically on the order

of 104 or less for gene-length sequences.

As an alternative, we propose “variational synthesis” (Figure 3.1): (1) write down a probabilistic

model qθ(x) of sequences produced by a stochastic synthesis protocol with experimental parameters

θ, (2) minimize a divergence between qθ and p to find qθ∗ ≈ p and (3) run the stochastic synthesis

protocol in the laboratory, producing samplesX1, ..., XN1 ∼ qθ∗ i.i.d.. This approach is limited by

the number of sequencesN1 that can be affordably screened, where in generalN1 can be orders of

magnitude larger thanN0, e.g. 106 − 1011. The increase in samples comes at the cost of accuracy,

since qθ∗ may not exactly match p.

3.2.1 Stochastic Synthesis Models

The first step of variational synthesis is to write downmodels qθ of stochastic synthesis proto-

cols. We focus on five key technologies: (1) enzymatic mutagenesis, e.g. error-prone PCR or Or-

thorep290,210, (2) mixed nucleotide synthesis, often referred to as “degenerate codon libraries” in the

context of proteins194,174, (3) mixed trimer synthesis136,135,172, (4) combinatorial variant libraries264

and (5) combinatorial assembly89. We focus on models of protein sequences; models of DNA or

RNA are simpler.

We describe stochastic synthesis models qθ using a four-step generative process (Figure 3.2): (1)

sample one ofM “templates” from each ofK “pools”, (2) join the templates together, (3) sample

codons independently at each position of the combined templates and (4) translate the DNA se-
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quence into protein. For example, consider the protocol of combinatorial assembly plus error prone

PCR: we start with a library of oligos, join (assemble) a random sample of oligos into a larger se-

quence, and then mutagenize the sequence. Abstractly, we refer to the distribution over codons

obtained by mutagenizing a particular oligo as a “template”. Techniques such as mixed nucleotides

can produce alternative distributions over codons, described by different “templates”. Mathemat-

ically, let ukzj(b1,b2,b3) denote the probability of generating codon (b1, b2, b3) at the jth position

of template z in pool k. Let T be the translation matrix, defined as T(b1,b2,b3)d = 1 if the codon

(b1, b2, b3) codes for the amino acid d and T(b1,b2,b3)d = 0 otherwise. (For instance, T(G,T,A)V = 1

since the codonGTA codes for the amino acid V .) The complete model (Figure 3.2) is

Zi ∼ pw,

Ci := concatenate(u1Zi1 , . . . , uKZiK
),

Hi ∼ Categorical(Ci),

Xi := Hi · T,

(3.1)

where the “concatenate” operation stacks matrices vertically, and the categorical distribution pro-

duces one-hot encoded samples based on the probabilities in each row. Here,Zi is the vector of

templates used for sequence i, drawn from an underlying distribution pw, whileCi is a matrix con-

taining the codon probabilities for each site along sequence i andHi is a one-hot encoding of the

codons in sequence i (Table C.1 provides a complete notation reference).

Different synthesis technologies impose different constraints on pw, corresponding to different
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ATG
CCG
TCA
TAC
GAC
ACA
GGT
CAT
AAA
CCT
GTT
ATT
TAA
GGG
CAG

M
P
S
Y
D
T
G
H
K
P
V
I

M<latexit sha1_base64="ahZkVlqcc2+NqxYU8NuVwJem3p4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFhPBKtzFQsugjY0Q0XxAcoS9zV6yZG/v2J0TQshPsLFQxNZfZOe/cZNcoYkPBh7vzTAzL0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo5uZ33ri2ohYPeI44X5EB0qEglG00kP5rtwrltyKOwdZJV5GSpCh3it+dfsxSyOukElqTMdzE/QnVKNgkk8L3dTwhLIRHfCOpYpG3PiT+alTcmaVPgljbUshmau/JyY0MmYcBbYzojg0y95M/M/rpBhe+ROhkhS5YotFYSoJxmT2N+kLzRnKsSWUaWFvJWxINWVo0ynYELzll1dJs1rxLirV+2qpdp3FkYcTOIVz8OASanALdWgAgwE8wyu8OdJ5cd6dj0VrzslmjuEPnM8fXUmNLw==</latexit>

K<latexit sha1_base64="ANM07KFz8nQYLlZ/cnfo/6u2YRo=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFhPBKtzFQsugjWAT0XxAcoS9zV6yZG/v2J0TQshPsLFQxNZfZOe/cZNcoYkPBh7vzTAzL0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo5uZ33ri2ohYPeI44X5EB0qEglG00kP5rtwrltyKOwdZJV5GSpCh3it+dfsxSyOukElqTMdzE/QnVKNgkk8L3dTwhLIRHfCOpYpG3PiT+alTcmaVPgljbUshmau/JyY0MmYcBbYzojg0y95M/M/rpBhe+ROhkhS5YotFYSoJxmT2N+kLzRnKsSWUaWFvJWxINWVo0ynYELzll1dJs1rxLirV+2qpdp3FkYcTOIVz8OASanALdWgAgwE8wyu8OdJ5cd6dj0VrzslmjuEPnM8fWj+NLQ==</latexit>

Sample templates 
from each pool.

Concatenate 
templates.

Sample 
codons.

Translate to 
protein.

Ci
<latexit sha1_base64="kDISq4TTdsY6jssWz2QHF12wd2A=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTSWGLiIQlcyN4ywIa9vcvungm58BtsLDTG1h9k579xgSsUfMkkL+/NZGZemAiujet+O4WNza3tneJuaW//4PCofHzS1nGqGPosFrHqhFSj4BJ9w43ATqKQRqHAx3DSnPuPT6g0j+WDmSYYRHQk+ZAzaqzkV5t9Xu2XK27NXYCsEy8nFcjR6pe/eoOYpRFKwwTVuuu5iQkyqgxnAmelXqoxoWxCR9i1VNIIdZAtjp2RC6sMyDBWtqQhC/X3REYjradRaDsjasZ61ZuL/3nd1AxvgozLJDUo2XLRMBXExGT+ORlwhcyIqSWUKW5vJWxMFWXG5lOyIXirL6+Tdr3mXdXq9/VK4zaPowhncA6X4ME1NOAOWuADAw7P8ApvjnRenHfnY9lacPKZU/gD5/MHyQ2OAQ==</latexit>

Hi
<latexit sha1_base64="wD8J3sCoEkzXCSIFci821ocmhpE=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaUGLiIQlcyN4ywIa9vcvungm58BtsLDTG1h9k579xgSsUfMkkL+/NZGZemAiujet+O4WNza3tneJuaW//4PCofHzS1nGqGPosFrHqhFSj4BJ9w43ATqKQRqHAx3ByN/cfn1BpHssHM00wiOhI8iFn1FjJrzb7vNovV9yauwBZJ15OKpCj1S9/9QYxSyOUhgmqdddzExNkVBnOBM5KvVRjQtmEjrBrqaQR6iBbHDsjF1YZkGGsbElDFurviYxGWk+j0HZG1Iz1qjcX//O6qRneBBmXSWpQsuWiYSqIicn8czLgCpkRU0soU9zeStiYKsqMzadkQ/BWX14n7XrNu6rV7+uVxm0eRxHO4BwuwYNraEATWuADAw7P8ApvjnRenHfnY9lacPKZU/gD5/MH0LCOBg==</latexit>

Xi
<latexit sha1_base64="U9ebvUQO2NcI0itl2XmS6twldxk=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGLiAQlcyN6yBxv29i67cyaE8BtsLDTG1h9k579xgSsUfMkkL+/NZGZemEph0HW/ncLG5tb2TnG3tLd/cHhUPj5pmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3dxvP3FtRKIecZLyIKZDJSLBKFrJr3b6otovV9yauwBZJ15OKpCj2S9/9QYJy2KukElqTNdzUwymVKNgks9KvczwlLIxHfKupYrG3ATTxbEzcmGVAYkSbUshWai/J6Y0NmYSh7Yzpjgyq95c/M/rZhjdBFOh0gy5YstFUSYJJmT+ORkIzRnKiSWUaWFvJWxENWVo8ynZELzVl9dJq17zrmr1h3qlcZvHUYQzOIdL8OAaGnAPTfCBgYBneIU3RzkvzrvzsWwtOPnMKfyB8/kD6SCOFg==</latexit>

u1Zi1
<latexit sha1_base64="C6YPDUgXReptCJ1hs8MEOiFXMTg=">AAAB9XicbVBNT8JAEJ3iF+IX6tHLRjDxRFo46JHoxSMm8hGhNttlCxu222Z3qyFN/4cXDxrj1f/izX/jAj0o+JJJXt6bycw8P+ZMadv+tgpr6xubW8Xt0s7u3v5B+fCoo6JEEtomEY9kz8eKciZoWzPNaS+WFIc+p11/cj3zu49UKhaJOz2NqRvikWABI1gb6aGaeKmD7r2UOVlW9coVu2bPgVaJk5MK5Gh55a/BMCJJSIUmHCvVd+xYuymWmhFOs9IgUTTGZIJHtG+owCFVbjq/OkNnRhmiIJKmhEZz9fdEikOlpqFvOkOsx2rZm4n/ef1EB5duykScaCrIYlGQcKQjNIsADZmkRPOpIZhIZm5FZIwlJtoEVTIhOMsvr5JOveY0avXbeqV5lcdRhBM4hXNw4AKacAMtaAMBCc/wCm/Wk/VivVsfi9aClc8cwx9Ynz9KL5G4</latexit>

u2Zi2
<latexit sha1_base64="FVNQ20peSzTPkQLhlkJqQFFxRfY=">AAAB9XicbVC7TsNAEFzzDOEVoKQ5kSBRRbYpoIygoQwSeYjEWOfLOTnlfLbuzqDI8n/QUIAQLf9Cx99wSVxAwkgrjWZ2tbsTJJwpbdvf1srq2vrGZmmrvL2zu7dfOThsqziVhLZIzGPZDbCinAna0kxz2k0kxVHAaScYX0/9ziOVisXiTk8S6kV4KFjICNZGeqilfuaiez9jbp7X/ErVrtszoGXiFKQKBZp+5as/iEkaUaEJx0r1HDvRXoalZoTTvNxPFU0wGeMh7RkqcESVl82uztGpUQYojKUpodFM/T2R4UipSRSYzgjrkVr0puJ/Xi/V4aWXMZGkmgoyXxSmHOkYTSNAAyYp0XxiCCaSmVsRGWGJiTZBlU0IzuLLy6Tt1p3zunvrVhtXRRwlOIYTOAMHLqABN9CEFhCQ8Ayv8GY9WS/Wu/Uxb12xipkj+APr8wdNQ5G6</latexit>

u3Zi3
<latexit sha1_base64="bGlRAiFtHFHAdvG+4Zy1V32xbr4=">AAAB9XicbVBNT8JAEJ3iF+IX6tHLRjDxRFo46JHoxSMm8hGhNttlCxu222Z3qyFN/4cXDxrj1f/izX/jAj0o+JJJXt6bycw8P+ZMadv+tgpr6xubW8Xt0s7u3v5B+fCoo6JEEtomEY9kz8eKciZoWzPNaS+WFIc+p11/cj3zu49UKhaJOz2NqRvikWABI1gb6aGaeGkD3Xspa2RZ1StX7Jo9B1olTk4qkKPllb8Gw4gkIRWacKxU37Fj7aZYakY4zUqDRNEYkwke0b6hAodUuen86gydGWWIgkiaEhrN1d8TKQ6Vmoa+6QyxHqtlbyb+5/UTHVy6KRNxoqkgi0VBwpGO0CwCNGSSEs2nhmAimbkVkTGWmGgTVMmE4Cy/vEo69ZrTqNVv65XmVR5HEU7gFM7BgQtowg20oA0EJDzDK7xZT9aL9W59LFoLVj5zDH9gff4AUFeRvA==</latexit>

u11
<latexit sha1_base64="5i4bhAZwbUDzlYOI+Rp7rsDXQM0=">AAAB8HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCTaWGIioIEL2Vv2YMPu3mU/TMiFX2FjoTG2/hw7/40LXKHgSyZ5eW8mM/OilDNtfP/bK6ytb2xuFbdLO7t7+wflw6O2TqwitEUSnqiHCGvKmaQtwwynD6miWEScdqLxzczvPFGlWSLvzSSlocBDyWJGsHHSY9X2swAF02q/XPFr/hxolQQ5qUCOZr/81RskxAoqDeFY627gpybMsDKMcDot9aymKSZjPKRdRyUWVIfZ/OApOnPKAMWJciUNmqu/JzIstJ6IyHUKbEZ62ZuJ/3lda+KrMGMytYZKslgUW45MgmbfowFTlBg+cQQTxdytiIywwsS4jEouhGD55VXSrteCi1r9rl5pXOdxFOEETuEcAriEBtxCE1pAQMAzvMKbp7wX7937WLQWvHzmGP7A+/wBTvmPbA==</latexit>

u12
<latexit sha1_base64="wHGBOx+5+Xcgrbu0JacTlm2JoRU=">AAAB8HicbVA9TwJBEJ3DL8Qv1NJmI5hYkbuj0JJoY4mJfBi4kL1lDzbs7l1290zIhV9hY6Extv4cO/+NC1yh4EsmeXlvJjPzwoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5Hbud56o0iyWD2aa0EDgkWQRI9hY6bGaDjIP+bPqoFxxa+4CaJ14OalAjuag/NUfxiQVVBrCsdY9z01MkGFlGOF0VuqnmiaYTPCI9iyVWFAdZIuDZ+jCKkMUxcqWNGih/p7IsNB6KkLbKbAZ61VvLv7n9VITXQcZk0lqqCTLRVHKkYnR/Hs0ZIoSw6eWYKKYvRWRMVaYGJtRyYbgrb68Ttp+zavX/Hu/0rjJ4yjCGZzDJXhwBQ24gya0gICAZ3iFN0c5L86787FsLTj5zCn8gfP5A1B/j20=</latexit>

u21
<latexit sha1_base64="eexuuMNDyFlHELNy+SXNEpPU/xg=">AAAB8HicbVA9TwJBEJ3DL8Qv1NJmI5hYkbuj0JJoY4mJfBi4kL1lDzbs7l1290zIhV9hY6Extv4cO/+NC1yh4EsmeXlvJjPzwoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5Hbud56o0iyWD2aa0EDgkWQRI9hY6bGaDjIfebPqoFxxa+4CaJ14OalAjuag/NUfxiQVVBrCsdY9z01MkGFlGOF0VuqnmiaYTPCI9iyVWFAdZIuDZ+jCKkMUxcqWNGih/p7IsNB6KkLbKbAZ61VvLv7n9VITXQcZk0lqqCTLRVHKkYnR/Hs0ZIoSw6eWYKKYvRWRMVaYGJtRyYbgrb68Ttp+zavX/Hu/0rjJ4yjCGZzDJXhwBQ24gya0gICAZ3iFN0c5L86787FsLTj5zCn8gfP5A1CBj20=</latexit>

u22
<latexit sha1_base64="L64kFLyYjtUBQ8cQMnfczwS5lX0=">AAAB8HicbVA9TwJBEJ3DL8Qv1NJmI5hYkbuj0JJoY4mJfBi4kL1lDzbs7l1290zIhV9hY6Extv4cO/+NC1yh4EsmeXlvJjPzwoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5Hbud56o0iyWD2aa0EDgkWQRI9hY6bGaDjIf+bPqoFxxa+4CaJ14OalAjuag/NUfxiQVVBrCsdY9z01MkGFlGOF0VuqnmiaYTPCI9iyVWFAdZIuDZ+jCKkMUxcqWNGih/p7IsNB6KkLbKbAZ61VvLv7n9VITXQcZk0lqqCTLRVHKkYnR/Hs0ZIoSw6eWYKKYvRWRMVaYGJtRyYbgrb68Ttp+zavX/Hu/0rjJ4yjCGZzDJXhwBQ24gya0gICAZ3iFN0c5L86787FsLTj5zCn8gfP5A1IHj24=</latexit>

u32
<latexit sha1_base64="C+djtToEW7h5WMhsIYR71MdYqco=">AAAB8HicbVA9TwJBEJ3DL8Qv1NJmI5hYkbuj0JJoY4mJfBi4kL1lDzbs7l1290zIhV9hY6Extv4cO/+NC1yh4EsmeXlvJjPzwoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5Hbud56o0iyWD2aa0EDgkWQRI9hY6bGaDrI68mfVQbni1twF0DrxclKBHM1B+as/jEkqqDSEY617npuYIMPKMMLprNRPNU0wmeAR7VkqsaA6yBYHz9CFVYYoipUtadBC/T2RYaH1VIS2U2Az1qveXPzP66Umug4yJpPUUEmWi6KUIxOj+fdoyBQlhk8twUQxeysiY6wwMTajkg3BW315nbT9mlev+fd+pXGTx1GEMziHS/DgChpwB01oAQEBz/AKb45yXpx352PZWnDymVP4A+fzB1OPj28=</latexit>

u31
<latexit sha1_base64="gqK2p6jErHrMDbG5uhItBchdTB0=">AAAB8HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsotCTaWGIiHwYuZG/Zgw27e5fdPRNy4VfYWGiMrT/Hzn/jHlyh4EsmeXlvJjPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9Dbzu09UaRbJBzOLqS/wWLKQEWys9FhNhmkDefPqsFxxa+4CaJ14OalAjtaw/DUYRSQRVBrCsdZ9z42Nn2JlGOF0XhokmsaYTPGY9i2VWFDtp4uD5+jCKiMURsqWNGih/p5IsdB6JgLbKbCZ6FUvE//z+okJr/2UyTgxVJLlojDhyEQo+x6NmKLE8JklmChmb0VkghUmxmZUsiF4qy+vk0695jVq9ft6pXmTx1GEMziHS/DgCppwBy1oAwEBz/AKb45yXpx352PZWnDymVP4A+fzB1IJj24=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit> 64
<latexit sha1_base64="mCxqiH5IF4a+6poVeMQKRVa873M=">AAAB6XicbVDLTgJBEOzFF+IL9ehlIjHxRHaRqEeiF49o5JHAhswOvTBhdnYzM2tCCH/gxYPGePWPvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJaPZpygH9GB5CFn1Fjp4bLaK5bcsjsHWSVeRkqQod4rfnX7MUsjlIYJqnXHcxPjT6gynAmcFrqpxoSyER1gx1JJI9T+ZH7plJxZpU/CWNmShszV3xMTGmk9jgLbGVEz1MveTPzP66QmvPYnXCapQckWi8JUEBOT2dukzxUyI8aWUKa4vZWwIVWUGRtOwYbgLb+8SpqVsndRrtxXS7WbLI48nMApnIMHV1CDO6hDAxiE8Ayv8OaMnBfn3flYtOacbOYY/sD5/AH3aYz8</latexit>

. . .<latexit sha1_base64="VBpHJEBT97tDzHG8unvL1loUUmU=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9USk0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1L6q1+8tK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AL1tjzw=</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit> 64
<latexit sha1_base64="mCxqiH5IF4a+6poVeMQKRVa873M=">AAAB6XicbVDLTgJBEOzFF+IL9ehlIjHxRHaRqEeiF49o5JHAhswOvTBhdnYzM2tCCH/gxYPGePWPvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJaPZpygH9GB5CFn1Fjp4bLaK5bcsjsHWSVeRkqQod4rfnX7MUsjlIYJqnXHcxPjT6gynAmcFrqpxoSyER1gx1JJI9T+ZH7plJxZpU/CWNmShszV3xMTGmk9jgLbGVEz1MveTPzP66QmvPYnXCapQckWi8JUEBOT2dukzxUyI8aWUKa4vZWwIVWUGRtOwYbgLb+8SpqVsndRrtxXS7WbLI48nMApnIMHV1CDO6hDAxiE8Ayv8OaMnBfn3flYtOacbOYY/sD5/AH3aYz8</latexit>

. . .<latexit sha1_base64="VBpHJEBT97tDzHG8unvL1loUUmU=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9USk0PTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1L6q1+8tK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AL1tjzw=</latexit>

Figure 3.2: Overview of the synthesis model (Equation 3.1). From each ofK pools we draw one ofM templates,ukz ,

according to the random vectorZi. We concatenate the templates to form amatrix of codon probabilitiesCi. Then

codons are sampled at each position to formHi, which is finally translated into a protein sequenceXi.

assembly methods, and different constraints on u, corresponding to different codon diversification

methods. (The biochemical basis for these different mathematical constraints is described further in

Section C.1.) We consider two possible constraints on pw:

1. Fixed assemblyZi1 ∼ Categorical(w) andZi2 := . . . := ZiK := Zi1. Here we assume that

there areM templates in each pool, and that the choice of template from the first pool dictates the

choice from all the others. The experimentalist can choose the probability vectorw ∈ ∆M , where

∆M denotes theM − 1 simplex; chemically,w is controlled by the relative concentration of each

template. In this case, the synthesis model (Equation 3.1) is a mixture model.

2. Combinatorial assembly: Zik ∼ Categorical(wk) for all k ∈ {1, . . . ,K}. In this case each

template from each pool is drawn independently. The experimentalist can choose the probability

vectorswk ∈ ∆M for each pool.

We describe constraints on the codon probabilities of each template in terms of spaces U , where
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the experimentalist can choose any ukzj ∈ U for all k, z, j. We use v ⊗ v′ to denote the outer

product of two vectors v and v′. Overloading notation, for two sets of vectors S and S′, we use

S ⊗ S′ to denote the set of outer products of their members, that is S ⊗ S′ := {v ⊗ v′ : v ∈

S and v′ ∈ S′}. We consider the following constraints:

1. Arbitrary codon mixtures: U = ∆64. In this case, the experimentalist can choose any prob-

ability distribution over the 64 codons at each position in each template.* Combinatorial variant

libraries have this constraint; it is the most flexible of the codon probability constraints we consider.

2. Finite codon mixtures: U = {v1, . . . , vA}where va ∈ ∆64 for all a. In this case, the

experimentalist must first fix a library ofA different codon mixtures, and then, for each position in

each template, choose one of these mixtures va to use. Mixed trimer synthesis protocols often have

this constraint; in this case, va is determined by the relative concentration of each trimer in mixture

a.

3. Finite nucleotide mixtures: U = {v1, . . . , vA} ⊗ {v1, . . . , vA} ⊗ {v1, . . . , vA}where

va ∈ ∆4 for all a. In this case, the experimentalist must first fix a library ofA different nucleotide

mixtures, and then, for each position in each codon in each template, choose one of these mixtures

to use. Mixed nucleotide synthesis protocols often have this constraint; in this case, va is determined

by the relative concentration of each nucleotide in mixture a

4. Enzymatic mutagenesis: U = {Sτe1, . . . , S
τe4}⊗{Sτe1, . . . , S

τe4}⊗{Sτe1, . . . , S
τe4}

where S is a substitution matrix, Sτ is a matrix exponential, and ej is the length 4 vector of all zeros

*We index the 64 codons either using either tuples (A,A,A), . . . , (T, T, T ) or integers 1, . . . , 64, de-
pending on convenience.
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except a one at position j. The substitution matrix S is an intrinsic property of the chosen muta-

genic enzyme (i.e. the particular error prone polymerase); in general, it has positive non-zero entries,

linearly independent columns, and the sum of each column is 1. The number of rounds of mutage-

nesis τ ∈ {1, 2, . . .} can be controlled experimentally.

Once an assembly technology (fixed or combinatorial) and codon diversification technology

(arbitrary codon, finite codon, finite nucleotide or enzymatic) are chosen, the parameters θ of the

synthesis model qθ (Equation 3.1) that must be optimized consist of: w (the template probabilities),

u (the codon probabilities), v (if we are using finite nucleotide or codon mixtures) and τ (if we are

using enzymatic mutagenesis).

3.2.2 Black-Box Optimization

The second step of variational synthesis is to optimize the synthesis protocol, such that qθ∗ ≈ p. For

some target/synthesis pairs – for instance, when the target is a regression model with a MuE output

and fixed latent alignment284, and the synthesis method uses fixed assembly and arbitrary codon

mixtures – we can analytically and exactly match qθ∗ to p (Supplement C.2.1). In most cases, how-

ever, an exact match between the target distribution and the synthesis distribution is impossible, and

an analytic minimum intractable. We therefore propose an approximate optimization procedure.

The primary desiderata are that it should be (1) black-box, in the sense that it can be applied to ar-

bitrary target distributions p so long as p can be tractably sampled from, (2) scalable to large library

sizes, since qθ may for instance be a mixture model with 1000 or more components and (3) able to

handle large numbers of discrete parameters, since U can be finite.
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We propose to minimize the Kullback-Leibler (KL) divergence between the target model and

the synthesis model, estimating θ∗ := argminθ kl(p‖qθ) by (1) drawing samples from the target

modelX1, . . . , XÑ ∼ p i.i.d. and (2) maximizing the log likelihood of the samples under qθ using

a stochastic expectation-maximization (EM) algorithm33. This approach only relies on samples

from p, so can be applied whenever MC synthesis can be applied; in particular, it does not require

access to likelihoods of p, allowing p to be an implicit model (e.g. a GAN). EM does not require

access to derivatives of qθ(x)with respect to θ, and can easily handle categorical parameters. Finally,

since the stochastic EM algorithm relies only on minibatches of data, the method is highly scalable.

Sections C.2.2 and C.2.3 detail the algorithm and provide advice on training, including the choice

of Ñ . Code is provided at https://github.com/debbiemarkslab/variational-synthesis.

Often the target p describes a distribution over variable-length sequences. One way to account

for this, in the case of protein sequences, is to compute the likelihood of each sequence followed by

a stop codon, treating the remainder of the DNA sequence as missing data when fitting qθ (Sup-

plement C.2.4). Alternatively, a restriction site could be appended, and the remainder of the DNA

sequence again treated as missing data; after synthesis, the sequences could be digested to the appro-

priate length. Our optimization procedure can thus be applied to p that produce variable-length

sequences, so long as the length distribution is bounded.
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3.3 Relatedwork

Optimal design methods for stochastic synthesis have a long history, but existing techniques are in

general non-probabilistic – they do not work with explicit target distributions p or synthesis distri-

butions qθ – and, practically, cannot be applied to produce samples from an arbitrary generative

model p. Methods such as LibDesign174 and SwiftLib126 optimize degenerate codon libraries to

match the per-position amino acid frequencies in a multiple sequence alignment, while limiting

the total size of the library. SwiftLib has for instance been used to design massive libraries of mini-

protein sensors and therapeutics40,140. OCoM193 applies similar ideas to handle pairwise correla-

tions. The recent DeCoDe method234 designs degenerate codon libraries to produce as many mem-

bers of a set of target sequences as possible, while limiting the total size of the library; it can be inter-

preted probabilistically as attempting to maximize the overlap in support between a synthesis distri-

bution qθ and a target distribution p, while regularizing the size of the support of qθ (Section C.3.1).

Meanwhile, SCHEMA and RASPP278,73 are used to optimize combinatorial assembly protocols

based on protein structure, and have been applied to engineer new optogenetic tools20; when the

target model p is a Potts model that accurately reflects protein structure, variational synthesis will

prefer similar solutions (Section C.3.2). Note that these existing non-probabilistic stochastic synthe-

sis design tools are often used to construct libraries of diversified sequences in the context of directed

evolution experiments, and we expect variational synthesis to also be applicable in the same context.

Batched stochastic Bayesian optimization294 is comparable to variational synthesis in that it is

a rigorous and probabilistic approach to stochastic synthesis optimization. Unlike variational syn-
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thesis, it is focused on optimizing a reward function, rather than drawing samples from a generative

sequence model. It is also not black-box, relying on the particular structure of the reward function

(a Gaussian process) and focusing on just one stochastic synthesis method.

Stochastic synthesis models related to those proposed in Section 3.2.1 have been used in the past

for inference from observational data, rather than experimental design. For instance, Tomezsko

et al. 260 use a mixture model of sequences to infer RNA structural diversity from dimethyl sulfate

mutational profiling data.

Variational synthesis is inspired by variational inference (VI)27. Both minimize a divergence be-

tween a simple approximating distribution and a target distribution (a posterior in the case of VI).

Both can take advantage of the expressiveness of mixture models to achieve close matches to the

target distribution175,97,162. Both can be contrasted with older methods for exact sampling from a

target distribution (Markov chainMonte Carlo in the case of VI, Monte Carlo synthesis in the case

of variational synthesis); both trade accuracy for scale, enabling large numbers of approximate sam-

ples to be drawn (computationally in the case of VI, physically in the case of variational synthesis).

Both can be black-box, enabling automatic sampling for a large class of target distributions208,147.

3.4 Theory

3.4.1 Approximation Error

In this section, we analyze the downstream consequences of using variational synthesis in place

of MC synthesis. After synthesizing (approximate) samples from p, the sequences will be experi-
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mentally characterized using a high-throughput assay, described by a function f , which provides

measurements f(X1), . . . , f(XN ) of each synthesized sequence. The assay may measure bind-

ing strength, enzymatic activity, fluorescence, etc.. f is assumed to be unknown before perform-

ing the experiment. We consider two distinct goals. The first goal is to estimate the average value

EX∼p[f(X)]. For instance, we may want to estimate the average drug resistance of future pathogen

sequences predicted by p. Second, we may be interested in discovering a large number of sequences

with a desired property, i.e. we want to maximize
∑N

i=1 f(Xi)where f(x) = 1 if the sequence has

the property and f(x) = 0 otherwise. E.g. if we want to engineer a new plastic-degrading protein,

we want to find as many sequences as possible with high degradation rates.

Estimating EX∼p[f(X)].MC synthesis and variational synthesis lead to two distinct estimators

for I := EX∼p[f(X)], and in this section we compare their performance theoretically. In particular,

the MC synthesis estimator is Î(a) := 1
N0

∑N0
i=1 f(Xi)whereX1, . . . , XN0 ∼ p, while the

variational synthesis estimator is Î(b) := 1
N1

∑N1
i=1 f(Xi)whereX1, . . . , XN1 ∼ qθ∗ . We have no

a priori knowledge of f , so to compare estimators we evaluate worst-case performance over a family

of functionsF . In practice, nearly all experimental assays have limited dynamic range; we therefore

takeF to be the set of bounded functions,F := {f : maxx∈X |f(x)| ≤ fmax}, whereX is the set

of protein sequences of length less than or equal toL.

Proposition 3.4.1. The worst-case mean absolute deviation of the exact synthesis estimator satisfies

1
fmax

sup
f∈F

E[|Î(a) − I|] ≤ 1√
N0

. (3.2)
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The worst-case mean absolute deviation of the stochastic synthesis estimator satisfies

1
fmax

sup
f∈F

E[|Î(b) − I|] ≤ 1√
N1

+
√

1
2
kl(p‖qθ∗). (3.3)

The proof, which can be found in Section C.4.2, uses the integral probability metric representa-

tion of total variation along with Pinsker’s inequality. This result describes a bias-variance tradeoff:

using variational synthesis in place of MC synthesis leads to less variance (sinceN1 > N0) but intro-

duces bias if qθ∗ does not exactly match p. Our optimization procedure (Section 3.2.2) minimizes

bias by minimizing kl(p‖qθ).

If we have access to paired sequencing data, for instance if the hits of a high-throughput screen

are deep-sequenced, we can remove the bias in the variational synthesis estimator via importance-

weighting. We analyze this approach in Section C.4.3.

Maximizing
∑N

i=1 f(Xi). Howmany more hits can we expect to discover when using varia-

tional synthesis as opposed toMC synthesis? To address this question, we take f : X 7→ {0, 1},

and compare the total number of hits when using variational synthesis,N1Î
(b), to the number of

hits when using MC synthesis,N0Î
(a).

Corollary 3.4.2. The expected increase in hits when using variational instead ofMC synthesis satis-

fies

E[N1Î
(b) −N0Î

(a)] ≥(
I −

√
1
2
kl(p‖qθ∗)

)
N1 −

√
N1 − IN0 −

√
N0.

(3.4)
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See Section C.4.4 for a proof. In generalN1 is much larger thanN0, so the determining factor as

to whether variational synthesis outperformsMC synthesis is whether qθ∗ is a sufficiently close ap-

proximation to p, i.e. whether
√

1
2kl(p‖qθ∗) < I . If so, the payoff from using variational synthesis

can be substantial: to first order, the number of hits increases linearly with the number of sequences

N1. Our optimization procedure maximizes the lower bound on the number of hits by minimizing

kl(p‖qθ).

3.4.2 Performance Limits

We have seen that the success of variational synthesis is determined by how closely qθ can match

the target p. In this section, we analyze how closely the stochastic synthesis models described in

Section 3.2.1 can match arbitrary target distributions p.

Limits on fixed assembly.We start by showing that synthesis protocols that use fixed assembly,

and do not use enzymatic mutagenesis, can match any target distribution p arbitrarily well. We use

qθ(x|z) as shorthand for qθ(x|Zi1 = z), the synthesis model distribution conditioned on the

choice of template (mixture component). LetP(X ) denote the set of probability distributions over

X . Let supp(qθ(x|z)) denote the support of the distribution qθ(x|z), i.e. the set of all x ∈ X such

that qθ(x|z) > 0.

Proposition 3.4.3. When using either arbitrary codon mixtures, finite codon mixtures (with

A ≥ 21), or finite nucleotide mixtures (withA ≥ 4): for any p ∈ P(X ) and η > 0 there exists some

M and θ such that (1) kl(p‖qθ) < η and (2) supp(qθ(x|z)) = X for all z ∈ {1, . . . ,M}. When
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using enzymatic mutagenesis: there exists some p ∈ P(X ) and η > 0 such that for allM and θ, we

have kl(p‖qθ) > η.

See Section C.4.5 for a proof. The result says that as long as we are not using enzymatic mutage-

nesis, the target distribution p can be arbitrarily well approximated without resorting to individual

synthesis (that is, without setting qθ(x|z) to be a delta function). Fundamentally, the problem with

enzymatic mutagenesis is its discreteness: a sequence can be mutated at minimum once, so there is

a minimum non-zero codon probability, given by the properties of the enzyme. This sets a limit on

the “resolution” of p that can be matched by the synthesis procedure.†

Limits on combinatorial assembly.We next show that any synthesis protocols using combina-

torial assembly cannot closely match arbitrary targets p even in the limit that the library sizeM goes

to infinity. The result holds for any choice of U .

Proposition 3.4.4. When using combinatorial assembly, so long asK > 1, there exists p ∈ P(X )

and η > 0 such that for allM and θ, we have kl(p‖qθ) > η.

See Section C.4.6 for a proof. The key problem with combinatorial assembly is that it forces

templates to be independent of one another; it therefore cannot match probability distributions p

which have correlations between regions covered by each template.

†In practice, despite the mathematical idealization of our models, all synthesis technologies have a min-
imum non-zero codon probability, set by engineering constraints. The key question is really how low this
number is comparatively.
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3.5 Results

3.5.1 Matching Evolutionary EnzymeModels

We next evaluated the ability of variational synthesis to produce approximate samples from target

protein models trained on real data. As a first target, we chose a Potts model trained on dihydrofo-

late reductase (DHFR) sequences from across evolution; DHFR is an enzyme crucial for nucleic

acid synthesis. Potts models of protein sequences have been studied extensively, andMC synthe-

sis from Potts models can produce functional sequences224. We optimized each of our proposed

stochastic synthesis models, setting hyperparameters based on commercially-available technologies

(Section C.5.2). We compared our proposed variational synthesis approach to a baseline heuristic

library diversification strategy of MC synthesis plus mutagenesis: (1) draw samples from p and then

(2) apply five rounds of mutagenesis with ePCR (Section C.5.3). To evaluate how well each synthe-

sis model matched the target distribution we estimated its per residue perplexity (Section C.5.4).

However, perplexity only provides a measurement of the relative quality of different synthesis proce-

dures, rather than an absolute measurement of whether they match the data distribution. We there-

fore applied a Bayesian two-sample test for biological sequences – the BEAR test12 – to determine

whether qθ∗ in fact matches p, based on 100,000 samples from each (Section C.5.5).

All variational synthesis methods dramatically outperform the baseline (Figure 3.3A), and some

are capable of matching the target p closely, passing the two-sample test (Figure 3.3B). Two key de-

terminants of the performance of the stochastic synthesis model are (1) the expressivity of the codon
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Figure 3.3: Perplexity (A) and two-sample test Bayes factor (B) of different codon diversificationmethods, with fixed as-

sembly, applied to a target Potts DHFRmodel. Positive Bayes factors support the hypothesis that the synthesis and target

distributionsmatch. (C) Perplexity of combinatorial versus fixed assembly, applied to Potts DHFRmodel. (D) Perplexity of

synthesis models with fixed assembly applied to unaligned DHFR sequences. Error estimates for each plot are described

in detail in Section C.5.7.

diversification method – that is, the size of the set of allowed U – and (2) the number of templates

M (Section C.5.2). Performance in terms of perplexity shows an improvement with increasingly

large U and increasingM . Note that due to current technology costs, when using codon mixtures,

M must in general be small (e.g. ≤ 10) as compared to enzymatic mutagenesis or nucleotide mix-

tures (whereM can be on the order of 1000). Nonetheless, using arbitrary codon mixtures with

M = 1 templates outperforms the alternative technologies withM = 1000 templates.

The advantages of combinatorial assembly over fixed assembly vary depending on the codon

diversification technology. Combinatorial assembly improves perplexity when using enzymatic

98



mutagenesis, but has little effect when using arbitrary codon mixtures (Figure 3.3C and Figure C.3),

while introducing error in the covariance matrix of qθ∗ (Figure C.4).

We next explored the application of variational synthesis to target distributions over variable-

length sequences (the DHFR Potts model was trained on aligned sequences and generates fixed-

length sequences). We optimized synthesis models directly on the same evolutionary data used to

train the DHFR Potts model (with gaps removed); the target here is the true evolutionary data-

generating process, and unknown (Section C.5.1). Enzymatic mutagenesis with largeM outper-

forms arbitrary codon mixtures with smallM in this case (Figures 3.3D and C.5). The best synthe-

sis technology can thus depend on the target.

3.5.2 Synthesizing Fluorescent Proteins

Next we sought to determine if variational synthesis can increase the number of discoveries in down-

stream assays, as compared toMC synthesis. To simulate the results of realistic experimental assays,

we used sequence-to-function predictors trained on large-scale experimental studies. We started with

green fluorescent protein (GFP), predicting fluorescence using a transformer-based semi-supervised

method trained on a GFP deep mutational scan dataset and evolutionary protein data226,209. We

classified as hits sequences with predicted fluorescence above the functionality threshold specified by

Sarkisyan et al. 226 (Section C.5.6). To construct a target p, we trained an unsupervised sequence

model – an ICAmodel with MuE output, proposed inWeinstein &Marks 284 – on evolution-

arily related GFP sequences, and then fixed the latent alignment variable of the MuE to generate

sequences (Section C.5.1). Using a fixed latent alignment ensures that the fluorescence predictor,
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Figure 3.4: Perplexity (A) and two-sample test Bayes factor (B) for different synthesis methods applied to a target GFP

model. (C) Hit rate for discovering functional sequences. (D) Expected number of unique hits in aN1 = 106 library for

variational synthesis, as compared toMC synthesis with aN0 = 103 library (Section C.5.6). (E-H) Same as (A-D) for a

target TCRmodel. Error estimates for each plot are described in detail in Section C.5.7.

which was only trained on fixed-length sequences, can be confidently applied. Note that the fluores-

cence predictor was not used to construct p itself, so we can fairly evaluate variational synthesis in

the setting where the experimental results are not known ahead of time. In general, the fluorescence

predictions are quite sensitive to the input sequence – a single amino acid change can abolish fluores-

cence – so generating new fluorescent sequences is nontrivial (Figure C.6). Only 1.3% of sequences

sampled from p are hits, with fluorescence above the threshold specified by Sarkisyan et al. 226 .

Stochastic synthesis models with arbitrary codon mixtures and fixed assembly have low perplexi-

ties, and can pass the two-sample test with large Bayes factors atM ≥ 10; other methods struggle,

including the baseline method (Figure 3.4AB). Samples from arbitrary codon models atM = 10

show average fluorescence similar to p (Figure C.8), and the fraction of samples that are hits is only
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about half that of MC synthesis, 0.5% (Figure 3.4C). Meanwhile, alternative stochastic synthesis

methods show hit rates below 0.05%.

Variational synthesis leads to a decrease in hit rate relative to MC synthesis, but this can be more

than compensated for by the increase in the number of synthesized samples. If, for instance,N1 =

106 sequences generated via variational synthesis are assayed, as opposed toN0 = 103 sequences

generated via MC synthesis, an estimated 3600 unique functional sequences will be discovered

using variational synthesis as opposed to 10 for MC synthesis (Figure 3.4D; Section C.5.6). Vari-

ational synthesis can thus provide orders-of-magnitude increases in the number of hits in protein

engineering applications, with the number of hits increasing with larger values ofN1 and/orM .

3.5.3 Synthesizing Antigen-Binding Proteins

Next we sought to evaluate the advantages of variational synthesis over MC synthesis in an applica-

tion area important for human health. Understanding T cell receptor (TCR) sequences and their

binding properties is crucial for understanding the immune response to infection or cancer, and en-

gineering new TCRs with desired binding properties is crucial for immunotherapies131. We trained

a model of TCR sequences from a healthy donor – an ICAmodel with MuE output – and fixed

the latent alignment variable in the MuE to define p (Section C.5.1). As a held-out sequence-to-

function predictor, we used Tcellmatch77 to predict binding to an influenza epitope (Section C.5.6).

The predictor is highly sensitive to the input sequence – a single amino acid change can abolish

binding – making this a challenging problem for variational synthesis (Figure C.10). Only 0.6% of

samples from the target p are hits.
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Synthesis models with arbitrary codon mixtures and fixed assembly achieve low perplexities and

can pass the two-sample test with large Bayes factors (Figure 3.4EF). Variational synthesis with this

model achieves hit rates similar to MC synthesis (Figure 3.4G). MC synthesis withN0 = 103 gener-

ates just 6 hits on average across independent libraries; given stochasticity, it is not unlikely to see no

hits at all in a given library. Variational synthesis withN1 = 106 andM = 10 generates an expected

2400 unique hits (Figure 3.4H). Similar results hold for additional epitopes, from other viruses (Sec-

tion C.5.8). These results suggest that variational synthesis can dramatically accelerate the discovery

of new TCRs that bind specific antigens, relying only on unsupervised sequence models and not

large-scale supervised sequence-to-function training data.

Close matches between qθ∗ and p turn out to be unnecessary for reaching high hit rates in this

example. When using arbitrary codon mixtures or finite codon mixtures withM = 1, or even

using finite nucleotide mixtures withM = 100, the two-sample test detects significant differences

between qθ∗ and p (Figure 3.4F), but nonetheless variational synthesis achieves substantially more

hits thanMC synthesis (Figure 3.4H).

3.6 Discussion

Variational synthesis trades accuracy for scale, producing large numbers of approximate samples

from a target model rather than small numbers of exact samples, as in MC synthesis. When accuracy

is high enough – when qθ∗ is sufficiently close to p – the payoff can be enormous, as the number of

hits increases linearly with the number of assayed sequencesN1. Given that many high-throughput
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screens can reach 1010 sequences or more, while individual gene synthesis rarely goes beyondN0 =

104, using variational synthesis may make the difference between zero hits and a million.

We have shown through detailed simulations that such large payoffs are plausible for real, thera-

peutically important protein design targets, using commercially available stochastic synthesis tech-

nology. Going forward, implementing variational synthesis experimentally is thus a matter of order-

ing and assaying commercially-made libraries based on qθ∗ .

The key limitations of our variational synthesis methods – and opportunities for future work –

stem from the challenges of matching synthesis and target distributions. First, our synthesis mod-

els (Section 3.2.1) are idealizations based on manufacturers’ descriptions of the distribution of se-

quences their methods produce, but do not take into account possible errors, biases or limitations in

the real procedure (Section C.1). Developing more accurate qθ models, based on e.g. deep sequenc-

ing data, may be an important area for future work. Second, our methods for judging whether qθ∗

is sufficiently close to p are limited. Empirically, while the BEAR two-sample test appears to be ex-

cellent at distinguishing among good and bad fixed assembly models in the examples we studied, it

struggles to detect the errors caused by combinatorial assembly, even when they are large enough

to abolish function (Figure C.9). Theoretically, tighter bounds than that in Proposition 3.4.1 can

be proved with total variation or Wasserstein distance in place of KL, but optimizing these alterna-

tive divergences directly is a challenge (Section C.4.2). For sequence-to-function predictors to be

more reliable in evaluating variational synthesis methods, they must be robust to covariate shift,

since switching from p to qθ∗ is, precisely, a covariate shift. Third, while our black-box optimization

method allows for arbitrary target distributions p, it may be more effective in many cases to work
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with p for which an exactly matching qθ∗ can be found analytically (Section C.2.1). Recent progress

on mixture models as a competitor to deep generative neural network models make this approach

especially promising214.

Variational synthesis changes the calculus of what makes a successful generative sequence model

and what makes a successful synthesis technology. If just 1% of the sequences sampled from an

initial model A were functional, and 50% of sequences sampled from a proposed model B were

functional, model B would be considered a major advance; however, if we could accurately match

a stochastic synthesis protocol to model A and not to model B, then model A could easily lead to

orders of magnitude more hits in practice. Meanwhile, the traditional goal of the DNA synthesis

community has been large-scale individual synthesis. From a probabilistic perspective, however, it

hardly makes sense to focus exclusively on methods to sample frommixtures of point masses. The

recent development of methods to synthesize samples frommuch more flexible mixture models

represents a major advance outside the traditional paradigm.

Variational synthesis bridges the gap between generative sequence models and stochastic synthesis

technologies, providing a rigorous approach to experimental design. We are optimistic that it will

help translate powerful new generative sequence models into laboratory discoveries.
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4
Non-identifiability andMisspecification in

Models of Fitness

Understanding the consequences of mutation for molecular fitness and function is a fundamental

problem in biology. Recently, generative probabilistic models have emerged as a powerful tool for

estimating fitness from evolutionary sequence data, with accuracy sufficient to predict both labora-
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tory measurements of function and disease risk in humans, and to design novel functional proteins.

Existing techniques rest on an assumed relationship between density estimation and fitness estima-

tion, a relationship that we interrogate in this article. We prove that fitness is not identifiable from

observational sequence data alone, placing fundamental limits on our ability to disentangle fitness

landscapes from phylogenetic history. We show on real datasets that perfect density estimation in

the limit of infinite data would, with high confidence, result in poor fitness estimation; the misspec-

ification of current models is a blessing, rather than a curse, when it comes to fitness estimation.

Our results challenge the conventional wisdom that bigger models trained on bigger datasets will

inevitably lead to better fitness estimation, and suggest novel estimation strategies going forward.

This chapter presents work done in collaboration with Alan N. Amin, Jonathan Frazer and Deb-

ora S. Marks, and is currently in submission281. E.N.W. conceived the research, derived the theoret-

ical results, contributed to the empirical results and wrote the paper. A.N.A. contributed equally

to E.N.W. overall, and in particular contributed to the conception of the research and the theoret-

ical results, and obtained the empirical results. J.F. contributed to the early conceptualization and

preliminary experiments. D.S.M. supervised the research at all stages.

4.1 Introduction

The past decades have witnessed a tremendous increase in the scale of genome sequence data avail-

able from across life. Recently, methods for estimating molecular fitness using generative sequence

models have seen widespread success at translating this evolutionary data into predictions of the
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functional consequences of mutation. Such models have been shown to accurately predict the

outcomes of experimental assays of protein function110,215,173, and have been applied to infer 3D

structures of RNA and protein168,280 and to design novel proteins235,224,165. The models have also

been used to predict whether human mutations are pathogenic, directly informing the diagnosis

of genetic disease80. In this paper, we investigate how and why generative sequence models fit to

evolutionary sequence data are successful at estimating molecular fitness, and how they might be

improved and generalized going forward.

Existing approaches to fitness estimation with generative sequence models rest on an assumed re-

lationship between density estimation and fitness estimation. Given a dataset of sequencesX1, . . . , XN ,

assumed to be drawn i.i.d. from some underlying distribution p0, fitness models proceed by (1) fit-

ting a probabilistic model qθ toX1:N and (2) using the inferred density log qθ̂(x) ≈ log p0(x) as

an estimate of the fitness f(x) of a sequence x; this estimate in turn is used to predict other covari-

ates such as whether the mutated sequence is pathogenic110,215,80. Innovation in fitness models has

come out of a trend of building increasingly flexible models fit to increasing amounts of data: simple

models that treat each column of a sequence alignment independently were improved by energy-

based models that accounted for epistasis110, which in turn were improved by deep variational au-

toencoders215, which in turn were improved by deep autoregressive alignment-free models235,165,173.

Naively, one might assume that these improvements have come from obtaining better and better es-

timates of the data distribution p0, and improvements will continue with bigger models and bigger

datasets. In this article, we argue that this presumption is incorrect.
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4.1.1 Technical summary

First, we show that that the true data distribution p0 may not reflect fitness, and argue instead that

we should be focused on estimating another distribution that does, p∞ (the “stationary distribu-

tion”, to be defined below). In particular, we demonstrate that phylogenetic effects – i.e. the his-

tory of how current sequences evolved over time – can “distort” the observed data, leading to a

situation where p0 6= p∞ (Sec. 4.2). Second, we show in this situation that p∞ and fitness f are

non-identifiable: even with infinite data, there always exists some alternative fitness function f̃ that

explains the same data just as well as f . This sets fundamental limits on what we can learn about

fitness from evolutionary data (Sec. 4.3). Third, although exact estimation of p∞ is impossible, we

show that it is still possible to get closer to p∞ than p0, that is, to find a better estimator of fitness

than the true data density p0. This can be done by fitting to data a parametric generative sequence

modelM = {qθ : θ ∈ Θ} that is (approximately) well-specified with respect to p∞ (i.e. p∞ ∈ M)

butmisspecifiedwith respect to the data distribution p0 (i.e. p0 /∈ M), thus illustrating the po-

tential blessings of misspecification (Sec. 4.4). Fourth, we construct a hypothesis test to determine

whether these blessings of misspecification occur on real data, with existing fitness estimation mod-

els; here, we rely on a Bayesian nonparametric sequence model to construct a credible set for p0

(Sec. 4.6). Fifth, we apply our test to over 100 separate sequence datasets and fitness estimation tasks,

to conclude that existing fitness estimation models systematically outperform the true data distribu-

tion p0 at estimating fitness (Sec. 4.7). The takeaway is that better fitness estimation (i.e. better p∞

estimation) will not come from better density estimation (i.e. better p0 estimation); bigger models
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Figure 4.1: Example JFPM forN = 3 observed sequences. (A) An example phylogenyH. (B) Generative process for

sequences at each node of the phylogeny.

and bigger datasets are not enough. Instead, better fitness estimation can come from developing

models that describe p∞ better but the data density p0 worse.

4.2 Models of fitness and phylogeny

In this section we show how p0 may not accurately reflect the true fitness landscape, by develop-

ing a generative model of sequence evolution that takes into account both fitness and phylogeny.

The model is general: it allows for arbitrarily complex epistatic fitness landscapes, and recovers stan-

dard generative phylogenetic and fitness models as special cases. Our concerns about the effects of

phylogeny on fitness estimation are motivated by the widespread use – and trust – of phylogenetic

models for evolutionary sequence data (phylogenetic models are far more widely applied than fit-

ness models)99,48,74,75. Although often inferred from the very same datasets, standard fitness models

and standard phylogeny models make conflicting assumptions, which our general framework makes

explicit.
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4.2.1 Joint fitness and phylogeny models

We define “joint fitness and phylogeny models (JFPMs)” using two elements: a description of how

individual species (or populations or individuals) change over time, which depends on fitness f , and

a description of the species’ relationship to one another, a phylogenyH. To describe the dynamics

of individual species, let P τ (x, x0) denote the probability of sequence x0 evolving into sequence

x after time τ ; in particular, P τ (x, x0) is assumed to be the transition probability of an irreducible

continuous-timeMarkov chain defined over sequence spaceX . For example, under neutral evolu-

tion (i.e. without selection based on fitness), P τ (x, x0)may follow a Jukes-Cantor model75. With

selection, for simple population genetics models (e.g. Moran or Wright processes), Sella &Hirsh 230

demonstrate under general conditions that for any x0,

P τ (x, x0) τ→∞−−−→ p∞ = 1
Z
exp(βf(x)) (4.1)

where f(x) is the log fitness of the sequence x and β > 0 is a constant (Appx. D.1). The im-

plication of Eqn. 4.1 is that the stationary distribution of the evolutionary dynamics follows a

Boltzmann distribution, with energy proportional to the log fitness of the sequence. Estimating

p∞ is of interest because it provides a direct estimate of log fitness, up to a linear transform, since

f(x) = β−1(log p∞(x) + logZ). (N.b. in the remainder of the paper, when we say “estimate

fitness” we mean, implicitly, “estimate log fitness up to a linear transform”.)

The sequences we observe, however, do not necessarily come from the stationary distribution. In-
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stead, they are correlated with one another according to their evolutionary history. This is described

by a phylogenyH = (V,E, T ) consisting of a directed and rooted full binary tree with edgesE and

nodes V , along with time labels for the nodes, T : V → R+ (Fig. 4.1A). Each node v is associated

with a sequenceXv , drawn asXv ∼ P∆t(x,Xv0), whereXv0 is the sequence of the parent node,

v is the child node, and∆t = T (v0) − T (v1) is the length of the edge between them (Fig. 4.1B).

The root sequence is drawn from p∞. The observed datapointsX1, . . . , XN correspond to the leaf

nodes. In general we will assume all leaves are observed at effectively the same time, the present day

T = 0.

4.2.2 Simplifying assumptions

Standard probabilistic phylogenetic models ignore fitness and assume

Assumption 4.2.1 (Pure phylogeny models (PMs)). There is no difference in fitness among se-

quences, i.e. f(x) = C .

Example models that fit this form include most of those used in BEAST61, MrBayes114, RaxML245,

etc. Standard probabilistic fitness models, on the other hand, ignore phylogenetic history and as-

sume that the stationary distribution has been reached,

Assumption 4.2.2 (Pure fitness models (FMs)). Let τi be the distance in time between observed

sequenceXi and its parent node. Take τi →∞ for all i, which implies that

Xi
iid∼ 1
Z
exp(βf(x)) for i ∈ {1, 2, . . .}. (4.2)
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Figure 4.2: Samples from anOUT. (A) Above: Stationary distribution p∞ and kernel density estimates of the distribution

of samples p0 from anOUTmodel for increasingN . Below: A subset of the phylogeny. (B) Same as (A) for an independent

sample ofH.

The key implication of this assumption is that density estimation and fitness estimation are

linked: the data followsX1, . . . , XN ∼iid p0 = p∞, and so if we can estimate p0 we can esti-

mate the fitness. Example models include EVMutation110, DeepSequence215, EVE80, etc. Note

although Assumptions 4.2.1 and 4.2.2 do not conflict directly, conclusions made based on them

conflict in practice: PMs typically infer finite and different lengths for branches (i.e. τi < ∞), while

FMs typically infer differences in fitness (i.e. f(x) 6= C), even when applied to the same dataset.

4.2.3 1D Example

If Asm. 4.2.2 does not hold, then there is no reason for the distribution of observed sequences

X1, X2, . . . to follow p∞. We illustrate this with the most widely used example of a JFPM that does

not use Assumptions 4.2.1 or 4.2.2: an Ornstein-Uhlenbeck tree (OUT) model75,32. In this model,

X is continuous, i.e. X ∈ R, and evolves on a quadratic fitness landscape of the form f(x) ∝
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(x−µ)2 +C according to the dynamics P τ (x, x0) = Normal
(
x0e

− 1
2 τ + µ, σ2(1− e−τ )

)
. The

stationary distribution p∞ is Normal(µ, σ2). One can show (Appx. D.2.1) that for any phylogeny

H,

Proposition 4.2.3 (OUT observations). The distribution of observed genotypesX1:N is drawn from

a multivariate normal distribution with mean µ1⃗N and covariance Σ where

Σij := σ2 exp(−1
2
tij(H))) for i, j ∈ {1, . . . , N}, (4.3)

and tij(H) is the total time of the shortest path between leaves i and j along the phylogenyH.

We drew samples from the OUTwith a Kingman coalescent prior onH (Bertoin 22 , Def. 2.1)

and plotted their density (Fig. 4.2A). Even asN → ∞, the distribution of samples does not fol-

low p∞. Moreover, rerunning the process with a new sample from the prior yields a very different

distribution of samples (Fig. 4.2B).

4.3 Non-identifiability

In this section we investigate whether, given infinite sequence data, it is possible to infer fitness f

without Asm. 4.2.2, and conversely, whether it is possible to infer phylogenyHwithout Asm. 4.2.1.

That is, we are interested in whether fitness and phylogeny are identifiable in JFPMs. We conclude

they are not: given infinite data generated with any f andH, there exists some alternative f̃ and H̃,

where H̃ satisfies Asm. 4.2.2, that explains the data equally well.
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Naively, this result may be surprising: in FMs, each sequence is drawn independently, i.e.

Xi ⊥⊥ Xj |H, f , while in JFPMs and PMs there is (in general) correlation between sequences, i.e.

Xi 6⊥⊥ Xj |H, f . One might then hope that examining correlations between sequences would enable

us to infer whether Asm. 4.2.2 holds. However, we can show that these correlations are uninforma-

tive due to a symmetry in phylogenetic models, exchangeability.

Assumption 4.3.1 (Exchangeability). Letm(X1, X2, . . .) denote the marginal probability of

an infinite set of sequencesX1, X2, . . . integrating over all phylogenies, i.e. m(X1, X2, . . .) =

∫
p(X1, X2, . . . |H)p(H)dH. Then, for any permutation π of the integers,

m(X1, X2, . . .) = m(Xπ(1), Xπ(2), . . .). (4.4)

Exchangeability says that if we had observed the sequences in a different order, it would not

change their probability. In general, models of sequences observed at the same time (i.e. the present

day, T = 0) satisfy exchangeability; for instance, models with a Kingman coalescent prior are ex-

changeable22,61. Exchangeability implies that fitness and phylogeny are not identifiable. In partic-

ular, even ifX1, X2, . . . are generated from a JFPMwith a finite branch length phylogenyH, we

can describe the same data just as well using a model with an infinite branch length phylogeny H̃ (an

FM):

Theorem 4.3.2 (Non-identifiability). AssumeX1, X2, . . . satisfy Assumption 4.3.1. Then with

114



probability 1 there exists some function f̃ such that

Xi
iid∼ p0 = 1

Z̃
exp(β log f̃(x)) for i ∈ {1, 2, . . .}.

Proof. Applying de Finetti’s Theorem (Kallenberg 133 , Thm. 11.10), there almost surely exists a

randommeasureG such that for i ∈ {1, 2, ...},Xi
iid∼ G. Let pG(x) be the pmf ofG (we assume

x is a finite discrete sequence; we can also work with continuous genotypes assuming the pdf pG(x)

exists). Set f̃(x) = [pG(x)]1/β .

This result says that the observed sequences from an exchangeable JFPM,X1, X2, . . ., are pre-

cisely i.i.d. samples from some p0. Although in the standard tree representationXi 6⊥⊥ Xj |H, f ,

there must be some alternative description of the same process whereXi ⊥⊥ Xj |H̃, f̃ . Fitness and

phylogeny are thus non-identifiable: data generated from a JFPMwith fitness f and phylogenyH

can be described just as well using f̃ and H̃, and vice versa.

The biological intuition behind Thm. 4.3.2 is that if two sequences are similar to each other and

distant from a third, they may be similar either because they are closely related (i.e. the distance τ to

the most recent common ancestor is small) or because they are in a local maxima of the fitness land-

scape. Without further assumptions, we cannot tell the difference between these two explanations.

The machine learning intuition is that evolution, as described by a JFPM, is in effect a Markov chain

Monte Carlo process whose stationary distribution gives the fitness. However, the samples we ob-

serve may not be fully independent: each pair of samples was initialized from the same point (the

most recent common ancestor), and the burn-in since that point may not be sufficiently long. With-
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out independent samples, our estimate of the stationary distribution will be biased.

4.3.1 Fitness inference as hyperparameter inference

While general, Thm. 4.3.2 is not constructive, and does not tell us what the distribution p0 actually

is, or how exactly it differs from p∞. Thm. 4.3.2 leaves unclear howmuch we need to know to learn

the fitness landscape: could we infer fitness f if we knew the parametric form of p∞, i.e. if we had

some modelM and knew that p∞ ∈ M? What if we also knew the underlying phylogenyH? In

the long branch limit (Asm. 4.2.2), fitness is identifiable ifH is known; ifM is also known, learning

fitness is a matter of inferring model parameters. In the limit where all the branch lengths in the

phylogeny are zero, the distribution of observations from a JFPM reduces toX1 ∼ p∞ andX1 =

X2 = X3 = . . .. Here fitness is non-identifiable even ifH andM are known; learning fitness is a

matter of learning from a single sample. In the realistic intermediate branch length case, ifH andM

are known, we will show that learning fitness is essentially a matter of hyperparameter rather than

parameter inference.

We demonstrate this last claim by approximating OUTs as Gaussian process latent variable mod-

els (GPLVMs), finding that fitness only appears as a hyperparameter of the GP. The GPLVMs have

latent variablesZ1, Z2, . . . that lie on the hyperbolic planeH, and use the Gaussian process kernel

k(·, ·) = exp(−d(·, ·)), where d(·, ·) is a distance metric overH. LetW1(·, ·) be theWasserstein

metric for distributions over infinite matrices, i.e. over R∞×∞, using the sup norm on matrices.

Theorem 4.3.3 (GPLVM approximation of OUT). Assume a prior over phylogeniesH that is ex-

changeable in its leaves and where the minimum time between any pair of nodes is greater than η > 0
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with probability 1. Define the leaf distance matrix νij = log(1
2 tij(H)). For any ϵ > 0, there exists

a.s. a GPLVM of the form,

G ∼ G, s ∼ GaussianProcess(µ, σ2k(·, ·)),

Zi
iid∼ G for i ∈ {1, 2, . . .},

Xi = s(Zi),

(4.5)

whereG is a randommeasure overH, such thatW1(p(ν), p(ν̃)) < ϵ, where ν̃ij = log(d(Zi, Zj)).

IfW1(p(ν), p(ν̃)) = 0, the OUT and GPLVM produce identical distributions overX1, X2, . . .

a.e..

The proof is in Appx. D.2.2, and uses the embedding of Sarkar 225 . This result says that, by

embedding phylogeniesH in a metric space, we can approximate an OUT arbitrarily well with a

GPLVM; as the Wasserstein bound gets smaller, the distribution of covariance matrices of the two

models get closer. In the GPLVM, the observations are conditionally independent,Xi ⊥⊥ Xj |s,G,

in line with Thm. 4.3.2. The phylogenyH enters the GPLVM only through the latent space em-

beddingZ1, Z2, . . .. Learning phylogeny, given the fitness landscape, is thus essentially a matter

of inferring latent variables215,57. The fitness landscape enters the GPLVM only through the prior

on the Gaussian process (i.e. through µ and σ). Inferring fitness given phylogeny is thus essentially

a matter of inferring hyperparameters. This is both good and bad news for fitness inference. On

the one hand, hyperparameters are often learned in practice, and doing so can yield substantially

better predictions, so we should be able learn something about µ and σ given data (Williams &
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Figure 4.3: Alternative explanations for the success of fitness estimationmethods. (A) Setup in which hypothesis 1 would

hold true. (B) Setup in which hypothesis 2 would hold true. (C) Biological intuition for the blessings of misspecification

(Hypothesis 2).

Rasmussen 289 , Chap. 5). On the other hand, hyperparameters are in general (though not always)

non-identifiable, and therefore so is fitness167. Ho & Ané 104 describe non-identifiability conditions

for the OUT in particular. We conclude that even whenH andM are known, fitness inference in

JFPMs is fundamentally challenging.

4.4 Blessings of misspecification

We have demonstrated that phylogenetic effects can produce a data distribution p0 that is not equal

to the stationary distribution p∞, and exact inference of p∞ is in general impossible even with in-

finite data. Nonetheless, the practical success of fitness estimation methods suggest it is possible to

at least approximate p∞ from observational sequence data. Recall that existing methods proceed by

fitting a probabilistic model qθ ∈ M = {qθ : θ ∈ Θ} to dataX1:N , typically via maximum

likelihood estimation or approximate Bayesian inference, and then using the predicted log density

log qθ̂(x) as an estimate of the fitness of a sequence x. Why does this approach provide empirically

successful estimates of p∞? In this section we consider two hypotheses, either of which may hold

true in theory. In Secs. 4.6-4.7 we develop and apply tests to evaluate them on real data.
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Hypothesis #1 (informal). Fitness estimation methods succeed by finding qθ̂ ≈ p0, since for all

practical purposes on real data, p0 = p∞.

This hypothesis would make sense if Asm. 4.2.2 held, i.e. branch lengths were long enough in

real datasets for P τi(x, x0) to be close to its stationary distribution. Under this explanation, better

density estimators have been, and will continue to be, better fitness estimators. We should focus on

developing modelsM that are well-specified with respect to the data, i.e. p0 ∈M (Fig. 4.3A).

Hypothesis #2 (informal). Fitness estimation methods succeed by using modelsM that are mis-

specified with respect to p0, i.e. p0 /∈M. The inferred model qθ̂ is then closer to p
∞ than p0 itself.

To show this hypothesis is plausible, we prove that it is guaranteed to hold under general con-

ditions. We study the projection of p0 ontoM via the Kullback-Leibler (KL) divergence, qθ∗ =

argminqθ∈M kl(p0‖qθ). The KL projection is relevant because maximum likelihood estimation

minimizes the approximate KL divergence between the data and the model, and the posterior in

Bayesian inference asymptotically concentrates around the maximum likelihood estimator176.

We thus expect the fit model qθ̂ to be close to qθ∗ , and get closer withN . Assume thatM is “log-

convex”, meaning that for any θ, θ′ ∈ Θ and 0 < r < 1, there exists some θ′′ such that qθ′′(x) =

qθ(x)rqθ′(x)1−r/
∑

x qθ(x)rqθ′(x)1−r; examples of log-convex models include the Potts model, as

well as all other exponential family models.

Theorem 4.4.1 (Blessings of misspecification). Assume that the modelM is log-convex and well-

specified with respect to the stationary distribution, i.e. p∞ ∈ M. Assume qθ∗ exists and is unique.

119



Then, if the model is misspecified with respect to the data distribution, i.e. p0 /∈M, we have

kl(qθ∗‖p∞) < kl(p0‖qθ∗) + kl(qθ∗‖p∞) ≤ kl(p0‖p∞). (4.6)

But if the model is well-specified, i.e. p0 ∈M, we have

kl(qθ∗‖p∞) = kl(p0‖p∞). (4.7)

Proof. For part 1, apply Thm. 1 from Csiszar &Matus 46 . For part 2, note that qθ∗ = p0 when

p0 ∈M.

In words, the model projection qθ∗ is closer to p∞ than p0 so long as as the modelM is misspec-

ified with respect to p0 (Fig. 4.3B). To understand the biological intuition behind this result, con-

sider a situation where two neutral mutations with no effect on fitness occur successively at different

sites (Fig. 4.3C). Due to phylogenetic correlation, there is no observed sequence x∗ in which the

second mutation is present but not the first, so an accurate density estimator will find p0(x∗) ≈ 0.

However, if we can guess correctly that the fitness landscape is independent across sites, then fitting

a site-wise independent modelMwill imply the mutation is allowed, qθ∗(x∗) > 0, correctly infer-

ring p∞(x∗) > 0.

Under Hypothesis 2, progress in the field of fitness estimation has not come from building better

density estimators (Hypothesis 1), but rather from an iterative process of (1) hypothesizing, based

partly on biophysical knowledge, models that are (approximately) well-specified with respect to p∞
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but not too flexible, such that p0 /∈ M and then (2) comparing their density estimates against exper-

imental fitness measurements. We will show that on real data, Hypothesis 1 can often be rejected in

favor of Hypothesis 2.

4.5 Relatedwork

Efforts to account for the effects of phylogeny in fitness estimation have a long history149. Prac-

tical generative sequence models that explicitly account for both epistatic fitness landscapes and

phylogeny have long been sought, but stymied primarily by computational challenges122,220. In

their place, a variety of non-generative (and often heuristic) methods for correcting for phylogeny

have been proposed, including data reweighting schemes168,220, data segmentation schemes43, post-

inference parameter adjustments65, covariance matrix denoising methods205, simulation based sta-

tistical testing216, and more. In this article, we show that deconvolving fitness and phylogeny is not

just computationally hard, but also in general statistically impossible: fitness and phylogeny are non-

identifiable. We further show that use of a misspecified parametric model can on its own (without

further corrections) partially adjust for phylogenetic effects.

Our results also intersect with the literature on robust statistics: we can think of the observed

data distribution p0 as a “distorted” version of the true distribution of interest p∞. However, in

typical robust inference frameworks (e.g. Huber’s epsilon contamination model), the observed

distribution differs from the true distribution by the addition of outliers113,246. In our setup, on the

other hand, inliers are deleted, as phylogenetic correlations can mean the effective support of p0 is
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smaller than that of p∞ (Fig. 4.2).

4.6 Diagnostic method

In this section, we develop diagnostic methods to discriminate between Hypothesis 1 and Hypoth-

esis 2 (Sec. 4.4) based on observational sequence data and experimental fitness measurements, and

validate these diagnostics in simulation. Recall that under Hypothesis 2, the estimate qθ̂ from a para-

metric fitness model is a better estimate of fitness than the true data density p0, while under Hypoth-

esis 1, p0 is better. Discriminating these two hypotheses on real data is nontrivial because we do not

have access to p0. Ideally, then, a diagnostic test would evaluate the probability that the true density

p0 outperforms qθ̂ at predicting fitness, taking into account uncertainty in what p0 could actually

be, given the data. To accomplish this, we compute a posterior over p0 using a Bayesian nonparamet-

ric sequence model. In particular, we apply the Bayesian embedded autoregressive (BEAR) model,

which can be scaled to terabytes of data and satisfies posterior consistency (Amin et al. 12 , Thm. 35):

Theorem 4.6.1 (Summary of BEAR posterior consistency). Assume p0 is subexponential, i.e. for

some t > 0, EX∼p0 [exp(t|X|)] < ∞, where |X| is the length of sequenceX . Assume the conditions

on the prior detailed in Amin et al. 12 . IfX1, X2, . . . ∼ p0 i.i.d, then forM > 0 sufficiently large

and ϵ ∈ (0, 1/2) sufficiently small,

ΠBEAR(B(p0,MN−ϵ)|X1:N ) N→∞−−−−→ 1

in probability, whereB(p, r) is a Hellinger ball of radius r centered at p, and ΠBEAR(·|X1:N ) is the
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A B C D

Figure 4.4: The BEAR diagnostic applied to simulated data. (A) Scenario 1. Spearman correlation between themaximum

likelihood SWImodel and the true fitnessSf (qθ̂), compared to the BEAR posterior distribution overSf (p). Quantiles
and 95% credible interval are shownwith the green box andwhisker plot. Points above (below) the whiskers correspond

to SWImodels that significantly outperform (underperform) the true data distribution. (B) Same as A, for Scenario 2. (C)

Perplexity on heldout data of the BEAR and the SWImodels in Scenario 2. Thick line corresponds to the average over 10

individual simulations (thin lines). (D) Same as C, comparing the KL divergence to p∞.

BEAR posterior.

Crucially, this result implies that the BEAR posterior will converge to effectively any value of p0,

no matter what p0 is (unlike a parametric model’s posterior). Moreover, BEAR quantifies uncer-

tainty in its estimates, giving the range of possible values of p0 that are consistent with the evidence.

We construct our diagnostic test by comparing the fitness estimation performance of qθ̂ to the

range of possible performances of p0 estimated by BEAR. Let Sf (p) be a scalar score evaluating

how accurately a density p predicts fitness f . In practice, Sf will be based on experimental and clini-

cal measurements of quantities directly related to fitness.

Diagnostic test (Test Hypothesis 1 vs. Hypothesis 2.) Hypothesis 1H1 : Sf (qθ̂) < Sf (p0).

Hypothesis 2H2 : Sf (qθ̂) > Sf (p0). Accept Hypothesis 2 at significance level α > 0 if

ΠBEAR(Sf (qθ̂) > Sf (p)|X1:N ) > 1− α. (4.8)
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Accept Hypothesis 1 at significance level α if

ΠBEAR(Sf (qθ̂) < Sf (p)|X1:N ) > 1− α. (4.9)

So long as Sf (p) is a well-behaved function of p (in particular, so long as Sf is continuous in a

neighborhood of p0 with respect to the topology of convergence in total variation), Thm. 4.6.1

implies that this diagnostic test will be asymptotically consistent, in the sense that it converges to the

correct hypothesis in probability.

4.6.1 Simulations

We next evaluate the performance of our diagnostic test on simulated data. We considered two sce-

narios, the first in which Hypothesis 1 holds, and the second in which Hypothesis 2 holds. In both,

we letM be a site-wise independent (SWI) model, in which each position of the sequence is drawn

independently, i.e. Xl ∼ Categorical(vl) for l ∈ {1, . . . , |X|}. The parameter vl is in the simplex

∆B , whereB+ 1 is the alphabet size. (Further details in Appx. D.3.) In Scenario 1, the true data are

generated according to a Potts model and p0 = p∞. In this scenario, the SWI model is misspecified,

and misspecification is bad: using a more flexible model will produce an asymptotically more accu-

rate estimate of p∞. We find that our diagnostic test asymptotically correctly accepts Hypothesis 1,

in line with Thm. 4.6.1 (Figs. 4.4A and D.3A). In Scenario 2, the true data are generated according

to a JFPMwith finite branch lengths, and p∞ ∈ Mwhile p0 /∈ M. The mutational dynamics

P τ follow the Sella &Hirsh 230 process. The phylogenyH is drawn from a Kingman coalescent. In

124



this scenario, the SWI model is again misspecified, but misspecification is good: while the nonpara-

metric BEARmodel can achieve better density estimates than the SWI model (Fig. 4.4C), the SWI

model outperforms BEAR at fitness estimation (Figs. 4.4D and D.4). We find that our diagnostic

test correctly accepts Hypothesis 2 (Figs. 4.4B and D.3B).

A possible point of concern is that the test is poorly calibrated from a frequentist perspective,

and in the lowN regime accepts Hypothesis 2 in Scenario 1 more than 100α% of the time when

the data is resampled from p0 (Fig. D.5A). This behavior is common in nonparametric Bayesian

tests, and not necessarily a problem: the test is still valid from a purely Bayesian perspective. Nev-

ertheless, on real data we will check that we are close to the largeN regime by (1) checking that the

BEAR posterior predictive is at least as close to p0 as qθ̂ is (as measured by perplexity on held out

data; Figs. 4.4C and D.5B) and (2) examining the plot of the BEAR posterior over Sf (p) as a func-

tion ofN (as in Fig. 4.4AB), to check that it has converged.

4.7 Empirical results

We now evaluate whether existing fitness estimation methods outperform the true data density p0,

i.e. whether we can reject Hypothesis 1 in favor of Hypothesis 2 on real data.

4.7.1 Tasks

We consider two key prediction tasks where fitness models are applied in practice. The first task is to

predict whether variants of a protein are functional, according to an experimental assay of protein

function; the metric Sf (·) is the Spearman correlation between p(x) and the assay result110. There
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1e61e6C D E F
functional effect prediction tasks (assays) pathogenicity prediction tasks (genes)

Figure 4.5: Fitness estimationmodels systematically outperform the data distribution. (A) Results for the first prediction

task, predicting functional measurements in experimental assays. Quantiles and 95% credible interval of the BEAR poste-

rior are shownwith the green box andwhisker plot. Points above (below) the whiskers correspond to fitness estimation

models that significantly outperform (underperform) the true data distribution. (B) Results for the second prediction task,

predicting variant pathogenicity in human genes. (C) Convergence of the BEAR posterior with datapointsN , for an exam-

ple assay (β-lactamase). (D) Same as C, for another example assay (TIM barrel). (E) BEAR posterior Spearman (black and

green) versus BEAR log likelihood (gray), interpolating between parametric and nonparametric regimes (low and highh),
for an example assay (anotherβ-lactamase assay). Peak Spearman indicated with vertical green line, peak log likelihood
with gray. (F) Same as E, for another example assay (GAL4DNA-binding domain).
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are typically∼1000s of measurements per assay. The second task is to predict whether a variant of a

protein observed in humans causes disease, according to clinical annotations; the metric Sf (·) is the

area under the ROC curve when p(x) is used to predict whether or not a variant is pathogenic80.

There are typically only a handful of labels for each gene. For the first task, we considered 37 differ-

ent assays across 32 different protein families, and for the second task, 97 genes across 87 protein

families; for each protein family, we assembled datasets of evolutionarily related sequences, follow-

ing previous work. Note that across the 37 assays and 97 genes, the data used for Sf comes from

different experiments and different clinical evidence, often collected by different laboratories or

doctors. As a consequence, our overall conclusions should be robust to the choice of Sf .

4.7.2 Models

We considered three existing fitness estimation models: a site-wise independent model (SWI), a

Bayesian variational autoencoder (EVE80, which is similar to DeepSequence215), and a deep autore-

gressive model (Wavenet)235. Note that SWI and EVE, unlike Wavenet, require aligned sequences as

training data. Details in Appx. D.4.

4.7.3 Results

Applied to the first prediction task, our diagnostic test accepts Hypothesis 2 at significance level

α = 0.025 in 35/37 assays (95%) for SWI, 33/37 assays (89%) for EVE, and 36/37 assays (97%) for

Wavenet (Fig. 4.5A). Applied to the second prediction task, our diagnostic test accepts Hypothesis

2 at significance level α = 0.025 in 31/97 genes (32%) for SWI and 46/97 genes (47%) for EVE
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(Fig. 4.5B). Thus, fitness estimation models are capable of outperforming the true data distribution

p0. We found evidence for Hypothesis 1 in only a handful of examples: on the first task, Hypoth-

esis 1 was accepted at significance level α = 0.025 in 0/37 assays for SWI, 3/37 assays (8%) for

EVE, and 0/37 assays for Wavenet, while on the second task, Hypothesis 1 was accepted for 5/97

genes (5%) for SWI and 4/97 genes (4%) for EVE. We confirmed that the diagnostic test was in the

largeN regime: BEAR outperformedWavenet at density estimation, providing better predictive

performance on 27/37 assays (73%) and similar performance on the remaining 10 assays (Fig. D.6).*

Example plots of the BEAR posterior’s convergence withN on the first prediction task showed con-

vergence to values of Sf well below that for parametric fitness estimation models (Figs. 4.5C and

D.7-D.8). Overall, we conclude that there is strong evidence that existing fitness estimation methods

reliably outperform the true data distribution p0 across a range of datasets and tasks.

To study the tradeoffs between density estimation and fitness estimation in more depth, we

smoothly and nonparametrically relaxed a parametric autoregressive (AR) model (Appx. D.4.4).

We embedded the ARmodel (a convolutional neural network) into a BEARmodel, and fit the

BEARmodel with empirical Bayes. We found evidence that the ARmodel was misspecified on ev-

ery dataset, following the methodology of Amin et al. 12 : the optimal h selected by empirical Bayes

was on the order of 1 − 10 in each dataset. Now, in the limit as the hyperparameter h → 0, the

BEARmodel collapses to its embedded ARmodel; so by scanning h from low to high values we can

interpolate between the parametric and nonparametric regime. We find a smooth tradeoff between

Sf (p) and the likelihood of the data under the BEARmodel, with higher h corresponding to better

*Note that we cannot do this comparison for SWI or EVE since they are alignment-based284.
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density estimation but worse fitness estimation (Fig. 4.5EF and D.9). This relationship held across

many datasets: the diagnostic test, evaluated against the ARmodel (the h → 0 limit), accepts Hy-

pothesis 2 in 28/37 assays (76%), but Hypothesis 1 in only 6/37 (16%) (Fig. D.10). These results

confirm that making a model well-specified (relaxing from a parametric to a nonparametric model)

can bring improved density estimation at the cost of worse fitness estimation.

4.8 Discussion

In this article, we have argued that better density estimation does not necessarily lead to better fit-

ness estimation. Our results changes the outlook for the future of fitness estimation: the common

narrative that progress is inevitable through ever bigger models trained on ever bigger datasets ap-

pears to be false. Instead, progress will likely demand more fundamental methodological advances.

One future direction is to improve the current strategy of fitting misspecified models. For in-

stance, it may be worthwhile to explore models that are less flexible than existing models and worse at

density estimation, since they can increase the gap between kl(qθ∗‖p∞) and kl(p0‖p∞) (Thm. 4.4.1).

Another option is to improve the geometry of the model: while exponential family models are guar-

anteed to be log-convex (and thus can satisfy Thm. 4.4.1), we have no such guarantee for variational

autoencoders or other neural network methods. Finally, uncertainty quantification is crucial for

applications such as those in clinical genetics, but challenging in misspecified models253,177,117. An-

other future direction is to construct scalable JFPMmodels and carefully handle non-identifiability.

Recent progress on amortized variational inference for phylogenetic models is promising275. Non-
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identifiability is more challenging, and may require new assumptions and/or newmethods of sensi-

tivity analysis to infer the full set of fitness landscapes consistent with the data.

Finally, although this article has focused on technological applications of fitness models in solving

prediction problems, fitness models also have implications for our fundamental understanding of

evolution. Pure phylogeny models and pure fitness models present very different pictures of the past

history of life: in PMs, similarities and differences among genetic sequences are determined primar-

ily by history and ancestry (Asm. 4.2.1), while in FMs they are primarily determined by functional

constraints (Asm. 4.2.2). PMs and FMs also present very different implications for the future of

life: in PMs, the diversity of sequences seen in nature will likely expand dramatically going forward,

while in FMs, the landscape of functional sequences has already been well-explored. Our results em-

phasize that where and to what extent each model offers an accurate picture of reality remains an

open question.
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5
Bayesian Data Selection

Insights into complex, high-dimensional data can be obtained by discovering features of the data

that match or do not match a model of interest. To formalize this task, we introduce the “data se-

lection” problem: finding a lower-dimensional statistic—such as a subset of variables—that is well

fit by a given parametric model of interest. A fully Bayesian approach to data selection would be

to parametrically model the value of the statistic, nonparametrically model the remaining “back-
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ground” components of the data, and perform standard Bayesian model selection for the choice of

statistic. However, fitting a nonparametric model to high-dimensional data tends to be highly ineffi-

cient, statistically and computationally. We propose a novel score for performing both data selection

and model selection, the “Stein volume criterion”, that takes the form of a generalized marginal like-

lihood with a kernelized Stein discrepancy in place of the Kullback–Leibler divergence. The Stein

volume criterion does not require one to fit or even specify a nonparametric background model,

making it straightforward to compute— in many cases it is as simple as fitting the parametric model

of interest with an alternative objective function. We prove that the Stein volume criterion is con-

sistent for both data selection and model selection, and we establish consistency and asymptotic

normality (Bernstein–vonMises) of the corresponding generalized posterior on parameters. We val-

idate our method in simulation and apply it to the analysis of single-cell RNA sequencing datasets

using probabilistic principal components analysis and a spin glass model of gene regulation.

This chapter presents work with JeffreyW.Miller, and is currently in submission285. E.N.W. and

J.W.M. conceived the idea; E.N.W. performed the research, under the supervision of J.W.M.; E.N.W.

and J.W.M. wrote the paper.

5.1 Introduction

Scientists often seek to understand complex phenomena by developing working models for various

special cases and subsets. Thus, when faced with a large complex dataset, a natural question to ask

is where and when a given working model applies. We formalize this question statistically by saying
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that given a high-dimensional dataset, we want to identify a lower-dimensional statistic—such as a

subset of variables—that follows a parametric model of interest (the working model). We refer to

this problem as “data selection”, in counterpoint to model selection, since it requires selecting the

aspect of the data to which a given model applies.

For example, early studies of single-cell RNA expression showed that the expression of individ-

ual genes was often bistable, which suggests that the system of cellular gene expression might be

described with the theory of interacting bistable systems, or spin glasses, with each gene a separate

spin and each cell a separate observation. While it seems implausible that such a model would hold

in full generality, it is quite possible that there are subsets of genes for which the spin glass model

is a reasonable approximation to reality. Finding such subsets of genes is a data selection problem.

In general, a good data selection method would enable one to (a) discover interesting phenomena

in complex datasets, (b) identify precisely where naive application of the working model to the full

dataset goes wrong, and (c) evaluate the robustness of inferences made with the working model.

Perhaps the most natural Bayesian approach to data selection is to employ a semi-parametric joint

model, using the parametric model of interest for the low-dimensional statistic (the “foreground”)

and using a flexible nonparametric model to explain all other aspects of the data (the “background”).

Then, to infer where the foreground model applies, one would perform standard Bayesian model

selection across different choices of the foreground statistic. However, this is computationally chal-

lenging due to the need to integrate over the nonparametric model for each choice of foreground

statistic, making this approach quite difficult in practice. A natural frequentist approach to data

selection would be to perform a goodness-of-fit test for each choice of foreground statistic. How-
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ever, this still requires specifying an alternative hypothesis, even if the alternative is nonparametric,

and ensuring comparability between alternatives used for different choices of foreground statistics

is nontrivial. Moreover, developing goodness-of-fit tests for composite hypotheses or hierarchical

models is often difficult in practice.

In this article, we propose a new score—for both data selection and model selection—that is

similar to the marginal likelihood of a semi-parametric model but does not require one to specify

a background model, let alone integrate over it. The basic idea is to employ a generalized marginal

likelihood where we replace the foreground model likelihood by an exponentiated divergence with

nice properties, and replace the background model’s marginal likelihood with a simple volume cor-

rection factor. For the choice of divergence, we use a kernelized Stein discrepancy (KSD) since it

enables us to provide statistical guarantees and is easy to estimate compared to other divergences

— for instance, the Kullback–Leibler divergence involves a problematic entropy term that cannot

simply be dropped. The background model volume correction arises roughly as follows: if the back-

ground model is well-specified, then asymptotically, its divergence from the empirical distribution

converges to zero and all that remains of the background model’s contribution is the volume of its

effective parameter space. Consequently, it is not necessary to specify the background model, only

its effective dimension. To facilitate computation further, we develop a Laplace approximation for

the foreground model’s contribution to our proposed score.

This article makes a number of novel contributions. We introduce the data selection problem

in broad generality, and provide a thorough asymptotic analysis. We propose a novel model/data

selection score, which we refer to as the Stein volume criterion, that takes the form of a generalized
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marginal likelihood using a KSD.We provide new theoretical results for this generalized marginal

likelihood and its associated posterior, complementing and building upon recent work on the fre-

quentist properties of minimumKSD estimators17. Finally, we provide first-of-a-kind empirical

data selection analyses with two models that are frequently used in single-cell RNA sequencing anal-

ysis.

The article is organized as follows. In Section 5.2, we introduce the data selection problem and

our proposed method. In Section 5.3 we study the asymptotic properties of Bayesian data selection

methods and compare to model selection. Section 5.4 provides a review of related work and Sec-

tion 5.5 illustrates the method on a toy example. In Section 5.6, we prove (a) consistency results for

both data selection and model selection, (b) a Laplace approximation for the proposed score, and

(c) a Bernstein–vonMises theorem for the corresponding generalized posterior. In Section 5.7, we

apply our method to probabilistic principal components analysis (pPCA), assess its performance in

simulations, and demonstrate it on single-cell RNA sequencing (scRNAseq) data. In Section 5.8,

we apply our method to a spin glass model of gene expression, also demonstrated on an scRNAseq

dataset. Section 5.9 concludes with a brief discussion.

5.2 Method

Suppose the dataX(1), . . . , X(N) ∈ X are independent and identically distributed (i.i.d.), where

X ⊆ Rd. Suppose the true data-generating distribution P0 has density p0(x)with respect to

Lebesgue measure, and let {q(x|θ) : θ ∈ Θ} be a parametric model of interest, whereΘ ⊆ Rm.
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(a)An example for which a bivariate normal model

is partially misspecified. Basis vectors forXF (fore-

ground) andXB (background) are blue and red,

respectively.

(b)A univariate normal model is well-specified for the

data projection ontoXF .

(c)A univariate normal model is misspecified for the

data projection ontoXB .

Figure 5.1: A simple example illustrating the data selection problem.

We are interested in evaluating this model when applied to a projection of the data onto a subspace,

XF ⊆ X (the “foreground” space). Specifically, letXF := V >X be a linear projection ofX ∈ X

ontoXF , where V is a matrix with orthonormal columns. Let q(xF |θ) denote the distribution of

XF whenX ∼ q(x|θ), and likewise, let p0(xF ) be the distribution ofXF whenX ∼ p0(x). Even

when the complete model q(x|θ) is misspecified with respect to p0(x), it may be that q(xF |θ) is

well-specified with respect to p0(xF ); see Figure 5.1 for a toy example. In such cases, the parametric

model is only partially misspecified— specifically, it is misspecified on the “background” spaceXB,

defined as the orthogonal complement ofXF . Our goal is to find subspacesXF for which q(xF |θ)

is correctly specified.

A natural Bayesian solution would be to replace the background component of the assumed
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model, q(xB|xF , θ), with a more flexible component q̃(xB|xF , ϕB) that is guaranteed to be well-

specified with respect to p0(xB|xF ), such as a nonparametric model. The resulting joint model,

which we refer to as the “augmented model”, is then

θ ∼ π(θ), X
(i)
F | θ

iid∼ q(xF | θ),

ϕB ∼ πB(ϕB), X
(i)
B | X

(i)
F , ϕB ∼ q̃(xB | X(i)

F , ϕB).
(5.1)

The standard Bayesian approach would be to put a prior on the choice of foreground spaceXF ,

and compute the posterior over the choice ofXF . Computing this posterior boils down to com-

puting the Bayes factor q̃(X(1:N)|F)/q̃(X(1:N)|F ′) for any given pair of foregroundsF andF ′,

where q̃(X(1:N)|F) denotes the marginal likelihood ofF under the augmented model, that is,

q̃(X(1:N)|F) =
∫ ∫

q(X(1:N)
F |θ) q̃(X(1:N)

B |X(1:N)
F , ϕB)π(θ)πB(ϕB)dθdϕB.

However, in general, it is difficult to find a background model that (a) is guaranteed to be well-

specified with respect to p0(xB|xF ) and (b) can be integrated over in a computationally tractable

way to obtain the posterior on the choice ofF . Our proposed method, which we introduce next,

sidesteps these difficulties while still exhibiting similar guarantees.

5.2.1 Proposed score for data selection and model selection

In this section, we propose a model/data selection score that is simpler to compute than the marginal

likelihood of the augmented model and has similar theoretical guarantees. This score takes the form

of a generalized marginal likelihood with a normalized kernelized Stein discrepancy (nksd) estimate
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taking the place of the log likelihood. Specifically, our proposed model/data selection score, termed

the “Stein volume criterion” (SVC), is

K :=
(2π
N

)mB/2 ∫
exp
(
− N

T
n̂ksd(p0(xF )‖q(xF |θ))

)
π(θ)dθ (5.2)

where the “temperature” T > 0 is a hyperparameter andmB is the effective dimension of the

background model parameter space. n̂ksd(·‖·) is an empirical estimate of the nksd; see Equa-

tions 5.4 and 5.5. The integral in Equation 5.2 can be approximated using techniques discussed

in Section 5.2.3. The hyperparameter T can be calibrated by comparing the coverage of the stan-

dard Bayesian posterior to the coverage of the nksd generalized posterior (Section E.1.1). The

(2π/N)mB/2 factor penalizes higher-complexity background models. In general, we allowmB to

grow withN , particularly when the background model is nonparametric. Crucially, the likelihood

of the background model does not appear in our proposed score, sidestepping the need to fit or even

specify the background model — indeed, the only place that the background model enters into the

SVC is throughmB.

Thus, rather than specify a background model and then derivemB, one can simply specify an

appropriate value ofmB. Reasonable choices ofmB can be derived by considering the asymptotic

behavior of a Pitman-Yor process mixture model, a common nonparametric model that is a natural

choice for a background model. A Pitman-Yor process mixture model with discount parameter

α ∈ (0, 1), concentration parameter θ > −α, andD-dimensional component parameters will
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asymptotically have expected effective dimension

mB ∼ D
Γ(θ + 1)
αΓ(θ + α)

Nα (5.3)

under the prior, where aN ∼ bN means that aN/bN → 1 asN → ∞ and Γ(·) is the gamma

function (Pitman 199 , §3.3). As a default, we recommend settingmB = cB rB
√
N , where rB is

the dimension ofXB and cB is a constant chosen to match Equation 5.3 with α = 1/2. The
√
N

scaling is particularly nice in terms of asymptotic guarantees; see Section 5.3.2.

The SVC uses a novel, normalized version of the ksd between densities p(x) and q(x):

nksd(p(x)‖q(x)) :=
EX,Y ∼p

[
(sq(X)− sp(X))>(sq(Y )− sp(Y ))k(X,Y )

]
EX,Y ∼p[k(X,Y )]

(5.4)

where k(x, y) ∈ R is an integrally strictly positive definite kernel, sq(x) := ∇x log q(x), and

sp(x) := ∇x log p(x); see Section 5.6.1 for details. The numerator corresponds to the standard

ksd158. The denominator, which is strictly positive and independent of q(x), is a normalization fac-

tor that we have introduced to make the divergence comparable across spaces of different dimension.

See Section E.1.2 for kernel recommendations. Extending the technique of Liu et al. 158 , we propose

to estimate the normalized KSD using U-statistics:

n̂ksd(p(x)‖q(x)) =
∑

i 6=j u(X(i), X(j))∑
i 6=j k(X(i), X(j))

(5.5)
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whereX(i) ∼ p(x) i.i.d., the sums are over all i, j ∈ {1, . . . , N} such that i 6= j, and

u(x, y) := sq(x)>sq(y)k(x, y)+sq(x)>∇yk(x, y)+sq(y)>∇xk(x, y)+trace(∇x∇>
y k(x, y)).

Importantly, Equation 5.5 does not require knowledge of sp(x), which is unknown in practice.

5.2.2 Comparisonwith the standard marginal likelihood

It is instructive to compare our proposed model/data selection score, the Stein volume criterion, to

the standard marginal likelihood q̃(X(1:N)|F). In particular, we show that the SVC approximates a

generalized version of the marginal likelihood. To see this, first defineH := −
∫
p0(x) log p0(x)dx,

the entropy of the complete data distribution, and note that if wereH somehow known, then the

Kullback-Leibler (kl) divergence between the augmented model and the data distribution could be

approximated as

k̂l(p0(x)‖q(xF |θ) q̃(xB|xF , ϕB)) := − 1
N

N∑
i=1

log q(X(i)
F |θ) q̃(X

(i)
B |X

(i)
F , ϕB)−H.

Since multiplying the marginal likelihoods by a fixed constant does not affect the Bayes factors,

the following expression could be used instead of the marginal likelihood q̃(X(1:N)|F) to decide

among foreground subspaces:

q̃(X(1:N)|F)
exp(−NH)

=
∫ ∫

exp
(
−N k̂l(p0(x)‖q(xF |θ) q̃(xB|xF , ϕB))

)
π(θ)πB(ϕB)dθdϕB. (5.6)
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Now, consider a generalized marginal likelihood where the nksd replaces the kl:

K̃ :=
∫ ∫

exp
(
−N 1

T
n̂ksd

(
p0(x)‖q(xF |θ) q̃(xB|xF , ϕB)

))
π(θ)πB(ϕB)dθdϕB. (5.7)

We refer to K̃ as the “nksd marginal likelihood” of the augmented model. Intuitively, we expect

it to behave similarly to the standard marginal likelihood, except that it quantifies the divergence

between the model and data distributions using the nksd instead of the kl.

However, a key advantage of the nksd marginal likelihood is that it admits a simple approxi-

mation via the SVC when the background model is well-specified, unlike the standard marginal

likelihood. For instance, if the foreground and background are independent, that is, p0(x) =

p0(xF )p0(xB) and q̃(xB|xF , ϕB) = q̃(xB|ϕB), then the theory in Section 5.6 can be extended

to the full augmented model to show that

log K̃
logK

P0−−−−→
N→∞

1, (5.8)

whereK is the SVC (Equation 5.2). Thus, the SVC approximates the nksd marginal likelihood

of the augmented model, suggesting that the SVCmay be a convenient alternative to the standard

marginal likelihood. Formally, Section 5.3 shows that the SVC exhibits consistency properties simi-

lar to the standard marginal likelihood, even when p0(x) 6= p0(xF )p0(xB).
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5.2.3 Computation

Next, we discuss methods for computing the SVC including exact solutions, Laplace/BIC approxi-

mation, variational approximation, and comparing many possible choices ofF .

Exact solution for exponential families

When the foreground model is an exponential family, the SVC can be computed analytically. Specif-

ically, in Section E.1.3, we show if q(xF |θ) = λ(xF ) exp(θ>t(xF )− κ(θ)), then

n̂ksd(p0(xF )‖q(xF |θ)) = θ>Aθ +B>θ + C (5.9)

whereA,B, andC depend on the dataX(1:N) but not on θ. Therefore, we can place a multivariate

Gaussian prior on θ and compute the SVC in closed form; see Section E.1.3.

Laplace and BIC approximations

The Laplace approximation is a widely-used technique for computing marginal likelihoods. In The-

orem 5.6.9, we establish regularity conditions under which a Laplace approximation to the SVC is

justified by being asymptotically correct. The resulting approximation is

K ≈
exp

(
−N

T n̂ksd(p0(xF )‖q(xF |θN ))
)
π(θN )

| det 1
T∇

2
θ n̂ksd(p0(xF )‖q(xF |θN ))|1/2

(2π
N

)(mF +mB)/2
(5.10)
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where θN := argminθ n̂ksd(p0(xF )‖q(xF |θ)) is the point at which the estimated nksd is mini-

mized, the “minimum Stein discrepancy estimator” as defined by Barp et al. 17 .

We can also make a rougher approximation, analogous to the Bayesian information criterion

(BIC), which does not require one to compute second derivatives of n̂ksd:

K ≈ exp
(
− N

T
n̂ksd(p0(xF )‖q(xF |θN ))

)(2π
N

)(mF +mB)/2
. (5.11)

This approximation is easy to compute, given a minimum Stein discrepancy estimator θN . Like the

SVC, it satisfies all of our consistency desiderata (Section E.2). However, we expect it to perform

worse than the SVC when there is not yet enough data for the nksd posterior to be highly concen-

trated, that is, when a range of θ values can plausibly explain the data.

Comparing many foregrounds using approximate optima

Often, we would like to evaluate many possible subspacesXF when performing data selection. Even

when using the Laplace or BIC approximation to the SVC, this can get computationally prohibitive

since we need to re-optimize to find θN for everyF under consideration. Here, we propose a way to

reduce this cost by making a fast linear approximation. Define ℓj(θ) := n̂ksd(p0(xFj )‖q(xFj |θ))

for j ∈ {1, 2}. Forw ∈ [0, 1], we can linearly interpolate

θN (w) := argmin
θ

ℓ1(θ) + w(ℓ2(θ)− ℓ1(θ)). (5.12)
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Now, θN (0) and θN (1) are the minimum Stein discrepancy estimators forF1 andF2, respectively.

Given θN (0), we can approximate θN (1) by applying the implicit function theorem and a first-

order Taylor expansion (Section E.1.4):

θN (1) ≈ θN (0)−∇2
θℓ1(θN (0))−1∇θℓ2(θN (0)). (5.13)

Note that the derivatives of ℓj are often easy to compute with automatic differentiation19. Note

also that when we are comparing one foreground subspace, such asXF1 = X , to many other

foreground subspacesXF2 , the inverse Hessian∇2
θℓ1(θN (0))−1 only needs to be computed once.

Thus, Equation 5.13 provides a fast method for computing Laplace or BIC approximations to the

SVC for a large number of candidate foregroundsF .

Variational approximation

Variational inference is a method for approximating both the posterior distribution and the marginal

likelihood of a probabilistic model. Since the SVC takes the form of a generalized marginal likeli-

hood, we can derive a variational approximation to the SVC. Let rζ(θ) be an approximating distri-
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bution parameterized by ζ . By Jensen’s inequality, we have

log
∫
exp
(
− N

T
n̂ksd(p0(xF )‖q(xF |θ))

)
π(θ)dθ

= log
∫ exp

(
−N

T n̂ksd(p0(xF )‖q(xF |θ))
)
π(θ)

rζ(θ)
rζ(θ)dθ

≥ Erζ

log(exp
(
−N

T n̂ksd(p0(xF )‖q(xF |θ))
)
π(θ)

rζ(θ)

)
= −N

T
Erζ

[
n̂ksd(p0(xF )‖q(xF |θ))

]
+ Erζ

[logπ(θ)]− Erζ
[log rζ(θ)].

(5.14)

Maximizing this lower bound with respect to the variational parameters ζ provides an approxima-

tion to the SVC, or more precisely, to logK − (mB/2) log(2π/N). Note that this variational ap-

proximation falls within the framework of generalized variational inference proposed by Knoblauch

et al. 141 .

5.3 Data selection and model selection consistency

This section presents our consistency results when comparing two different foreground subspaces

(data selection) or two different foreground models (model selection). The theory supporting these

results is in Sections 5.6 and E.2. We consider four distinct properties that a procedure would ideally

exhibit: data selection consistency, nested data selection consistency, model selection consistency,

and nested model selection consistency; see Section 5.6.4 for precise definitions. We consider six

possible model/data selection scores, and we establish which scores satisfy which properties; see

Table 5.1. The SVC and the full marginal likelihood are the only two of the six scores that satisfy all

145



Table 5.1: Consistency properties satisfied by variousmodel/data selection scores. Only the Stein volume criterionK and

the full marginal likelihood q̃(X(1:N)|F) satisfy all four desiderata. (d.s. = data selection, m.s. = model selection, marg =
marginal, lik = likelihood.)

Consistency property
Score d.s. nested d.s. m.s. nested m.s.
q̃(X(1:N)|F) full marginal likelihood 3 3 3 3

K(a) foreground marg lik, background volume 7 7 3 3

K(b) foreground marg NKSD 3 7 3 3

K(c) foreground marg KL, background volume 3 7 3 3

K(d) foreground NKSD, background volume 3 3 3 7

K foreground marg NKSD, background volume 3 3 3 3

four consistency properties.

The intuition behind Bayesian model selection is often explained in terms of Occam’s razor: a

theory should be as simple as possible but no simpler. Data selection and nested data selection en-

capsulate a complementary intuition: a theory should explain as much of the data as possible but no

more. In other words, when choosing between foreground spaces, a consistent data selection score

will asymptotically prefer the highest-dimensional space on which the model is correctly specified.

As in standard model selection, a practical concern in data selection is robustness. For instance, if

the foreground model is even slightly misspecified onXF2 , then the empty foregroundXF1 = ∅

will be asymptotically preferred overXF2 . Since the SVC takes the form of a generalized marginal

likelihood, techniques for improving robustness with the standard marginal likelihood—such as

coarsened posteriors, power posteriors, and BayesBag—could potentially be extended to address this

issue177,118. We leave exploration of such approaches to future work.
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5.3.1 Data selection consistency

First, consider comparisons between different choices of foreground,F1 andF2. When the model

is correctly specified overF1 but notF2, we refer to asymptotic concentration onF1 as “data selec-

tion consistency” (and vice versa ifF2 is correct but notF1). For the standard marginal likelihood

of the augmented model, we have (see Section E.2.2)

1
N
log

q̃(X(1:N)|F1)
q̃(X(1:N)|F2)

P0−−−−→
N→∞

kl(p0(xF2)‖q(xF2 |θkl2,∗))− kl(p0(xF1)‖q(xF1 |θkl1,∗)) (5.15)

where θklj,∗ := argmin kl(p0(xFj )‖q(xFj |θ)) for j ∈ {1, 2}, that is, θklj,∗ is the parameter value

that minimizes the kl divergence between the projected data distribution p0(xFj ) and the projected

model q(xFj |θ). Thus, q̃(X(1:N)|Fj) asymptotically concentrates on theFj on which the pro-

jected model can most closely match the data distribution in terms of kl.

In Theorem 5.6.17, we show that under mild regularity conditions, the Stein volume criterion

behaves precisely the same way but with the nksd in place of the kl:

1
N
log
K1
K2

P0−−−−→
N→∞

1
T
nksd(p0(xF2)‖q(xF2 |θnksd2,∗ ))− 1

T
nksd(p0(xF1)‖q(xF1 |θnksd1,∗ )) (5.16)

where θnksdj,∗ := argmin nksd(p0(xFj )‖q(xFj |θ)) for j ∈ {1, 2}. Therefore, q̃(X(1:N)|F) andK

both yield data selection consistency. It is important here that the SVC uses a true divergence, rather

147



than a divergence up to a data-dependent constant. If we instead used

K(a) :=
(2π
N

)mB/2
q(X(1:N)

F ), (5.17)

which employs the foreground marginal likelihood q(X(1:N)
F ) =

∫
q(X(1:N)

F |θ)π(θ)dθ and a

background volume correction, we would get qualitatively different behavior (Section E.2.2):

1
N
log
K(a)

1

K(a)
2

P0−−−−→
N→∞

kl(p0(xF2)‖q(xF2 |θkl2,∗))−kl(p0(xF1)‖q(xF1 |θkl1,∗))+HF2−HF1 (5.18)

whereHFj := −
∫
p0(xFj ) log p0(xFj )dxFj is the entropy of p0(xFj ) for j ∈ {1, 2}. In short,

the naive scoreK(a) is a bad choice: it decides between data subspaces based not just on how well

the parametric foreground model performs, but also on the entropy of the data distribution in each

space. As a result,K(a) does not exhibit data selection consistency.

5.3.2 Nested data selection consistency

WhenXF2 ⊂ XF1 , we refer to the problem of deciding between subspacesF1 andF2 as nested

data selection, in counterpoint to nested model selection, where one model is a subset of another279.

If the model q(x|θ) is well-specified overXF1 , then it is guaranteed to be well-specified over any

lower-dimensional sub-subspaceXF2 ⊂ XF1 ; in this case, we refer to asymptotic concentration

onF1 as “nested data selection consistency”. In this situation, kl(p0(xFj )‖q(xFj |θklj,∗)) and

nksd(p0(xFj ), q(xFj |θnksdj,∗ )) are both zero for j ∈ {1, 2}, making it necessary to look at higher-
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order terms in Equations 5.15 and 5.16. In Section E.2.3, we show that ifXF2 ⊂ XF1 , q(x|θ) is

well-specified overXF1 , the background models are well-specified, and their dimensionsmB1 and

mB2 are constant with respect toN , then

1
logN

log
q̃(X(1:N)|F1)
q̃(X(1:N)|F2)

P0−−−−→
N→∞

1
2

(mF2 +mB2 −mF1 −mB1) (5.19)

wheremFj is the effective dimension of the parameter space of q(xFj |θ). In Theorem 5.6.17, we

show that under mild regularity conditions, the SVC behaves the same way:

1
logN

log
K1
K2

P0−−−−→
N→∞

1
2

(mF2 +mB2 −mF1 −mB1). (5.20)

Thus, so long asmF2 +mB2 > mF1 +mB1 wheneverXF2 ⊂ XF1 , the marginal likelihood and the

SVC asymptotically concentrate on the larger foregroundF1; hence, they both exhibit nested data

selection consistency. This is a natural assumption since the background model is generally more

flexible—on a per dimension basis—than the foreground model.

The volume correction (2π/N)mB/2 in the definition of the SVC is important for nested data

selection consistency (Equation 5.20). An alternative score without that correction,

K(b) :=
∫
exp
(
− N

T
n̂ksd(p0(xF )‖q(xF |θ))

)
π(θ)dθ, (5.21)

exhibits data selection consistency (Equation 5.16 holds forK(b)), but not nested data selection

consistency; see Sections E.2.2 and E.2.3. More subtly, the asymptotics of the SVC in the case of
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nested data selection also depend on the variance of U-statistics. To illustrate, consider a score that is

similar to the SVC but uses k̂l instead of n̂ksd:

K(c) :=
(2π
N

)mB/2 ∫
exp
(
−N k̂l(p0(xF )‖q(xF |θ))

)
π(θ)dθ (5.22)

where k̂l(p0(xF )‖q(xF |θ)) := − 1
N

∑N
i=1 log q(X

(i)
F |θ) −HF andHF is required to be known.

The scoreK(c) exhibits data selection consistency, but not nested data selection consistency. The

reason is that the error in estimating the kl is of order 1/
√
N by the central limit theorem, and this

source of error dominates the logN term contributed by the volume correction; see Section E.2.3.

Meanwhile, the error in estimating the nksd is of order 1/N when the model is well-specified, due

to the rapid convergence rate of the U-statistic estimator. Thus, in the SVC, this source of error is

dominated by the volume correction; see Theorem 5.6.12.

The nested data selection results we have described so far assumemB does not depend onN , or

at leastmB2−mB1 does not depend onN (Theorem 5.6.17). However, in Section 5.2.1, we suggest

settingmB = cB rB
√
N where cB is a constant and rB is the dimension ofXB. With this choice,

the asymptotics of the SVC for nested data selection become (Theorem 5.6.17)

1√
N logN

log
K1
K2

P0−−−−→
N→∞

1
2
cB (rB2 − rB1). (5.23)

Since rB1 < rB2 whenXF2 ⊂ XF1 , the SVC concentrates on the larger foregroundF1, yielding

nested data selection consistency. Going beyond the well-specified case, Theorem 5.6.17 shows that
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Equation 5.23 holds when nksd(p0(xF1)‖q(xF1 |θnksd1,∗ )) = nksd(p0(xF2)‖q(xF2 |θnksd2,∗ )) 6= 0,

that is, when the models are misspecified by the same amount as measured by the nksd. Equa-

tion 5.23 holds regardless of whethermF1 is equal tomF2 .

5.3.3 Model selection and nested model selection consistency

Consider comparing different foreground models q1(xF |θ1) and q2(xF |θ2) over the same subspace

XF , while using the same background model. We say that a score exhibits “model selection consis-

tency” if it concentrates on the correct model, when one of the models is correctly specified and the

other is not. When the two models are nested and both are correct, a score exhibits “nested model

selection consistency” if it concentrates on the simpler model.

Like the standard marginal likelihood, the SVC exhibits both types of model selection consis-

tency. The standard marginal likelihood satisfies (Section E.2.4)

1
N
log

q̃1(X(1:N)|F)
q̃2(X(1:N)|F)

P0−−−−→
N→∞

kl(p0(xF )‖q2(xF |θkl2,∗))− kl(p0(xF )‖q1(xF |θkl1,∗)) (5.24)

where θklj,∗ := argmin kl(p0(xF )‖qj(xF |θj)) for j ∈ {1, 2}. Analogously, by Theorem 5.6.17,

1
N
log
K1
K2

P0−−−−→
N→∞

1
T
nksd(p0(xF )‖q2(xF |θnksd2,∗ ))− 1

T
nksd(p0(xF )‖q1(xF |θnksd1,∗ )) (5.25)

where θnksdj,∗ := argmin nksd(p0(xF )‖qj(xF |θj)) for j ∈ {1, 2}. Thus, for both scores, concen-

tration occurs on the model that comes closer to the data distribution in terms of the corresponding
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divergence (kl or nksd).

For nested model selection, suppose both foreground models are well-specified andmB1 = mB2 .

LettingmF ,j be the parameter dimension of qj(xF |θj), we have (Section E.2.5)

1
logN

log
q̃1(X(1:N)|F)
q̃2(X(1:N)|F)

P0−−−−→
N→∞

1
2

(mF ,2 −mF ,1). (5.26)

In Theorem 5.6.17, we show that the SVC behaves identically:

1
logN

log
K1
K2

P0−−−−→
N→∞

1
2

(mF ,2 −mF ,1). (5.27)

Here, a key role is played by the volume of the foreground parameter space, which quantifies the

foreground model complexity. The SVC accounts for this by integrating over foreground parameter

space. Meanwhile, a naive alternative that ignores the foreground volume,

K(d) :=
(2π
N

)mB/2
exp
(
− N

T
min

θ
n̂ksd(p0(xF )‖q(xF |θ))

)
, (5.28)

exhibits model selection consistency (Equation 5.25 holds forK(d)) but not nested model selection

consistency (Section E.2.5). The Laplace and BIC approximations to the SVC (Equations 5.10 and

5.11) explicitly correct for the foreground parameter volume without integrating.
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5.4 Relatedwork

Projection pursuit methods are closely related to data selection in that they attempt to identify “in-

teresting” subspaces of the data. However, projection pursuit uses certain pre-specified objective

functions to optimize over projections, whereas our method allows one to specify a model of inter-

est112.

Another related line of research is on Bayesian goodness-of-fit (GOF) tests, which compute the

posterior probability that the data comes from a given parametric model versus a flexible alternative

such as a nonparametric model. Our setup differs in that it aims to compare among different semi-

parametric models. Nonetheless, in an effort to address the GOF problem, a number of authors

have developed nonparametric models with tractable marginals273,21, and using these models as the

background component in an augmented model could in theory solve data selection problems. In

practice, however, such models can only be applied to one-dimensional or few-dimensional data

spaces. In Section 5.7, we show that naively extending the method of Berger & Guglielmi 21 to the

multi-dimensional setting has fundamental limitations.

There is a sizeable frequentist literature on GOF testing using discrepancies96,18,98. Our pro-

posed method builds directly on the KSD-based GOF test proposed by Liu et al. 158 and Chwialkowski

et al. 41 . However, using these methods to draw comparisons between different foreground sub-

spaces is non-trivial, since the set of alternative models considered by the GOF test, though non-

parametric, will be different over data spaces with different dimensionality. Moreover, the Bayesian

aspect of the SVCmakes it more straightforward to integrate prior information and employ hierar-
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chical models.

In composite likelihood methods, instead of the standard likelihood, one uses the product of the

conditional likelihoods of selected statistics156,272. Composite likelihoods have seen widespread use,

often for robustness or computational purposes. However, in composite likelihood methods, the

choice of statistics is fixed before performing inference. In contrast, in data selection the choice of

statistics is a central quantity to be inferred.

Relatedly, our work connects with the literature on robust Bayesian methods. Doksum& Lo 58

propose conditioning on the value of an insufficient statistic, rather than the complete dataset,

when performing inference; also see Lewis et al. 154 . However, making an appropriate choice of

statistic requires one to know which aspects of the model are correct; in contrast, our procedure in-

fers the choice of statistic. The nksd posterior also falls within the general class of Gibbs posteriors,

which have been studied in the context of robustness, randomized estimators, and generalized belief

updating 299,298,129,24,127,177.

Our theoretical results also contribute to the emerging literature on Stein discrepancies13. Barp

et al. 17 recently proposed minimum kernelized Stein discrepancy estimators and established their

consistency and asymptotic normality. In Section 5.6, we establish a Bayesian counterpart to these

results, showing that the nksd posterior is asymptotically normal (in the sense of Bernstein–von

Mises) and admits a Laplace approximation. To prove this result, we rely on the recent work of

Miller 176 on the asymptotics of generalized posteriors. Since Barp et al. 17 show that the kernel-

ized Stein discrepancy is related to the Hyvärinen divergence in that both are Stein discrepancies,

our work bears an interesting relationship to that of Shao et al. 233 , who use a Bayesian version of the
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Hyvärinen divergence to performmodel selection with improper priors. They derive a consistency

result analogous to Equation 5.16, however, their model selection score takes the form of a prequen-

tial score, not a Gibbs marginal likelihood as in the SVC, and cannot be used for data selection.

In independent recent work, Matsubara et al. 169 propose a Gibbs posterior based on the KSD

and derive a Bernstein-vonMises theorem similar to Theorem 5.6.9 using the results of Miller 176 .

Their method is not motivated by the Bayesian data selection problem but rather by (1) inference

for energy-based models with intractable normalizing constants and (2) robustness to ϵ-contamination.

Their Bernstein-vonMises theorem differs from ours in that it applies to a V-statistic estimator of

the KSD rather than a U-statistic estimator of the NKSD.

Our linear approximation to the minimum Stein discrepancy estimator (Section 5.2.3) is directly

inspired by the Swiss Army infinitesimal jackknife of Giordano et al. 91 , which similarly computes

the linear response of an extremum estimator with respect to perturbations of the dataset.

5.5 Toy example

The purpose of this toy example is to illustrate the behavior of the Stein volume criterion, and com-

pare it to some of the defective alternatives listed in Table 5.1, in a simple setting where all computa-

tions can be done analytically (Section E.1.3). In all of the following experiments, we simulated data

from a bivariate normal distribution: X(1), . . . , X(N) i.i.d. ∼ N ((0, 0)>,Σ0).

To set up the Stein volume criterion, we set T = 5 and we choose a radial basis function ker-

nel, k(x, y) = exp(−1
2‖x − y‖

2
2), which factors across dimensions. We considered both dataset
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size-independent values ofmB (in particular,mB = 5 rB) and dataset size-dependent values of

mB (in particular, Equation 5.3 with α = 0.5, θ = 1, andD = 0.2, where fractional values of

D correspond to shared parameters across components in the Pitman-Yor mixture model), obtain-

ing very similar results in each case (shown in Figures 5.2 and E.1, respectively). These choices of

mB ensure that, except for at very smallN , the background model has more parameters per data

dimension than each of the foreground models considered below, which have just one. In particular,

mB > 1 rB for allN (in the size-independent case) and forN ≥ 5 (in the size-dependent case).

Data selection consistency

First, we setΣ0 to be a diagonal matrix with entries (1, 1/2), that is,Σ0 = diag(1, 1/2), and for

x ∈ R2, we consider the model

q(x|θ) = N (x | θ, I)

π(θ) = N (θ | (0, 0)>, 10I)
(5.29)

where I denotes the identity matrix. This parametric model is misspecified, owing to the incorrect

choice of covariance matrix. We consider two choices of foreground subspace: the first dimension

(defined by the projection matrix VF1 = (1, 0)>) or the second dimension (projection matrix

VF2 = (0, 1)>). The model is only well-specified forF1 (notF2), so a successful data selection

procedure would asymptotically selectF1.

In Figure 5.2a, we see that the SVC correctly concentrates onF1 as the number of datapointsN

increases, with the log SVC ratio growing linearly inN , as predicted by Equation 5.16. Meanwhile,
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(a) (b)

(c) (d)

Figure 5.2: Behavior of the Stein volume criterionK, the foregroundmarginal likelihoodwith a background volume
correctionK(a), and the foregroundmarginal nksdK(b) on toy examples. Here, we setmB = 5 rB . The plots show the

results for 5 randomly generated datasets (thin lines) and the average over 100 random datasets (bold lines).

the naive alternative scoreK(a) (Equation 5.17) fails since it depends on the foreground entropies,

whileK(b) (Equation 5.21) succeeds since the volume correction is negligible in this case; see Sec-

tion 5.3.1 and Table 5.1.
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Nested data selection consistency

Next, we examine the nested data selection case. We use the same model (Equation 5.29), but we

setΣ0 = I so that the model is well-specified even without being projected. We compare the com-

plete data space (XF1 = X , projection matrix VF1 = I) to the first dimension alone (projection

matrix VF1 = (1, 0)>). Nested data selection consistency demands that the higher-dimensional

data spaceXF1 be preferred asymptotically, since the model is well-specified for bothXF1 andXF2 .

Figure 5.2b shows that this is indeed the case for the Stein volume criterion, with the log SVC ra-

tio growing at a logN rate whenmB is independent ofN , as predicted by Equation 5.20. When

mB depends onN via the Pitman-Yor expression, the log SVC ratio grows at aNα logN rate (Fig-

ure E.1b). Meanwhile, Figure 5.2b shows thatK(a) andK(b) both fail to exhibit nested data selec-

tion consistency, in accordance with our theory (Section 5.3.2 and Table 5.1).

Model selection consistency (nested and non-nested)

Finally, we examine model selection and nested model selection consistency. We again setΣ0 = I .

We first compare the (well-specified) model q(x|θ) = N (x | θ, I) to the (misspecified) model

q(x|θ) = N (x | θ, 2I), using the prior π(θ) = N (θ | (0, 0)>, 10I) for both models. As shown

in Figure 5.2c, the SVC correctly concentrates on the first model, with the log SVC ratio growing

linearly inN , as predicted by Equation 5.25. The same asymptotic behavior is exhibited byK(a),

which is equivalent to the standard Bayesian marginal likelihood in this setting (Section 5.3.3). Fi-

nally, to check nested model selection consistency, we compare two well-specified nested models:
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q(x) = N (x | (0, 0)>, I) and q(x|θ) = N (x | θ, I). Figure 5.2d shows that the SVC correctly se-

lects the simpler model (that is, the model with smaller parameter dimension) and the log SVC ratio

grows as logN (Equation 5.27). This, too, matches the behavior of the standard Bayesian marginal

likelihood, seen in the plot ofK(a).

5.6 Theory

5.6.1 Properties of the NKSD

SupposeX(1), . . . , X(N) are i.i.d. samples from a probability measure P onX ⊆ Rd having den-

sity p(x)with respect to the Lebesgue measure. LetL1(P ) denote the set of measurable functions

f such that
∫
‖f(x)‖p(x)dx < ∞where ‖ · ‖ is the Euclidean norm. We impose the following

regularity conditions to use the nksd to compare P with another probability measureQ having

density q(x)with respect to the Lebesgue measure; these are similar to conditions used for the stan-

dard ksd in previous work158,17.

Condition 5.6.1 (Restrictions on p and q). Assume sp(x) := ∇x log p(x) and sq(x) :=

∇x log q(x) exist and are continuous for all x ∈ X , and assumeX is connected and open. Further,

assume sp, sq ∈ L1(P ).

We refer to sp as the Stein score function of p. Note that existence of sp(x) implies p(x) > 0.

Now, consider a kernel k : X × X → R. The kernel k is said to be integrally strictly positive definite

if for any g : X → R such that 0 <
∫

X |g(x)|dx <∞, we have
∫

X
∫

X g(x)k(x, y)g(y)dxdy > 0.

The kernel k is said to belong to the Stein class of P if
∫

X ∇x(k(x, y)p(x))dx = 0 for all y ∈ X .
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Condition 5.6.2 (Restrictions on k). Assume the kernel k is symmetric, bounded, integrally strictly

positive definite, and belongs to the Stein class of P .

The following result shows that the nksd can be written in a way that does not involve sp; this is

particularly useful for estimating the nksd when P is unknown.

Proposition 5.6.3. If Conditions 5.6.1 and 5.6.2 hold, then the nksd is finite and

nksd(p(x)‖q(x)) := EX,Y ∼p[u(X,Y )]
EX,Y ∼p[k(X,Y )]

(5.30)

where

u(x, y) = sq(x)>sq(y)k(x, y)+sq(x)>∇yk(x, y)+sq(y)>∇xk(x, y)+ trace(∇x∇>
y k(x, y)).

(5.31)

The proof is in Section E.3.1. Next, we show the nksd satisfies the properties of a divergence.

Proposition 5.6.4. If Conditions 5.6.1 and 5.6.2 hold, then

nksd(p(x)‖q(x)) ≥ 0, (5.32)

with equality if and only if p(x) = q(x) almost everywhere.

The proof is in Section E.3.1. Unlike the standard ksd, but like the kl divergence, the nksd ex-

hibits subsystem independence34,35,212: if two distributions P andQ have the same independence
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structure, then the total nksd separates into a sum of individual nksd terms. This is formalized in

Proposition 5.6.6.

Condition 5.6.5 (Shared independence structure). Let x = (x>
1 , x

>
2 )> be a decomposition of a

vector x ∈ Rd into two subvectors, x1 and x2. Assume p(x) and q(x) factor as p(x) = p(x1)p(x2)

and q(x) = q(x1)q(x2), and that the kernel k factors as k(x, y) = k1(x1, y1)k2(x2, y2) where k1

and k2 both satisfy Condition 5.6.2.

Proposition 5.6.6 (Subsystem independence). If Conditions 5.6.1, 5.6.2, and 5.6.5 hold, then

nksd(p(x)‖q(x)) = nksd(p(x1)‖q(x1)) + nksd(p(x2)‖q(x2)) (5.33)

where the first term on the right-hand side uses kernel k1 and the second term uses k2.

See Section E.3.1 for the proof. Subsystem independence is powerful since it separates the problem

of evaluating the foreground model from that of evaluating the background model. A modified

version applies to the estimator n̂ksd(p‖q) (Equation 5.5); see Proposition E.3.1.

5.6.2 Bernstein–vonMises theorem for the NKSD posterior

In this section, we establish asymptotic properties of the SVC and, more broadly, of its correspond-

ing generalized posterior, which we refer to as the nksd posterior, defined as

πN (θ) ∝ exp
(
− N

T
n̂ksd(p0(xF )‖q(xF |θ))

)
π(θ). (5.34)

161



In particular, in Theorem 5.6.9, we show that the nksd posterior concentrates and is asymptotically

normal, and we establish that the Laplace approximation to the SVC (Equation 5.10) is asymptoti-

cally correct. These results form a Bayesian counterpart to those of Barp et al. 17 , who establish the

consistency and asymptotic normality of minimum ksd estimators. Thus, in both the frequentist

and Bayesian contexts, we can replace the average log likelihood with the negative ksd and obtain

similar key properties. Our results in this section do not depend on whether or not we are working

with a foreground subspace, so we suppress the xF notation.

LetΘ ⊆ Rm, and let {Qθ : θ ∈ Θ} be a family of probability measures onX ⊆ Rd having

densities qθ(x)with respect to Lebesgue measure. For notational convenience, we sometimes write

q(x|θ) instead of qθ(x). Suppose the dataX(1), . . . , X(N) are i.i.d. samples from some probability

measure P0 onX having density p0(x)with respect to Lebesgue measure. To ensure the nksd sat-

isfies the properties of a divergence for all qθ, and that convergence of n̂ksd is uniform on compact

subsets ofΘ (Proposition E.3.2), we require the following.

Condition 5.6.7. Assume Conditions 5.6.1 and 5.6.2 hold for p0, k, and qθ for all θ ∈ Θ. Further,

assume that the kernel k has continuous and bounded partial derivatives up to and including second

order, and k(x, y) > 0 for all x, y ∈ X .

Nowwe can set up the generalized posterior. First define

fN (θ) := 1
T
n̂ksd(p0(x)‖q(x|θ)) = 1

T

∑
i 6=j uθ(X(i), X(j))∑
i 6=j k(X(i), X(j))

, (5.35)

where uθ(x, y) is the u(x, y) function from Equation 5.5 with qθ in place of q. For the case ofN =
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1, we define f1(θ) = 0 by convention. Note that−NfN (θ) plays the role of the log likelihood.

Also define

f(θ) := 1
T
nksd(p0(x)‖q(x|θ)), (5.36)

zN :=
∫

Θ
exp(−NfN (θ))π(θ)dθ,

πN (θ) := 1
zN

exp(−NfN (θ))π(θ),

where π(θ) is a prior density onΘ. Note that πN (θ)dθ is the NKSD posterior and zN is the corre-

sponding generalized marginal likelihood employed in the SVC. Denote the gradient and Hessian of

f by f ′(θ) = ∇θf(θ) and f ′′(θ) = ∇2
θf(θ), respectively. To ensure that the nksd posterior is

well defined and has an isolated maximum, we assume the following condition.

Condition 5.6.8. Suppose Θ ⊆ Rm is a convex set and (a) Θ is compact or (b) Θ is open and fN

is convex on Θ with probability 1 for allN . Assume zN < ∞ a.s. for allN . Assume f has a unique

minimizer θ∗ ∈ Θ, f ′′(θ∗) is invertible, π is continuous at θ∗, and π(θ∗) > 0.

By Proposition 5.6.4, f has a unique minimizer whenever {Qθ : θ ∈ Θ} is well-specified and

identifiable, that is, whenQθ = P0 for some θ and θ 7→ Qθ is injective.

In Theorem 5.6.9 below, we establish the following results: (1) the minimum n̂ksd converges

to the minimum nksd; (2) πN concentrates around the minimizer of the nksd; (3) the Laplace

approximation to zN is asymptotically correct; and (4) πN is asymptotically normal in the sense

of Bernstein–vonMises. The primary regularity conditions we need for this theorem are restraints
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on the derivatives of sqθ
with respect to θ (Condition 5.6.10). Our proof of Theorem 5.6.9 relies

on the theory of generalized posteriors developed byMiller 176 . We use ‖ · ‖ for the Euclidean–

Frobenius norms: for vectorsA ∈ RD, ‖A‖ = (
∑

iA
2
i )1/2; for matricesA ∈ RD×D, ‖A‖ =

(
∑

i,j A
2
i,j)1/2; for tensorsA ∈ RD×D×D, ‖A‖ = (

∑
i,j,k A

2
i,j,k)1/2; and so on.

Theorem 5.6.9. If Conditions 5.6.7, 5.6.8, and 5.6.10 hold, then there is a sequence θN → θ∗ a.s.

such that:

1. fN (θN )→ f(θ∗), f ′
N (θN ) = 0 for allN sufficiently large, and f ′′

N (θN )→ f ′′(θ∗) a.s.,

2. lettingBϵ(θ∗) := {θ ∈ Rm : ‖θ − θ∗‖ < ϵ}, we have

∫
Bϵ(θ∗)

πN (θ)dθ a.s.−−−−→
N→∞

1 for all ϵ > 0, (5.37)

3.

zN ∼
exp(−NfN (θN ))π(θ∗)
| det f ′′(θ∗)|1/2

(2π
N

)m/2
(5.38)

almost surely, where aN ∼ bN means that aN/bN → 1 asN →∞, and

4. letting hN denote the density of
√
N(θ − θN ) when θ is sampled from πN , we have that hN

converges toN (0, f ′′(θ∗)−1) in total variation, that is,

∫
Rm

∣∣∣hN (θ̃)−N (θ̃ | 0, f ′′(θ∗)−1)
∣∣∣dθ̃ a.s.−−−−→

N→∞
0. (5.39)

The proof is in Section E.3.2. We write∇2
θsqθ

to denote the tensor in Rd×m×m in which entry
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(i, j, k) is ∂2sqθ
(x)i/∂θj∂θk. Likewise,∇3

θsqθ
denotes the tensor in Rd×m×m×m in which entry

(i, j, k, ℓ) is ∂3sqθ
(x)i/∂θj∂θk∂θℓ. We writeN to denote the set of natural numbers.

Condition 5.6.10 (Stein score regularity). Assume sqθ
(x) has continuous third-order partial deriva-

tives with respect to the entries of θ on Θ. Suppose that for any compact, convex subsetC ⊆ Θ, there

exist continuous functions g0,C , g1,C ∈ L1(P0) such that for all θ ∈ C , x ∈ X ,

‖sqθ
(x)‖ ≤ g0,C(x),

‖∇θsqθ
(x)‖ ≤ g1,C(x).

(5.40)

Further, assume there is an open, convex, bounded setE ⊆ Θ such that θ∗ ∈ E, Ē ⊆ Θ, and the sets

{ 1
N

N∑
i=1
‖∇2

θsqθ
(X(i))‖ : N ∈ N, θ ∈ E

}
, (5.41)

{ 1
N

N∑
i=1
‖∇3

θsqθ
(X(i))‖ : N ∈ N, θ ∈ E

}
(5.42)

are bounded with probability 1.

Next, Theorem 5.6.11 shows that in the special case where qθ(x) is an exponential family, many

of the conditions of Theorem 5.6.9 are automatically satisfied.

Theorem 5.6.11. Suppose {Qθ : θ ∈ Θ} is an exponential family with densities of the form

qθ(x) = λ(x) exp(θ>t(x) − κ(θ)) for x ∈ X ⊆ Rd. Assume Θ = {θ ∈ Rm : |κ(θ)| < ∞},
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and assume Θ is convex, open, and nonempty. Assume logλ(x) and t(x) are continuously differ-

entiable onX , ‖∇x logλ(x)‖ and ‖∇xt(x)‖ are inL1(P0), and the rows of the Jacobian matrix

∇xt(x) ∈ Rm×d are linearly independent with positive probability under P0. Suppose Condi-

tion 5.6.7 holds, f has a unique minimizer θ∗ ∈ Θ, the prior π is continuous at θ∗, and π(θ∗) > 0.

Then the assumptions of Theorem 5.6.9 are satisfied for allN sufficiently large.

The proof is in Section E.3.2.

5.6.3 Asymptotics of the Stein volume criterion

The Laplace approximation to the SVC uses the estimate n̂ksd and its minimizer θN , rather than

the true nksd and its minimizer θ∗. To establish the consistency properties of the SVC, we need to

understand the relationship between the two. To do so, we adapt a standard approach to perform-

ing such an analysis of the marginal likelihood, for instance, as in Theorem 1 of Dawid 50 .

Theorem 5.6.12. Assume the conditions of Theorem 5.6.9 hold, and assume sqθ∗ and∇θ

∣∣
θ=θ∗

sqθ

are inL2(P0). Then asN →∞,

fN (θN )− fN (θ∗) = OP0(N−1). (5.43)

Further, if nksd(p0(x)‖q(x|θ∗)) > 0 then

fN (θ∗)− f(θ∗) = OP0(N−1/2), (5.44)
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whereas if nksd(p0(x)‖q(x|θ∗)) = 0 then

fN (θ∗)− f(θ∗) = OP0(N−1). (5.45)

The proof is in Section E.3.3. Remarkably, Equation 5.45 shows that fN (θ∗) converges to f(θ∗)

more rapidly when the model is well-specified, specifically, at a 1/N rate instead of 1/
√
N . This is

unusual and is crucial for our results in Section 5.6.4. The standard log likelihood does not exhibit

this rapid convergence; see Section E.2.1. This property of the nksd derives from similar properties

exhibited by the standard ksd (Theorem 4.1 in Liu et al. 158). Combined with Theorem 5.6.9 (part

3), Theorem 5.6.12 implies that when the model is misspecified, the leading order term of log zN is

−Nf(θ∗), whereas when the model is well-specified, the leading order term is−1
2 m logN .

5.6.4 Data and model selection consistency of the SVC

In this section, we establish the asymptotic consistency of the Stein volume criterion (SVC) when

used for data selection, nested data selection, model selection, and nested model selection; see The-

orem 5.6.17. This provides rigorous justification for the claims in Section 5.3. These results are all

in the context of pairwise comparisons between two models or two model projections,M1 and

M2. Before proving the results, we formally define the consistency properties discussed in Sec-

tion 5.3. Each property is defined in terms of a pairwise score ρ(M1,M2), such as ρ(M1,M2) =

log(K1/K2). For simplicity, we assume ρ(M1,M2) = −ρ(M2,M1); this is satisfied for all of the

cases we consider. Let dim(·) denote the dimension of a real space.
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Definition 5.6.13 (Data selection consistency). Consider foreground model projectionsMj :=

{q(xFj |θ) : θ ∈ Θ} for j ∈ {1, 2}. We say that ρ satisfies “data selection consistency” if ρ(M1,M2)→

∞ asN → ∞ whenM1 is well-specified with respect to p0(xF1) andM2 is misspecified with respect

to p0(xF2).

Definition 5.6.14 (Nested data selection consistency). Consider foreground model projections

Mj := {q(xFj |θ) : θ ∈ Θ} for j ∈ {1, 2}. We say that ρ satisfies “nested data selection consistency”

if ρ(M1,M2) → ∞ asN → ∞ whenM1 is well-specified with respect to p0(xF1),XF2 ⊂ XF1 ,

and dim(XF2) < dim(XF1).

Definition 5.6.15 (Model selection consistency). Consider foreground modelsMj := {qj(xF |θj) :

θj ∈ Θj} for j ∈ {1, 2}. We say that ρ satisfies “model selection consistency” if ρ(M1,M2)→∞ as

N →∞ whenM1 is well-specified with respect to p0(xF ) andM2 is misspecified.

Definition 5.6.16 (Nested model selection consistency). Consider foreground modelsMj :=

{qj(xF |θj) : θj ∈ Θj} for j ∈ {1, 2}. We say that ρ satisfies “nested model selection consistency” if

ρ(M1,M2) → ∞ asN → ∞ whenM1 is well-specified with respect to p0(xF ),M1 ⊂ M2, and

dim(Θ1) < dim(Θ2).

In each case, ρmay diverge almost surely (“strong consistency”) or in probability (“weak consis-

tency”). Note that in Definitions 5.6.13–5.6.14, the difference betweenM1 andM2 is the choice

of foreground data spaceF , whereas in Definitions 5.6.15–5.6.16,M1 andM2 are over the same

foreground space but employ different model spaces.
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In Theorem 5.6.17, we show that the SVC has the asymptotic properties outlined in Section 5.3.

In combination with the subsystem independence properties of the NKSD (Propositions 5.6.6 and

E.3.1), Theorem 5.6.17 also leads to the conclusion that the SVC approximates the NKSDmarginal

likelihood of the augmented model (Equation 5.8). Our proof is similar in spirit to previous results

for model selection with the standard marginal likelihood, notably those of Hong & Preston 108

and Huggins &Miller 118 , but relies on the special properties of the nksd marginal likelihood in

Theorem 5.6.12.

Theorem 5.6.17. For j ∈ {1, 2}, assume the conditions of Theorem 5.6.12 hold for modelMj

defined onXFj , with density qj(xFj |θj) for θj ∈ Θj ⊆ RmFj ,j . LetKj,N be the Stein volume

criterion forMj , with background model penaltymBj = mBj (N), and let

θj,∗ := argminθj
nksd(p0(xFj )‖qj(xFj |θj)). Then:

1. IfmBj = o(N/ logN) for j ∈ {1, 2}, then

1
N
log
K1,N

K2,N

P0−−−−→
N→∞

1
T
nksd(p0(xF2)‖q2(xF2 |θ2,∗))− 1

T
nksd(p0(xF1)‖q1(xF1 |θ1,∗)).

2. If nksd(p0(xF1)‖q1(xF1 |θ1,∗)) = nksd(p0(xF2)‖q2(xF2 |θ2,∗)) = 0 andmB2 −mB1

does not depend onN , then

1
logN

log
K1,N

K2,N

P0−−−−→
N→∞

1
2

(mF2,2 +mB2 −mF1,1 −mB1).

3. If nksd(p0(xF1)‖q1(xF1 |θ1,∗)) = nksd(p0(xF2)‖q2(xF2 |θ2,∗)),mB1 = cB1

√
N , and
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mB2 = cB2

√
N , where cB1 and cB2 are positive and constant inN , then

1√
N logN

log
K1,N

K2,N

P0−−−−→
N→∞

1
2

(cB2 − cB1).

The proof is in Section E.3.4. In particular, assuming the conditions of Theorem 5.6.12, we

obtain the following consistency results in terms of convergence in probability. Let

Dj := nksd(p0(xFj )‖qj(xFj |θj,∗)) for j ∈ {1, 2}.

• IfmBj = o(N/ logN) then the SVC exhibits data selection consistency and model selection

consistency. This holds by Theorem 5.6.17 (part 1) sinceD2 > D1 = 0.

• IfmB1 = mB2 then the SVC exhibits nested model selection consistency. This holds by

Theorem 5.6.17 (part 2) sinceD1 = D2 = 0,mB2 −mB1 = 0, andmF2,2 > mF1,1.

• Consider a nested data selection problem withXF2 ⊂ XF1 . If (A)mB2 − mB1 does not

depend onN andmF2,2 + mB2 > mF1,1 + mB1 or (B)mBj = cBj

√
N and cB2 >

cB1 > 0, then the SVC exhibits nested data selection consistency. Cases A and B hold by

Theorem 5.6.17 (parts 2 and 3, respectively) sinceD1 = D2 = 0.

5.7 Application: Probabilistic PCA

Probabilistic principal components analysis (pPCA) is a commonly used tool for modeling and visu-

alization. The basic idea is to model the data as linear combinations of k latent factors plus Gaussian

noise. The inferred weights on the factors are frequently used to provide low-dimensional sum-
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maries of the data, while the factors themselves describe major axes of variation in the data. In prac-

tice, pPCA is often applied in settings where it is likely to be misspecified – for instance, the weights

are often clearly non-Gaussian. In this section, we show how data selection can be used to uncover

sources of misspecification and to analyze how this misspecification affects downstream inferences.

The generative model used in pPCA is

Z(i) ∼ N (0, Ik),

X(i)|Z(i) ∼ N (HZ(i), vId),
(5.46)

independently for i = 1, . . . , N , where Ik is the k-dimensional identity matrix,Z(i) ∈ Rk is the

weight vector for datapoint i,H ∈ Rd×k is the unknownmatrix of latent factors, and v > 0 is the

variance of the noise. To form a Laplace approximation for the Stein volume criterion, we follow the

approach developed byMinka 179 for the standard marginal likelihood. Specifically, we parameterize

H as

H = U(L− vIk)1/2 (5.47)

whereU is a d× kmatrix with orthonormal columns (that is, it lies on the Stiefel manifold) andL is

a k × k diagonal matrix. We use the priors suggested byMinka 179 ,

U ∼ Uniform(U),

Lii ∼ InverseGamma(α/2, α/2),

v ∼ InverseGamma
(
(α/2 + 1)(d− k)− 1, (α/2)(d− k)

)
,

(5.48)
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where U is the set of d × kmatrices with orthonormal columns andLii is the ith diagonal entry of

L. We set α = 0.1 in the following experiments, and we use pymanopt262 to optimizeU over the

Stiefel manifold (Section E.4).

5.7.1 Simulations

In simulations, we evaluate the ability of the SVC to detect partial misspecification. We set d = 6,

draw the first four dimensions from a pPCAmodel with k = 2 and

H =



1 0

−1 1

0 1

−1 −1


, (5.49)

and generate dimensions 5 and 6 in such a way that pPCA is misspecified. We consider two misspec-

ified scenarios: scenario A (Figure 5.3a) is that

W (i) ∼ Bernoulli(0.5),

X
(i)
5:6 |W

(i) ∼ N (0,ΣW (i)) ,
(5.50)
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whereΣW (i) = (0.05)W (i)
I2. Scenario B (Figure 5.3d) is the same but with

ΣW (i) =

 1 (−1)W (i)0.99

(−1)W (i)0.99 1

 . (5.51)

Scenario B is more challenging because the marginals of the misspecified dimensions are still Gaus-

sian, and thus, misspecification only comes from the dependence betweenX5 andX6. As illus-

trated in Figures 5.3b and 5.3e, both kinds of misspecification are very hard to see in the lower-

dimensional latent representation of the data.

Our method can be used to both (i) detect misspecified subsets of dimensions, and (ii) con-

versely, find a maximal subset of dimensions for which the pPCAmodel provides a reasonable fit

to the data. We set T = 0.05 in the SVC, based on the calibration procedure in Section E.1.1 (Sec-

tion E.4.3). We use the Pitman-Yor mixture model expression for the background model dimension

(Equation 5.3), with α = 0.5, θ = 1, andD = 0.2. This value ofD ensures that the number of

background model parameters per data dimension is greater than the number of foreground model

parameters per data dimension except for at very smallN , since there are two foreground parame-

ters for each additional data dimension in the pPCAmodel, andmB > 2 rB forN ≥ 20. We

performed leave-one-out data selection, comparing the foreground spaceXF0 = X to foreground

spacesXFj for j ∈ {1, . . . , d}, which exclude the jth dimension of the data. We computed the

log SVC ratio log(Kj/K0) = logKj − logK0 using the BIC approximation to the SVC (Sec-

tion 5.2.3) and the approximate optima technique (Section 5.2.3). We quantify the performance
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(a) Scenario A, misspecified dimen-

sions.

(b) Scenario A, pPCA latent space. (c) Scenario A, accuracy in detecting

misspecified dimensions.

(d) Scenario B, misspecified dimen-

sions.

(e) Scenario B, pPCA latent space. (f) Scenario B, accuracy in detecting

misspecified dimensions.

(g)Mean runtime over 5 repeats.

Figure 5.3: Data selection in the probabilistic PCAmodel.

of the method in detecting misspecified dimensions in terms of the balanced accuracy, defined as

(TN/N + TP/P )/2where TN is the number of true negatives (dimension by dimension),N is
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the number of negatives, TP is the number of true positives, and P is the number of positives. Ex-

periments were repeated independently five times. Figures 5.3c and 5.3f show that as the sample size

increases, the SVC correctly infers that dimensions 1 through 4 should be included and dimensions

5 and 6 should be excluded.

5.7.2 Comparisonwith a nonparametric background model

To benchmark our method, we compare with an alternative approach that uses an explicit aug-

mented model. The Pólya tree is a nonparametric model with a closed-formmarginal likelihood

that is tractable for one-dimensional data151. We define a flexible background model by sampling

each dimension j of the background space independently as

Xj ∼ PolyaTree(F, F̃, η), (5.52)

with the Pólya tree constructed as by Berger & Guglielmi 21 (Section E.4.4). We set F = N (0, 10),

F̃ = N (0, 10), and η = 1000 so that the model is weighted only very weakly towards the base

distribution.

We performed data selection using the marginal likelihood of the Pólya tree augmented model,

computing the marginal of the pPCA foreground model using the approximation of Minka 179 .

The accuracy results for data selection are in Figures 5.3c and 5.3f. On scenario A (Equation 5.50),

the Pólya tree augmented model requires significantly more data to detect which dimensions are mis-

specified. On scenario B (Equation 5.51) the Pólya tree augmented model fails entirely, preferring
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the full data spaceXF0 = X which includes all dimensions (Figure 5.3f). The reason is that the

background model is misspecified due to the assumption of independent dimensions, and thus, the

asymptotic data selection results (Equations 5.15 and 5.19) do not hold. This could be resolved by

using a richer background model that allows for dependence between dimensions, however, com-

puting the marginal likelihood under such a model would be computationally challenging. Even

with the independence assumption, the Pólya tree approach is already substantially slower than the

SVC (Figure 5.3g).

5.7.3 Application to pPCA for single-cell RNA sequencing

Single-cell RNA sequencing (scRNAseq) has emerged as a powerful technology for high-throughput

characterization of individual cells. It provides a snapshot of the transcriptional state of each cell by

measuring the number of RNA transcripts from each gene. PCA is widely used to study scRNAseq

datasets, both as a method for visualizing different cell types in the dataset and as a pre-processing

technique, where the latent embedding is used for downstream tasks like clustering and lineage re-

construction206,269. We applied data selection to answer two practical questions in the application

of probabilistic PCA to scRNAseq data: (1) Where is the pPCAmodel misspecified? (2) How does

partial misspecification of the pPCAmodel affect downstream inferences?
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Model criticism

Our first goal was to verify that the SVC provides reasonable inferences of partial model misspec-

ification in practice. We examined two different scRNAseq datasets, focusing for illustration on

a dataset from human peripheral blood mononuclear cells taken from a healthy donor, and pre-

processed the data following standard procedures in the field (Section E.4.5). We subsampled each

dataset to 200 genes (selected randomly from among the 2000 most highly expressed) and 2000 cells

(selected randomly) for computational tractability, then mean-subtracted and standardized the vari-

ance of each gene, again following standard practice in the field. The number of latent components

k was set to 3, based on the procedure of Minka 178 . We performed leave-one-out data selection,

comparing the foreground spaceXF0 := X to foreground spacesXFj that exclude the jth gene.

We computed the log SVC ratio logKj − logK0 using the BIC approximation to the SVC (Sec-

tion 5.2.3) and the approximate optima technique (Section 5.2.3). We used the same setting of T

and ofmB as was used in simulation, resulting in a background model complexity ofmB = 20 rB

for datasets of this size. Based on the SVC criterion, 162 out of 200 genes should be excluded from

the foreground pPCAmodel, suggesting widespread partial misspecification. Figure 5.4 compares

the histogram of individual genes to their estimated density under the pPCAmodel inferred for

XF0 = X . Those genes most favored to be excluded (namely, UBE2V2 and IRF8) show extreme

violations of normality, in stark contrast to those genes most favored to be included (MT-CO1 and

RPL6).

Next, we compared the results of our data selection approach to a more conventional strategy for
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(a) (b)

(c) (d)

Figure 5.4: (a,b) Histograms of example genes (after pre-processing) selected to be included in the foreground space

based on the log SVC ratio, logKj − logK0. The estimated density under the pPCAmodel is shown in blue. (c,d) His-

tograms of example genes selected to be excluded. Higher ranks (in each title) correspond to larger log SVC ratios.

model criticism. Criticism of partially misspecified models can be challenging in practice because

misspecification of the model over some dimensions of the data can lead to substantial model-data

mismatch in dimensions for which the model is indeed well-specified125. The standard approach to

model criticism—first fit a model, then identify aspects of the data that the model poorly explains—

can therefore be misleading if our aim is to determine how the model might be improved (e.g., in

the context of “Box’s loop”, Blei 26). In particular, standard approaches such as posterior predictive
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checks will be expected to overstate problems with components of the model that are well-specified

and understate problems with components of the model that are misspecified. Bayesian data selec-

tion circumvents this issue by evaluating augmented models, which replace potentially misspecified

components of the model by well-specified components. To illustrate the difference between these

approaches in practice, we compared the SVC to a closely analogous measurement of error for the

full foreground model (inferred fromXF0 = X ),

log Ej − log E0 := −N
T
n̂ksd(p0(xFj )‖q(xFj |θ0,N )) + N

T
n̂ksd(p0(x)‖q(x|θ0,N )) (5.53)

where θ0,N := argmin n̂ksd(p0(x)‖q(x|θ)) is the minimum nksd estimator for the foreground

model when including all dimensions. This model criticism score evaluates the amount of model-

data mismatch contributed by the subspaceXBj when modeling all data dimensions with the fore-

ground model. For comparison, the BIC approximation to the log SVC ratio is

logKj − logK0 ≈ −
N

T
n̂ksd(p0(xFj )‖q(xFj |θj,N ) + N

T
n̂ksd(p0(x)‖q(x|θ0,N ))

+
mBj +mFj −mF0

2
log
(2π
N

) (5.54)

where θj,N := argmin n̂ksd(p0(xFj )‖q(xFj |θ)) is the minimum nksd estimator for the pro-

jected foreground model applied to the restricted dataset, which we approximate as θ0,N plus the im-

plicit function correction derived in Section 5.2.3. Figure 5.5 illustrates the differences between the

conventional criticism approach (log Ej−log E0) and the log SVC ratio on an scRNAseq dataset. To

enable direct comparison of the two methods, we focus on the lower order terms of Equation 5.54,
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Figure 5.5: Scatterplot comparison and projectedmarginals of the leave-one-out log SVC ratio, logKj − logK0 (with

mBj
= mF0 −mFj

), and the conventional full model criticism score, log Ej − log E0, for each gene.

that is, we setmBj = mF0 −mFj . We see that the amount of error contributed byXBj , as judged

by the SVC, is often substantially higher than the amount indicated by the conventional criticism

approach, implying that the conventional criticism approach understates the problems caused by

individual genes and, conversely, overstates the problems with the rest of the model.

Using the SVC instead of a standard criticism approach can also help clarify trends in where the

proposed model fails. A prominent concern in scRNAseq data analysis is the common occurrence

of cells that show exactly zero expression of a certain gene197,102. We found a Spearman correlation

of ρ = 0.89 between the conventional criticism log Ej − log E0 for a gene j and the fraction of cells

with zero expression of that gene j, suggesting that this is an important source of model-data mis-

match in this scRNAseq dataset, but not necessarily the only source (Figure 5.6a). However, the log

SVC ratio yields a Spearman correlation of ρ = 0.98, suggesting instead that the amount of model-
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(a) (b)

(c) (d)

Figure 5.6: (a) Comparison of the conventional criticism score, for each gene j , and the fraction of cells that show zero

expression of that gene j in the raw data. Spearmanρ = 0.89, p < 0.01. (b) Same as (a) but with the log SVC ratio.

Spearmanρ = 0.98, p < 0.01. In orange are genes that would be includedwhen using a backgroundmodel with
cB = 20 and in blue are genes that would be excluded. (c) Same as (a) for a dataset taken from aMALT lymphoma

(Section E.4.5). Spearmanρ = 0.81, p < 0.01. (d) Same as (b) for theMALT lymphoma dataset. Spearmanρ = 0.99,
p < 0.01.

data mismatch can be entirely explained by the fraction of cells with zero expression (Figure 5.6b).

These observations are repeatable across different scRNAseq datasets (Figure 5.6c, 5.6d).
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Evaluating robustness

Data selection can also be used to evaluate the robustness of the foreground model to partial model

misspecification. This is particularly relevant for pPCA on scRNAseq data, since the inferred latent

embeddings of each cell are often used for downstream tasks such as clustering, lineage reconstruc-

tion, and so on. Misspecification may produce spurious conclusions, or alternatively, misspecifica-

tion may be due to structure in the data that is scientifically interesting. To understand how partial

misspecification of the pPCAmodel affects the latent representation of cells (and thus, downstream

inferences), we performed data selection with a sequence of background model complexities cB,

wheremB = cB rB (Figure 5.7a). We inferred the pPCA parameters based only on genes that the

SVC selects to include in the foreground subspace. Figures 5.7e-5.7b visualize how the latent repre-

sentation changes as cB grows and fewer genes are selected. We can observe the representation mor-

phing into a standard normal distribution, as we would expect in the case where the pPCAmodel is

well-specified. However, the relative spatial organization of cells in the latent space remains fairly sta-

ble, suggesting that this aspect of the latent embedding is robust to partial misspecification. We can

conclude that, at least in this example, misspecification strongly contributes to the non-Gaussian

shape of the latent representation of the dataset, but not to the distinction between subpopulations.

5.8 Application: Glass model of gene regulation

A central goal in the study of gene expression is to discover how individual genes regulate one an-

other other’s expression. Early studies of single cell gene expression noted the prevalence of genes
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(a)

(b) (c) (d) (e)

Figure 5.7: (a) Histogram of log SVC ratios logKj − logK0 for all 200 genes in the dataset (withmBj
= mF0 −

mFj
). Dotted lines show the value of the volume correction term in the SVC for different choices of backgroundmodel

complexity cB ; for each choice, genes with logKj − logK0 values above the dotted line would be excluded from

the foreground subspace based on the SVC. (b) Posterior mean of the first two latent variables (z1 and z2), with the

pPCAmodel applied to the genes selected with a backgroundmodel complexity of cB = 10 (keeping 23 genes in the

foreground). (c-e) Same as (b), but with cB = 20 (keeping 38 genes), cB = 40 (keeping 87 genes) and cB = 60 (keeping

all 200 genes). In (a)-(d), the points are colored using the z1 value when cB = 60.

that were bistable in their expression level232,240. This suggests a simple physical analogy: if indi-

vidual gene expression is a two-state system, we might study gene regulation with the theory of in-

teracting two-state systems, namely spin glasses. We can consider for instance a standard model of

this type in which each cell i is described by a vector of spins zi = (zi1, . . . , zid)> drawn from an

Ising model, specifying whether each gene j ∈ {1, . . . , d} is “on” or “off”. In reality, gene expres-
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sion lies on a continuum, so we use a continuous relaxation of the Ising model and parameterize

each spin using a logistic function, setting zij1(xij , µ, τ) = 1/(1 + exp(−τ(xij − µ))) and

zij2(xij , µ, τ) = 1 − zij1(xij , µ, τ). Here, xij is the observed expression level of gene j in cell i,

the unknown parameter µ controls the threshold for whether the expression of a gene is “on” (such

that zij ≈ (1, 0)>) or “off” (such that zij ≈ (0, 1)>), and the unknown parameter τ > 0 controls

the sharpness of the threshold. The complete model is then given by

X(i) ∼ p(xi|H, J, µ, τ)

:= 1
ZH,J,µ,τ

exp
(∑

j

H>
j zij(xij , τ, µ) +

∑
j′>j

z>
ij(xij , τ, µ)Jjj′zij′(xij′ , τ, µ)

)

whereZH,J,µ,τ is the unknown normalizing constant of the model, and the vectorsHj ∈ R2 and

matrices Jjj′ ∈ R2×2 are unknown parameters. This model is motivated by experimental observa-

tions and is closely related to RNAseq analysis methods that have been successfully applied in the

past82,81,55,37,15,68,157,119,181,170. However, from a biological perspective we can expect that serious

problems may occur when applying the model naively to an scRNAseq dataset. Genes need not

exhibit bistable expression: it is straightforward in theory to write downmodels of gene regulation

that do not have just one or two steady states—gene expression may fall on a continuum, or oscillate,

or have three stable states—and many alternative patterns have been well-documented empirically10.

Interactions between genes may also be more complex than the model assumes, involving for in-

stance three-way dependencies between genes. All of these biological concerns can potentially pro-

duce severe violations of the proposed two-state glass model’s assumptions. Data selection provides
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a method for discovering where the proposed model applies.

Applying standard Bayesian inference to the glass model is intractable, since the normalizing

constant is unknown (it is an energy-based model). However, the normalizing constant does not

affect the SVC, so we can still perform data selection. We used a variational approximation to the

SVC (Section 5.2.3). We placed a Gaussian prior onH and a Laplace prior on each entry of J to

encourage sparsity in the pairwise gene interactions; we also used Gaussian priors for µ and τ af-

ter applying an appropriate transform to remove constraints (Section E.5.1). Following the logic

of stochastic variational inference, we optimized the variational approximation using minibatches

of the data and a reparameterization gradient estimator105,139,147. We also simultaneously stochas-

tically optimized the set of genes included in the foreground subspace, using the Leave-One-Out

REINFORCE estimator143,54. We implemented the model and inference strategy within the prob-

abilistic programming language Pyro by defining a new distribution with log probability given by

the negative NKSD23. Pyro provides automated, GPU-accelerated stochastic variational inference,

requiring less than an hour for inference on datasets with thousands of cells.

We examined three scRNAseq datasets, taken from (i) peripheral blood monocytes (PBMCs)

from a healthy donor (2,428 cells), (ii) a MALT lymphoma (7,570 cells), and (iii) mouse neurons

(10,658 cells) (Section E.5.2). We preprocessed the data following standard protocols and focused

on 200 high expression, high variability genes in each dataset, based on the metric of Gigante et al. 90 .

We set T = 0.05 as in Section 5.7, and used the Pitman-Yor expression formB (Equation 5.3) with

α = 0.5, θ = 1 andD = 100. This value ofD ensures that the number of background model

parameters per data dimension is larger than the number of foreground model parameters per data
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dimension except for at very smallN ; in particular, there are 798 foreground model parameter di-

mensions associated with each data dimension (from the 199 interactions Jjj′ that each gene has

with each other gene, plus the contribution ofHj), andmB > 798 rB forN ≥ 13. Our data

selection procedure selects 65 genes (32.5%) in the PBMC dataset, 0 genes in the neuron dataset,

and 187 genes (93.5%) in the MALT dataset; note that for a lower value ofmB, in particular using

D = 10, no genes are selected in the MALT dataset. These results suggest substantial partial mis-

specification in the PBMC and neuron datasets, and more moderate partial misspecification in the

MALT dataset.

We investigated the biological information captured by the foreground model on the MALT

dataset. In particular, we looked at the approximate NKSD posterior for the selected 187 genes,

and compared it to the approximate NKSD posterior for the model when applied to all 200 genes.

(Note that, since the glass model lacks a tractable normalizing constant, we cannot compare stan-

dard Bayesian posteriors.) Figure 5.8 shows, for a subset of selected genes, the posterior mean of the

interaction energy∆Ejj′ := Jjj′21 + Jjj′12− Jjj′22− Jjj′11, that is, the total difference in energy

between two genes being in the same state versus in opposite states. We focused on strong interac-

tions with |∆Ejj′ | > 1, corresponding to just 5% of all possible gene-gene interactions (Figure E.3).

One foreground gene with especially large loading onto the top principal component of the

∆E matrix is CD37 (Figure 5.8). In B-cell lymphomas, of whichMALT lymphoma is an example,

CD37 loss is known to be associated with decreased patient survival293. Further, previous studies

have observed that CD37 loss leads to high NF-κB pathway activation293. Consistent with this

observation, the estimated interaction energies in our model suggest that decreasing CD37 will
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Figure 5.8: Posterior mean interaction energies∆Ejj′ := Jjj′21 + Jjj′12 − Jjj′22 − Jjj′11 for a subset of the

selected genes. For visualization purposes, weak interactions (|∆Ejj′ | ≤ 1) are set to zero, and genes with less than
10 total strong connections are not shown. Genes are sorted based on their (signed) projection onto the top principal

component of the∆E matrix.

lead to higher expression of REL, an NF-κB transcription factor (∆ECD37,REL = 2.5), decreased

expression of NKFBIA, an NF-κB inhibitor (∆ECD37,NKFBIA = −3.6), and higher expression

of BCL2A1, a downstream target of the NF-κB pathway (∆ECD37,BCL2A1 = 2.1). Separately,

a knockout study of Cd37 in B-cell lymphoma in mice does not show IgM expression51, consis-
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Figure 5.9: Comparison of posterior mean interaction energies∆Ejj′ for amodel applied to all 200 genes (pre-data

selection) to those learned from amodel applied to the selected foreground subspace (post-data selection). Each point

corresponds to a pairwise interaction between two of the selected 187 genes.

tent with our model (∆ECD37,IGHM = −8.2). The same study does showMHC-II expression,

and our model predicts the same result, for HLA-DQ in particular (∆ECD37,HLA-DQA1 = 5.0,

∆ECD37,HLA-DQB1 = 3.7). These results suggest that the data selection procedure can successfully

find systems of interacting genes that can plausibly be modeled as a spin glass, and which, in this

case, are relevant for cancer.

To investigate whether data selection provided a benefit in this analysis, we compare with the re-

sults obtained by applying the foreground model to the full dataset of all 200 genes. All but one of

the interactions listed above have |∆E| < 1 in the full foreground model, and three have opposite

signs (∆ECD37,NFKBIA = +0.7,∆ECD37,IGHM = +0.0,∆ECD37,HLA-DQB1 = −0.6); see Fig-

ure E.4. Across all 187 selected genes, we find only a moderate correlation between the interaction
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energies estimated when using the full foreground model compared with the data selection-based

model (Spearman’s rho= 0.30, p < 0.01; Figure 5.9). These results show that using data selection

can lead to substantially different, and arguably more biologically plausible, downstream conclu-

sions as compared to naive application of the foreground model to the full dataset.

As a simple alternative, one might wonder whether genes that are poorly fit by the model could

be identified simply by looking their posterior uncertainty under the full foreground model. This

simple approach does not work well, however, since it is possible for parameters to have low uncer-

tainty even when the model poorly describes the data. Indeed, we found that examining uncertainty

in the glass model does not lead to the same conclusions as performing data selection: the genes ex-

cluded by our data selection procedure are not the ones with the highest uncertainty in their interac-

tions (as measured by the mean posterior standard deviation of∆Ejj′ under the NKSD posterior),

though they do have above average uncertainty (Figure E.5a). Instead, the genes excluded by our

data selection procedure are the ones with the highest fraction of cells with zero expression, violating

the assumptions of the foreground model (Figure E.5b). These results show how data selection pro-

vides a sound, computationally tractable approach to criticizing and evaluating complex Bayesian

models.

5.9 Discussion

Statistical modeling is often described as an iterative process, where we design models, infer hidden

parameters, critique model performance, and then use what we have learned from the critique to
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design newmodels and repeat the process85. This process has been called “Box’s loop”26. From

one perspective, data selection offers a new criticism approach. It goes beyond posterior predictive

checks and related methods by changing the model itself, replacing potentially misspecified com-

ponents with a flexible background model. This has important practical consequences: since mis-

specification can distort estimates of model parameters in unpredictable ways, predictive checks are

likely to indicate mismatch between the model and the data across the entire spaceX even when the

proposed parametric model is only partially misspecified. Our method, by contrast, reveals precisely

those subspaces ofX where model-data mismatch occurs.

From another perspective, data selection is outside the design-infer-critique loop. An underlying

assumption of Box’s loop is that scientists want to model the entire dataset. As datasets get larger,

and measurements get more extensive, this desire has led to more and more complex (and often

difficult to interpret) models. In experimental science, however, scientists have often followed the

opposite trajectory: faced with a complicated natural phenomenon, they attempt to isolate a simpler

example of the phenomenon for close study. Data selection offers one approach to formalizing this

intuitive idea in the context of statistical analysis: we can propose a simple parametric model and

then isolate a piece of the whole dataset—a subspaceXF—to which this model applies. When work-

ing with large, complicated datasets, this provides a method of searching for simpler phenomena

that are hypothesized to exist.
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6
Conclusion

Measuring and making sequences is central to modern biology, biotechnology and biomedicine.

This dissertation has presented generative statistical methods for biological sequences, which en-

able inference from complex sequence data, rigorous accounting of uncertainty, and prediction of

unobserved or future sequences that can be made in the laboratory. Our focus has been on address-

ing fundamental statistical problems: regression (Chapter 1), latent variable modeling (Chapter 1),
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density estimation (Chapter 2), goodness-of-fit testing (Chapter 2), two-sample testing (Chapter 2),

sampling (Chapter 3) and robust estimation (Chapter 4). Our newmethods directly generalize and

replace widely successful heuristic methods for biological sequence analysis: MuE observation mod-

els generalize alignment preprocessing methods (Chapter 1), BEAR tests generalize kmer spectra

comparison methods (Chapter 2), and variational synthesis generalizes error prone PCR protocols

(Chapter 3). In some cases our attempts to find more rigorous versions of existing methods led to

novel statistical questions that had not been previously studied for any type of data. In particular,

our attempts to generalize profile hiddenMarkov model search algorithms led to Chapter 5, which

formalizes and studies the broader problem of data selection. Overall, the principles and methods

developed in this dissertation contribute to an emerging toolbox of generative statistical methods for

biological sequences. We next outline two key directions for future work that can make use of and

expand this toolbox.

6.1 Latent and hierarchical structure

For many scientific questions, it is important to incorporate latent and hierarchical structure into

generative sequence models. Consider for example the problem of forecasting pathogen evolution.

Epidemiological models of the spread of infection over time and space have been well-studied36.

Models of viral population dynamics, which account for inter-strain competition under selective

pressure from the immune system, have also been studied, along with phylogenetic methods for pre-

dicting evasion of the immune system146,163,188. Fitness models, based on evolutionary multi-species
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sequence data, have been shown to predict viral protein function215,235. Any or all of these models

may be informative in forecasting pathogen sequence evolution, including not only future strains of

existing human pathogens but also novel zoonotic spillovers. Generative Bayesian modeling offers

a rigorous framework for combining information from different types of data (e.g. other species’

genomes, infection counts, etc.) and accounting for complex dynamics (e.g. the time course of infec-

tion, immunological responses, etc.), via hierarchical parameter sharing and latent structure. Indeed,

we can extend arbitrary continuous vector space dynamics models to sequence space using the MuE

observation distribution (Chapter 1), while probabilistic programming languages such as Pyro23

enable building and inferring complex hierarchical models. BEAR goodness-of-fit and two-sample

tests (Chapter 2) allow these models to be criticized and checked. Thus, it seems possible to com-

bine our piecemeal understanding of pathogen evolution into larger generative sequence models

that can better forecast future sequences, and use these models to generate large libraries of likely

future sequences with which we can test candidate drugs and diagnostics prospectively. Similar op-

portunites abound in other areas of biological sequence statistics, for instance in forecasting changes

in the immune system and in the microbiome.

6.2 Causal inference

Another important area for future work is causal inference195. Consider, for example, questions

at the intersection of microbiome, diet and human health, such as occur in the context of inflam-

matory bowel diseases161,160,228. We might, for instance, be interested in measuring the causal im-
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pact of changes in diet on the metagenome, at nucleotide resolution. To estimate this causal effect

we would need a regression model which describes the conditional distribution of the outcome

(in this case, sequences) given treatment (in this case, diet) and any confounders. If we are focused

on a particular protein or RNAmolecule, we can use a MuE regression model (Chapter 1); if we

are interested in the entire metagenome, and the treatment and confounder are discrete and low-

dimensional, we can adapt BEARmodels for regression (Chapter 2).

Generative sequence models are not just useful, however, when we are interested in effects on se-

quences; they can also be useful in understanding the effects of sequences. Consider the problem

of estimating the impact of changes in the metagenome on disease, with diet a confounder that can

affect both the microbiome and disease. One way of adjusting for confounding is by using propen-

sity scores, which require a generative regression model for the treatment, i.e. sequences120. Or we

might be interested in causal inference problems where the metagenome is itself a confounder, in

which case to perform a backdoor adjustment we would need a density estimator for sequences; we

can apply the BEARmodel (Chapter 2). Note also that misspecification can bias causal estimates,

so effective nonparametric tests are especially important in causal inference; we can apply BEAR

tests (Chapter 2). Thus, our generative statistical methods open up new strategies for observational

causal inference with biological sequence data, beyond the naive “no confounder” assumption, with

possible applications in microbiology, immunology, evolutionary biology, agriculture and beyond.
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6.3 Broader implications

Increasing capacity to learn from complex biological sequence data can potentially have indirect

impacts on society, beyond direct technological applications in developing new therapies, diagnos-

tics, enzymes, etc.. In particular, it may substantially increase the value of biological sequence data,

as has been repeatedly seen in other areas of machine learning300. This includes sequence data not

just from humans and their pathogens, but from across all of life. For example, fitness estimation

methods, such as those discussed in Chapter 4, directly translate genome data from highly diverse

organisms into technologies for diagnosing disease and engineering proteins80,224. This makes bio-

diversity important not just in terms of the moral and ecological value of preserving unique species,

but also in terms of medical and economic value. The same is true of other emerging applications of

biological sequence statistics, such as genome mining6,59. Speculatively, the growth of companies

and organizations that depend on biological sequence data could potentially produce new economic

and political interests invested in biodiversity, as well as new incentives for privatization of biological

sequence data.

6.4 Conclusions

Generative statistical methods offer a powerful, rigorous and flexible strategy for learning from se-

quence data and forming predictions of new sequences that can be constructed in the laboratory.

Their potential for widespread impact will only grow as technologies for sequencing and synthesis

advance. The goal of this dissertation has been to help build stronger foundations for biological se-
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quence statistics, firmly rooted in the underlying statistical and biophysical theory. However, much

work remains to be done to realize the full potential of generative statistical methods for biological

sequences.
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Supplementary Material for Chapter 1
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A.1 Overview diagram and notation
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a(0)<latexit sha1_base64="HXv29XQUn7ZARZOORuDSYRNwG2A=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEYwTwgWUPvZJIMmZ1dZmaFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glhwbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SRVmDRiJS7QA1E1yyhuFGsHasGIaBYK1gfDvzW09MaR7JBzOJmR/iUPIBp2is1MLHtOyeT3vFkltx5yCrxMtICTLUe8Wvbj+iScikoQK17nhubPwUleFUsGmhm2gWIx3jkHUslRgy7afzc6fkzCp9MoiULWnIXP09kWKo9SQMbGeIZqSXvZn4n9dJzODaT7mME8MkXSwaJIKYiMx+J32uGDViYglSxe2thI5QITU2oYINwVt+eZU0qxXvolK9vyzVbrI48nACp1AGD66gBndQhwZQGMMzvMKbEzsvzrvzsWjNOdnMMfyB8/kDc0KO/A==</latexit> a(t)<latexit sha1_base64="jo1YusjEmJlgkW7rJ7zRPNdT4Q8=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEYwTwgWcPsZJIMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFR00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwvp35rSeujYjUA05i7od0qMRAMIpWatHHtIzn016x5FbcOcgq8TJSggz1XvGr249YEnKFTFJjOp4bo59SjYJJPi10E8NjysZ0yDuWKhpy46fzc6fkzCp9Moi0LYVkrv6eSGlozCQMbGdIcWSWvZn4n9dJcHDtp0LFCXLFFosGiSQYkdnvpC80ZygnllCmhb2VsBHVlKFNqGBD8JZfXiXNasW7qFTvL0u1myyOPJzAKZTBgyuowR3UoQEMxvAMr/DmxM6L8+58LFpzTjZzDH/gfP4A2tqPQA==</latexit>,

Y1
<latexit sha1_base64="COd9bgMQAyQeLiwwoaH4w8aIig0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/ZA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKwecJxwP6IDJULBKFrp/rHn9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AHdtY2F</latexit>

X1
<latexit sha1_base64="GMcOKVmvwmvqmGDsczkgBHPdu4Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh07f65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHcL42E</latexit>

W1
<latexit sha1_base64="OaoR4kwm5zVAMeKEBA7oVO5judI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00O57/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AHaqY2D</latexit>

L1
<latexit sha1_base64="vVJZumWKo0QoKJ2h/djGgmIRvgQ=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhCswl0UtAzaWFhENB+QHGFvM5cs2ds7dveEcOQn2FgoYusvsvPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDP1W0+oNI/loxkn6Ed0IHnIGTVWerjreb1S2a24M5Bl4uWkDDnqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZqRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjlZ1wmqUHJ5ovCVBATk+nfpM8VMiPGllCmuL2VsCFVlBmbTtGG4C2+vEya1Yp3XqneX5Rr13kcBTiGEzgDDy6hBrdQhwYwGMAzvMKbI5wX5935mLeuOPnMEfyB8/kDyeeNeA==</latexit>

A<latexit sha1_base64="syCOlYOHTr9OiHb75MRdxd2tYgU=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmIzGxIndYaInaWGIiHwlcyN6ywIa9vXN3zoQc/AkbC42x9e/Y+W9c4AoFXzLJy3szmZkXxFIYdN1vJ7e2vrG5ld8u7Ozu7R8UD48aJko043UWyUi3Amq4FIrXUaDkrVhzGgaSN4PR7cxvPnFtRKQecBxzP6QDJfqCUbRSq2O9YHI96RZLbtmdg6wSLyMlyFDrFr86vYglIVfIJDWm7bkx+inVKJjk00InMTymbEQHvG2poiE3fjq/d0rOrNIj/UjbUkjm6u+JlIbGjMPAdoYUh2bZm4n/ee0E+1d+KlScIFdssaifSIIRmT1PekJzhnJsCWVa2FsJG1JNGdqICjYEb/nlVdKolL2LcuW+UqreZHHk4QRO4Rw8uIQq3EEN6sBAwjO8wpvz6Lw4787HojXnZDPH8AfO5w8yP5AQ</latexit>

G
<latexit sha1_base64="3HdjaKidJtqs/X3kkLnJXIqnWM8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmIzGxIndYaEm00BIT+UjgQvaWBTbs7Z27cybk4E/YWGiMrX/Hzn/jAlco+JJJXt6bycy8IJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbmZ+84lrIyL1gOOY+yEdKNEXjKKVWh3rBZPbSbdYcsvuHGSVeBkpQYZat/jV6UUsCblCJqkxbc+N0U+pRsEknxY6ieExZSM64G1LFQ258dP5vVNyZpUe6UfalkIyV39PpDQ0ZhwGtjOkODTL3kz8z2sn2L/yU6HiBLlii0X9RBKMyOx50hOaM5RjSyjTwt5K2JBqytBGVLAheMsvr5JGpexdlCv3lVL1OosjDydwCufgwSVU4Q5qUAcGEp7hFd6cR+fFeXc+Fq05J5s5hj9wPn8AO12QFg==</latexit>

A<latexit sha1_base64="syCOlYOHTr9OiHb75MRdxd2tYgU=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmIzGxIndYaInaWGIiHwlcyN6ywIa9vXN3zoQc/AkbC42x9e/Y+W9c4AoFXzLJy3szmZkXxFIYdN1vJ7e2vrG5ld8u7Ozu7R8UD48aJko043UWyUi3Amq4FIrXUaDkrVhzGgaSN4PR7cxvPnFtRKQecBxzP6QDJfqCUbRSq2O9YHI96RZLbtmdg6wSLyMlyFDrFr86vYglIVfIJDWm7bkx+inVKJjk00InMTymbEQHvG2poiE3fjq/d0rOrNIj/UjbUkjm6u+JlIbGjMPAdoYUh2bZm4n/ee0E+1d+KlScIFdssaifSIIRmT1PekJzhnJsCWVa2FsJG1JNGdqICjYEb/nlVdKolL2LcuW+UqreZHHk4QRO4Rw8uIQq3EEN6sBAwjO8wpvz6Lw4787HojXnZDPH8AfO5w8yP5AQ</latexit>

T<latexit sha1_base64="zfWa4WVoHaq953Z/96SW48BgyDw=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmIzGxIndYaEm0scSErwQuZG9ZYMPe3rk7Z0IO/oSNhcbY+nfs/DcucIWCL5nk5b2ZzMwLYikMuu63k9vY3Nreye8W9vYPDo+KxydNEyWa8QaLZKTbATVcCsUbKFDydqw5DQPJW8H4bu63nrg2IlJ1nMTcD+lQiYFgFK3U7lovmNanvWLJLbsLkHXiZaQEGWq94le3H7Ek5AqZpMZ0PDdGP6UaBZN8VugmhseUjemQdyxVNOTGTxf3zsiFVfpkEGlbCslC/T2R0tCYSRjYzpDiyKx6c/E/r5Pg4MZPhYoT5IotFw0SSTAi8+dJX2jOUE4soUwLeythI6opQxtRwYbgrb68TpqVsndVrjxUStXbLI48nME5XIIH11CFe6hBAxhIeIZXeHMenRfn3flYtuacbOYU/sD5/AFPHpAj</latexit>

X2
<latexit sha1_base64="30vwItq6FO2Eh+k1NentqlVA3SE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh06/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QPds42F</latexit>

W2
<latexit sha1_base64="aGZcPP83L4yokRV3gmzzosB4G8A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh3a/1i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QPcLY2E</latexit>

Y2
<latexit sha1_base64="4cQzjieBS+G8ib5bpdDogP/G1uE=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/ZA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKwecJxwP6IDJULBKFrp/rFX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindeqd5dlGvXeRwFOIYTOAMPLqEGt1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QPfOY2G</latexit>

T<latexit sha1_base64="zfWa4WVoHaq953Z/96SW48BgyDw=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmIzGxIndYaEm0scSErwQuZG9ZYMPe3rk7Z0IO/oSNhcbY+nfs/DcucIWCL5nk5b2ZzMwLYikMuu63k9vY3Nreye8W9vYPDo+KxydNEyWa8QaLZKTbATVcCsUbKFDydqw5DQPJW8H4bu63nrg2IlJ1nMTcD+lQiYFgFK3U7lovmNanvWLJLbsLkHXiZaQEGWq94le3H7Ek5AqZpMZ0PDdGP6UaBZN8VugmhseUjemQdyxVNOTGTxf3zsiFVfpkEGlbCslC/T2R0tCYSRjYzpDiyKx6c/E/r5Pg4MZPhYoT5IotFw0SSTAi8+dJX2jOUE4soUwLeythI6opQxtRwYbgrb68TpqVsndVrjxUStXbLI48nME5XIIH11CFe6hBAxhIeIZXeHMenRfn3flYtuacbOYU/sD5/AFPHpAj</latexit>

A<latexit sha1_base64="syCOlYOHTr9OiHb75MRdxd2tYgU=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmIzGxIndYaInaWGIiHwlcyN6ywIa9vXN3zoQc/AkbC42x9e/Y+W9c4AoFXzLJy3szmZkXxFIYdN1vJ7e2vrG5ld8u7Ozu7R8UD48aJko043UWyUi3Amq4FIrXUaDkrVhzGgaSN4PR7cxvPnFtRKQecBxzP6QDJfqCUbRSq2O9YHI96RZLbtmdg6wSLyMlyFDrFr86vYglIVfIJDWm7bkx+inVKJjk00InMTymbEQHvG2poiE3fjq/d0rOrNIj/UjbUkjm6u+JlIbGjMPAdoYUh2bZm4n/ee0E+1d+KlScIFdssaifSIIRmT1PekJzhnJsCWVa2FsJG1JNGdqICjYEb/nlVdKolL2LcuW+UqreZHHk4QRO4Rw8uIQq3EEN6sBAwjO8wpvz6Lw4787HojXnZDPH8AfO5w8yP5AQ</latexit>

T<latexit sha1_base64="zfWa4WVoHaq953Z/96SW48BgyDw=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmIzGxIndYaEm0scSErwQuZG9ZYMPe3rk7Z0IO/oSNhcbY+nfs/DcucIWCL5nk5b2ZzMwLYikMuu63k9vY3Nreye8W9vYPDo+KxydNEyWa8QaLZKTbATVcCsUbKFDydqw5DQPJW8H4bu63nrg2IlJ1nMTcD+lQiYFgFK3U7lovmNanvWLJLbsLkHXiZaQEGWq94le3H7Ek5AqZpMZ0PDdGP6UaBZN8VugmhseUjemQdyxVNOTGTxf3zsiFVfpkEGlbCslC/T2R0tCYSRjYzpDiyKx6c/E/r5Pg4MZPhYoT5IotFw0SSTAi8+dJX2jOUE4soUwLeythI6opQxtRwYbgrb68TpqVsndVrjxUStXbLI48nME5XIIH11CFe6hBAxhIeIZXeHMenRfn3flYtuacbOYU/sD5/AFPHpAj</latexit>

C
<latexit sha1_base64="Ia+sebdw/xy3zSBUF7ORKj7q9hc=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmIzGxIndYaEmkscREPhK4kL1lDjbs7Z27eyYE+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWBUm/utJ1Sax/LBjBP0IzqQPOSMGiu1u9YLprVpr1hyy+4CZJ14GSlBhnqv+NXtxyyNUBomqNYdz02MP6HKcCZwVuimGhPKRnSAHUsljVD7k8W9M3JhlT4JY2VLGrJQf09MaKT1OApsZ0TNUK96c/E/r5Oa8MafcJmkBiVbLgpTQUxM5s+TPlfIjBhbQpni9lbChlRRZmxEBRuCt/ryOmlWyt5VuXJfKVVvszjycAbncAkeXEMV7qAODWAg4Ble4c15dF6cd+dj2ZpzsplT+APn8wc1SZAS</latexit>

A<latexit sha1_base64="syCOlYOHTr9OiHb75MRdxd2tYgU=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmIzGxIndYaInaWGIiHwlcyN6ywIa9vXN3zoQc/AkbC42x9e/Y+W9c4AoFXzLJy3szmZkXxFIYdN1vJ7e2vrG5ld8u7Ozu7R8UD48aJko043UWyUi3Amq4FIrXUaDkrVhzGgaSN4PR7cxvPnFtRKQecBxzP6QDJfqCUbRSq2O9YHI96RZLbtmdg6wSLyMlyFDrFr86vYglIVfIJDWm7bkx+inVKJjk00InMTymbEQHvG2poiE3fjq/d0rOrNIj/UjbUkjm6u+JlIbGjMPAdoYUh2bZm4n/ee0E+1d+KlScIFdssaifSIIRmT1PekJzhnJsCWVa2FsJG1JNGdqICjYEb/nlVdKolL2LcuW+UqreZHHk4QRO4Rw8uIQq3EEN6sBAwjO8wpvz6Lw4787HojXnZDPH8AfO5w8yP5AQ</latexit>

X3
<latexit sha1_base64="gDVFusNSVCdVPb+V0cF1j7bED74=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY9FLx4r2lpoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/DEY38z8xyeujYjVA04S7kd0qEQoGEUr3Xf69X654lbdOcgq8XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGF75mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLq6Rdq3r1au3uotK4zuMowgmcwjl4cAkNuIUmtIDBEJ7hFd4c6bw4787HorXg5DPH8AfO5w/fN42G</latexit>

Y3
<latexit sha1_base64="eNjw15IPyYN35gfE5jtYW4C1Fd8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xysPAhswOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaHSPJYPZpygH9GB5CFn1Fjp/rFX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStmrlit3F6XadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8A4L2Nhw==</latexit>

T<latexit sha1_base64="zfWa4WVoHaq953Z/96SW48BgyDw=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmIzGxIndYaEm0scSErwQuZG9ZYMPe3rk7Z0IO/oSNhcbY+nfs/DcucIWCL5nk5b2ZzMwLYikMuu63k9vY3Nreye8W9vYPDo+KxydNEyWa8QaLZKTbATVcCsUbKFDydqw5DQPJW8H4bu63nrg2IlJ1nMTcD+lQiYFgFK3U7lovmNanvWLJLbsLkHXiZaQEGWq94le3H7Ek5AqZpMZ0PDdGP6UaBZN8VugmhseUjemQdyxVNOTGTxf3zsiFVfpkEGlbCslC/T2R0tCYSRjYzpDiyKx6c/E/r5Pg4MZPhYoT5IotFw0SSTAi8+dJX2jOUE4soUwLeythI6opQxtRwYbgrb68TpqVsndVrjxUStXbLI48nME5XIIH11CFe6hBAxhIeIZXeHMenRfn3flYtuacbOYU/sD5/AFPHpAj</latexit>

A<latexit sha1_base64="syCOlYOHTr9OiHb75MRdxd2tYgU=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmIzGxIndYaInaWGIiHwlcyN6ywIa9vXN3zoQc/AkbC42x9e/Y+W9c4AoFXzLJy3szmZkXxFIYdN1vJ7e2vrG5ld8u7Ozu7R8UD48aJko043UWyUi3Amq4FIrXUaDkrVhzGgaSN4PR7cxvPnFtRKQecBxzP6QDJfqCUbRSq2O9YHI96RZLbtmdg6wSLyMlyFDrFr86vYglIVfIJDWm7bkx+inVKJjk00InMTymbEQHvG2poiE3fjq/d0rOrNIj/UjbUkjm6u+JlIbGjMPAdoYUh2bZm4n/ee0E+1d+KlScIFdssaifSIIRmT1PekJzhnJsCWVa2FsJG1JNGdqICjYEb/nlVdKolL2LcuW+UqreZHHk4QRO4Rw8uIQq3EEN6sBAwjO8wpvz6Lw4787HojXnZDPH8AfO5w8yP5AQ</latexit>

G
<latexit sha1_base64="3HdjaKidJtqs/X3kkLnJXIqnWM8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmIzGxIndYaEm00BIT+UjgQvaWBTbs7Z27cybk4E/YWGiMrX/Hzn/jAlco+JJJXt6bycy8IJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbmZ+84lrIyL1gOOY+yEdKNEXjKKVWh3rBZPbSbdYcsvuHGSVeBkpQYZat/jV6UUsCblCJqkxbc+N0U+pRsEknxY6ieExZSM64G1LFQ258dP5vVNyZpUe6UfalkIyV39PpDQ0ZhwGtjOkODTL3kz8z2sn2L/yU6HiBLlii0X9RBKMyOx50hOaM5RjSyjTwt5K2JBqytBGVLAheMsvr5JGpexdlCv3lVL1OosjDydwCufgwSVU4Q5qUAcGEp7hFd6cR+fFeXc+Fq05J5s5hj9wPn8AO12QFg==</latexit>

G
<latexit sha1_base64="3HdjaKidJtqs/X3kkLnJXIqnWM8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmIzGxIndYaEm00BIT+UjgQvaWBTbs7Z27cybk4E/YWGiMrX/Hzn/jAlco+JJJXt6bycy8IJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbmZ+84lrIyL1gOOY+yEdKNEXjKKVWh3rBZPbSbdYcsvuHGSVeBkpQYZat/jV6UUsCblCJqkxbc+N0U+pRsEknxY6ieExZSM64G1LFQ258dP5vVNyZpUe6UfalkIyV39PpDQ0ZhwGtjOkODTL3kz8z2sn2L/yU6HiBLlii0X9RBKMyOx50hOaM5RjSyjTwt5K2JBqytBGVLAheMsvr5JGpexdlCv3lVL1OosjDydwCufgwSVU4Q5qUAcGEp7hFd6cR+fFeXc+Fq05J5s5hj9wPn8AO12QFg==</latexit>

T<latexit sha1_base64="zfWa4WVoHaq953Z/96SW48BgyDw=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmIzGxIndYaEm0scSErwQuZG9ZYMPe3rk7Z0IO/oSNhcbY+nfs/DcucIWCL5nk5b2ZzMwLYikMuu63k9vY3Nreye8W9vYPDo+KxydNEyWa8QaLZKTbATVcCsUbKFDydqw5DQPJW8H4bu63nrg2IlJ1nMTcD+lQiYFgFK3U7lovmNanvWLJLbsLkHXiZaQEGWq94le3H7Ek5AqZpMZ0PDdGP6UaBZN8VugmhseUjemQdyxVNOTGTxf3zsiFVfpkEGlbCslC/T2R0tCYSRjYzpDiyKx6c/E/r5Pg4MZPhYoT5IotFw0SSTAi8+dJX2jOUE4soUwLeythI6opQxtRwYbgrb68TpqVsndVrjxUStXbLI48nME5XIIH11CFe6hBAxhIeIZXeHMenRfn3flYtuacbOYU/sD5/AFPHpAj</latexit>

...

W3
<latexit sha1_base64="85ZaL31stqkxO1V/vzIzvlfSAps=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkr6LHoxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ6aPdr/VLZrbhzkFXi5aQMORr90ldvELM0QmmYoFp3PTcxfkaV4UzgtNhLNSaUjekQu5ZKGqH2s/mpU3JulQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtO0YbgLb+8SlrVilerVO8vy/WbPI4CnMIZXIAHV1CHO2hAExgM4Rle4c0Rzovz7nwsWtecfOYE/sD5/AHdsY2F</latexit>

Da
ta
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1. Generate regressor. 2. Add mutations with MuE.

✓
<latexit sha1_base64="VRbFNfU2yJrhxTioHNG9u2eQ22g=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9HHGm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwyv/UyoJEWu2GJRmEqCMZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSqlW9i2rt/rJSv8njKMIJnMI5eHAFdbiDBjSBwSM8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/pUWPLA==</latexit>

✓
<latexit sha1_base64="VRbFNfU2yJrhxTioHNG9u2eQ22g=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9HHGm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwyv/UyoJEWu2GJRmEqCMZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSqlW9i2rt/rJSv8njKMIJnMI5eHAFdbiDBjSBwSM8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/pUWPLA==</latexit>

K<latexit sha1_base64="HQfadDQrozr2PpvG928HQmjcOjI=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL4KXBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDvzW0+oNI/lgxkn6Ed0IHnIGTVWqt/3iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2UK/XLUvUmiyMPJ3AK5+DBFVThDmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP6NTjNM=</latexit>1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

1<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

...

...

L1
<latexit sha1_base64="vVJZumWKo0QoKJ2h/djGgmIRvgQ=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhCswl0UtAzaWFhENB+QHGFvM5cs2ds7dveEcOQn2FgoYusvsvPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDP1W0+oNI/loxkn6Ed0IHnIGTVWerjreb1S2a24M5Bl4uWkDDnqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZqRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjlZ1wmqUHJ5ovCVBATk+nfpM8VMiPGllCmuL2VsCFVlBmbTtGG4C2+vEya1Yp3XqneX5Rr13kcBTiGEzgDDy6hBrdQhwYwGMAzvMKbI5wX5935mLeuOPnMEfyB8/kDyeeNeA==</latexit>

a(0)<latexit sha1_base64="HXv29XQUn7ZARZOORuDSYRNwG2A=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEYwTwgWUPvZJIMmZ1dZmaFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glhwbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SRVmDRiJS7QA1E1yyhuFGsHasGIaBYK1gfDvzW09MaR7JBzOJmR/iUPIBp2is1MLHtOyeT3vFkltx5yCrxMtICTLUe8Wvbj+iScikoQK17nhubPwUleFUsGmhm2gWIx3jkHUslRgy7afzc6fkzCp9MoiULWnIXP09kWKo9SQMbGeIZqSXvZn4n9dJzODaT7mME8MkXSwaJIKYiMx+J32uGDViYglSxe2thI5QITU2oYINwVt+eZU0qxXvolK9vyzVbrI48nACp1AGD66gBndQhwZQGMMzvMKbEzsvzrvzsWjNOdnMMfyB8/kDc0KO/A==</latexit> a(t)<latexit sha1_base64="jo1YusjEmJlgkW7rJ7zRPNdT4Q8=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEYwTwgWcPsZJIMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFR00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwvp35rSeujYjUA05i7od0qMRAMIpWatHHtIzn016x5FbcOcgq8TJSggz1XvGr249YEnKFTFJjOp4bo59SjYJJPi10E8NjysZ0yDuWKhpy46fzc6fkzCp9Moi0LYVkrv6eSGlozCQMbGdIcWSWvZn4n9dJcHDtp0LFCXLFFosGiSQYkdnvpC80ZygnllCmhb2VsBHVlKFNqGBD8JZfXiXNasW7qFTvL0u1myyOPJzAKZTBgyuowR3UoQEMxvAMr/DmxM6L8+58LFpzTjZzDH/gfP4A2tqPQA==</latexit>,

a(0)<latexit sha1_base64="HXv29XQUn7ZARZOORuDSYRNwG2A=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEYwTwgWUPvZJIMmZ1dZmaFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glhwbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SRVmDRiJS7QA1E1yyhuFGsHasGIaBYK1gfDvzW09MaR7JBzOJmR/iUPIBp2is1MLHtOyeT3vFkltx5yCrxMtICTLUe8Wvbj+iScikoQK17nhubPwUleFUsGmhm2gWIx3jkHUslRgy7afzc6fkzCp9MoiULWnIXP09kWKo9SQMbGeIZqSXvZn4n9dJzODaT7mME8MkXSwaJIKYiMx+J32uGDViYglSxe2thI5QITU2oYINwVt+eZU0qxXvolK9vyzVbrI48nACp1AGD66gBndQhwZQGMMzvMKbEzsvzrvzsWjNOdnMMfyB8/kDc0KO/A==</latexit> a(t)<latexit sha1_base64="jo1YusjEmJlgkW7rJ7zRPNdT4Q8=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEYwTwgWcPsZJIMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFR00SJZrzBIhnpdkANl0LxBgqUvB1rTsNA8lYwvp35rSeujYjUA05i7od0qMRAMIpWatHHtIzn016x5FbcOcgq8TJSggz1XvGr249YEnKFTFJjOp4bo59SjYJJPi10E8NjysZ0yDuWKhpy46fzc6fkzCp9Moi0LYVkrv6eSGlozCQMbGdIcWSWvZn4n9dJcHDtp0LFCXLFFosGiSQYkdnvpC80ZygnllCmhb2VsBHVlKFNqGBD8JZfXiXNasW7qFTvL0u1myyOPJzAKZTBgyuowR3UoQEMxvAMr/DmxM6L8+58LFpzTjZzDH/gfP4A2tqPQA==</latexit>,

<̀latexit sha1_base64="3GQWqpO7cQAS3xPKV+Ids7+Coq4=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120i7d3YTdjVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYsGNdd1vZ219Y3Nru7RT3t3bPzisHB23TZRohi0WiUh3A2pQcIUty63AbqyRykBgJ5jc5X7nCbXhkXq00xh9SUeKh5xRm0t9FGJQqbo1dw6ySryCVKFAc1D56g8jlkhUlglqTM9zY+unVFvOBM7K/cRgTNmEjrCXUUUlGj+d3zoj55kyJGGks1KWzNXfEymVxkxlkHVKasdm2cvF/7xeYsMbP+UqTiwqtlgUJoLYiOSPkyHXyKyYZoQyzbNbCRtTTZnN4ilnIXjLL6+Sdr3mXdbqD1fVxm0RRwlO4QwuwINraMA9NKEFDMbwDK/w5kjnxXl3Phata04xcwJ/4Hz+AA60jj8=</latexit> c
<latexit sha1_base64="0jIMiY3Xg6FeHydWT6UzrJgEy0o=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJuuXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSrlW9i2qteVmp3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHx7OM6w==</latexit>

<̀latexit sha1_base64="3GQWqpO7cQAS3xPKV+Ids7+Coq4=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2lM120i7d3YTdjVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYsGNdd1vZ219Y3Nru7RT3t3bPzisHB23TZRohi0WiUh3A2pQcIUty63AbqyRykBgJ5jc5X7nCbXhkXq00xh9SUeKh5xRm0t9FGJQqbo1dw6ySryCVKFAc1D56g8jlkhUlglqTM9zY+unVFvOBM7K/cRgTNmEjrCXUUUlGj+d3zoj55kyJGGks1KWzNXfEymVxkxlkHVKasdm2cvF/7xeYsMbP+UqTiwqtlgUJoLYiOSPkyHXyKyYZoQyzbNbCRtTTZnN4ilnIXjLL6+Sdr3mXdbqD1fVxm0RRwlO4QwuwINraMA9NKEFDMbwDK/w5kjnxXl3Phata04xcwJ/4Hz+AA60jj8=</latexit> c
<latexit sha1_base64="0jIMiY3Xg6FeHydWT6UzrJgEy0o=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJuuXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSrlW9i2qteVmp3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHx7OM6w==</latexit>

Figure A.1: MuE observationmodel. Overview of the generative process inMuE observationmodels. First, the latent

regressor sequenceXi is sampled. Then, theMuE distribution addsmutations to generateYi. A latent variableWi

controls the pattern of insertions and deletions. Global parameters that must be inferred are highlighted in yellow.

198



Table A.1: Notation forMuE observationmodelsA summary of the notation used in themain text, for convenient refer-

ence. Space refers to the space the variable lives in, i.e.N ∈ N, the set of positive non-zero integers.
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A.2 Theory

A.2.1 IllustratingMSA pathologies

M
SA

 w
id

th
   

   
 

J <latexit sha1_base64="9AyvBswXAUOScjhKJQccLbYF3po=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL+IpAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c781hMqzWP5YMYJ+hEdSB5yRo2V6ve9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCa3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpexflSv2yVL3J4sjDCZzCOXhwBVW4gxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD6HPjNI=</latexit>

Datapoints N
<latexit sha1_base64="FUcBaOutMug4qVqfNLwic8W1axE=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL54kAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c781hMqzWP5YMYJ+hEdSB5yRo2V6ve9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCa3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpexflSv2yVL3J4sjDCZzCOXhwBVW4gxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD6ffjNY=</latexit>

Figure A.2: MSAwidth can divergewith dataset size.MSAwidthJ as a function of sequencesN in the dataset. BCR is a

B cell receptor dataset, TCR a T cell receptor dataset.

To illustrate the problems described in Section 4.1 of the main text, we examined a B cell recep-

tor dataset and a T cell receptor dataset (the 10x Genomics datasets described in Section A.6). Se-

quences were subsampled and aligned using MUSCLE70, a standardMSA algorithm. Figure A.2

shows the growth inMSA width J as a function of the subsampled dataset size.

A.2.2 Proof of Proposition 4.4

To prove the result, we will examine each existing model individually; exact specifications and as-

sumptions for each model are provided in their corresponding section. The probability of the

Markov chain terminating given that it is at a state k is denoted t(t)k , and the probability of the

Markov chain terminating initially (that is, of the Markov chain taking zero steps) is denoted t(0).
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Algorithm 1 Pairwise alignment construction

Without loss of generality, we will write transition probabilities a(t) and a(0) without conditioning

on the Markov chain not terminating, i.e.
∑

k′ a
(t)
k,k′ + t

(t)
k = 1. The conditional transition prob-

ability can of course be computed as a(t)
k,k′/(1 − t(t)k ). In general, we will also index latent states k

of the MuE by their corresponding (m, g) value where (in line with the definition of gl andml)

g = I(k > M) andm = k −Mg; we will use k and (m, g) interchangeably for any given state.

It is useful for understanding the following results to have in mind a particular example to illus-
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trate the definitions in the main text.

Sequences Pairwise alignmentA j and g representation

Y = ATG A(y) = A--TG- (j1, . . . , jL) = (1, 4, 5)

X = TCTG A(x) = -TCT-G (g1, . . . , gL) = (1, 0, 1)

It is also useful to defineml := Wl −Mgl, which indexes the position within the first or second

block of states. For the example we have, (m1, . . . ,mL) = (1, 3, 4).

Remark A.2.1. Given sequencesX and Y of lengthM andL respectively, (j1, . . . , jL) and (g1, . . . , gL)

uniquely define a pairwise alignmentA.

Proof. Applying Definition 4.2 and the definitions of (j1, . . . , jL) and (g1, . . . , gL) iteratively to

each column of the alignment leads to the construction ofA in Algorithm 1.

Thorne-Kishino-Felsenstein

The Thorne-Kishino-Felsenstein (TKF) model is a continuous-time stochastic process model of

sequence evolution that satisfies detailed balance257.

Statement LetX be a one-hot encoding of the initial sequence. LetD = B and let π be the

TKF parameter corresponding to the equilibrium probability of each letter. For allm ∈ {1, ...,M}

and b ∈ {1, ..., B}, assign

cm,b := πb. (A.1)

Let λ > 0 and µ > 0 be the TKF indel rate parameters, with λ < µ, and let τ > 0 be the
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divergence time parameter. Define

β(τ) := 1− e−(µ−λ)τ

µ− λe−(µ−λ)τ . (A.2)

Define the transition matrix and termination probability as

a
(t)
k,k′ :=



[µβ(τ)]m′−m−1+ge−µτ [1− λβ(τ)] ifm− g < m′ < M + 1

and g′ = 0

λβ(τ) ifm− g = m′ − 1 and g′ = 1

[µβ(τ)]m′−m−2+g[1− e−µτ − µβ(τ)][1− λβ(τ)] ifm− g < m′ − 1 and g′ = 1

0 otherwise.

(A.3)

t
(t)
k := [1− λβ(τ)][µβ(τ)]M−m+g (A.4)

The initial transition vector follows the same form, and can be written as a(0)
k := a

(t)
0,k, and the

initial termination probability can be written t(0) := t
(t)
0 (i.e. they match Equations A.3 and A.4

with (m, g) = (0, 0) plugged in). Let s > 0 be the TKF substitution rate parameter and define the

substitution matrix

ℓb,b′ :=


e−sτ + πb′(1− e−sτ ) if b = b′

πb′(1− e−sτ ) if b 6= b′

(A.5)
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A Bx
<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit> TACGC

TACGC 
TACGC 
TACGC 
TACGC 
TACGC 
TACGC 
TACGC 
TACGC 
TACGC 
TACGC

⌧ = 0
<latexit sha1_base64="5tXDnvRaCcOkFHxen56t69jd2H0=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisYD+gDWWz3bRLN5u4OxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrBxwn3I/oQIlQMIpWaneRpuSauL1S2a24M5Bl4uWkDDnqvdJXtx+zNOIKmaTGdDw3QT+jGgWTfFLspoYnlI3ogHcsVTTixs9m907IqVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzyM6GSFLli80VhKgnGZPo86QvNGcqxJZRpYW8lbEg1ZWgjKtoQvMWXl0mzWvHOK9X7i3LtJo+jAMdwAmfgwSXU4A7q0AAGEp7hFd6cR+fFeXc+5q0rTj5zBH/gfP4AxASPIQ==</latexit>

TAACG 
TACGC 
TACGC 
TACGC 
TACGC 
TACGC 
ACGC 
TACGGC 
TACGC 
TACGC

⌧ = 1
<latexit sha1_base64="MewjwqUgsYwYOHNBQ7Ozoa3LiVQ=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisYD+gDWWz3bRLN5u4OxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrBxwn3I/oQIlQMIpWaneRpuSaeL1S2a24M5Bl4uWkDDnqvdJXtx+zNOIKmaTGdDw3QT+jGgWTfFLspoYnlI3ogHcsVTTixs9m907IqVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzyM6GSFLli80VhKgnGZPo86QvNGcqxJZRpYW8lbEg1ZWgjKtoQvMWXl0mzWvHOK9X7i3LtJo+jAMdwAmfgwSXU4A7q0AAGEp7hFd6cR+fFeXc+5q0rTj5zBH/gfP4AxYiPIg==</latexit>

CGC 
ATAACCGC 
TCGC 
TTCGC 
TCGC 
TAGC 
AGC 
TACGC 
GGCGC 
CTACC

⌧ = 10
<latexit sha1_base64="GStp6dgkdLZuFBrAb3sFpKhCB0w=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisYD+kDWWz3bRLN5uwOxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrBxwn3I/oQIlQMIpWeuwiTck18dxeqexW3BnIMvFyUoYc9V7pq9uPWRpxhUxSYzqem6CfUY2CST4pdlPDE8pGdMA7lioaceNns4Mn5NQqfRLG2pZCMlN/T2Q0MmYcBbYzojg0i95U/M/rpBhe+ZlQSYpcsfmiMJUEYzL9nvSF5gzl2BLKtLC3EjakmjK0GRVtCN7iy8ukWa1455Xq/UW5dpPHUYBjOIEz8OASanAHdWgAgwie4RXeHO28OO/Ox7x1xclnjuAPnM8fNZ2PXA==</latexit>

GTTC 
TG 
CATATCACT 
C 
CAA 
TCG 
GAC 
AA 

TT

⌧ = 100
<latexit sha1_base64="vYzChYLVBLmJaHphGYgTFifawkY=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisYD+wDWWz3bRLN5uwOxFK6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrBxwn3I/oQIlQMIpWeuwiTck18Vy3Vyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42eziCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimGV34mVJIiV2y+KEwlwZhM3yd9oTlDObaEMi3srYQNqaYMbUhFG4K3+PIyaVYr3nmlen9Rrt3kcRTgGE7gDDy4hBrcQR0awEDBM7zCm2OcF+fd+Zi3rjj5zBH8gfP5A6XVj5Y=</latexit>

TACGC 
TACAGC 
TACGC 
TACGC 
TCGC 
TACGC 
TACGC 
TACGC 
TAAGC 
TACGC

s = 0.01
<latexit sha1_base64="lJg5/w2+ChqtMkgI76K1Z9nu1/I=">AAAB7XicbVDLSgMxFL3xWeur6tJNsAiuykwVdCMU3bisYB/QDiWTZtrYTDIkGaEM/Qc3LhRx6/+4829M21lo64GQwzn3cu89YSK4sZ73jVZW19Y3Ngtbxe2d3b390sFh06hUU9agSijdDolhgkvWsNwK1k40I3EoWCsc3U791hPThiv5YMcJC2IykDzilFgnNc21V/H8XqnsvhnwMvFzUoYc9V7pq9tXNI2ZtFQQYzq+l9ggI9pyKtik2E0NSwgdkQHrOCpJzEyQzbad4FOn9HGktHvS4pn6uyMjsTHjOHSVMbFDs+hNxf+8TmqjqyDjMkktk3Q+KEoFtgpPT8d9rhm1YuwIoZq7XTEdEk2odQEVXQj+4snLpFmt+OeV6v1FuXaTx1GAYziBM/DhEmpwB3VoAIVHeIZXeEMKvaB39DEvXUF5zxH8Afr8ARrnjik=</latexit>

TACGC 
TACGC 
AACGC 
TACGC 
TACGC 
TACGC 
TGCGC 
TACGC 
TACGC 
TACGC

s = 0.1
<latexit sha1_base64="C846A6po7mbwYgH/mHiZHuZtC4Y=">AAAB7HicbVBNS8NAEJ2tX7V+VT16WSyCp5BUQS9C0YvHCqYttKFstpt26WYTdjdCCf0NXjwo4tUf5M1/47bNQVsfDDzem2FmXpgKro3rfqPS2vrG5lZ5u7Kzu7d/UD08aukkU5T5NBGJ6oREM8El8w03gnVSxUgcCtYOx3czv/3ElOaJfDSTlAUxGUoecUqMlXx94zpev1pzHXcOvEq8gtSgQLNf/eoNEprFTBoqiNZdz01NkBNlOBVsWullmqWEjsmQdS2VJGY6yOfHTvGZVQY4SpQtafBc/T2Rk1jrSRzazpiYkV72ZuJ/Xjcz0XWQc5lmhkm6WBRlApsEzz7HA64YNWJiCaGK21sxHRFFqLH5VGwI3vLLq6RVd7wLp/5wWWvcFnGU4QRO4Rw8uIIG3EMTfKDA4Rle4Q1J9ILe0ceitYSKmWP4A/T5A6vuje8=</latexit>

TACGT 
TACGC 
CACGA 
GCTGT 
GACGC 
TCAC 
TGGGT 
TACCA 
GATGC 
TTCGC

s = 1
<latexit sha1_base64="i6zFuAo4BrJsMFOXgaBbllaY0+8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9CIUvXisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrRxwn3I/oQIlQMIpWejDXXq9UdivuDGSZeDkpQ456r/TV7ccsjbhCJqkxHc9N0M+oRsEknxS7qeEJZSM64B1LFY248bPZqRNyapU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK/8TKgkRa7YfFGYSoIxmf5N+kJzhnJsCWVa2FsJG1JNGdp0ijYEb/HlZdKsVrzzSvX+oly7yeMowDGcwBl4cAk1uIM6NIDBAJ7hFd4c6bw4787HvHXFyWeO4A+czx/Rp419</latexit>

TGTTG 
GACAT 
GGGGC 
TTCCG 
CTCAT 
GAAAG 
CGTGC 
ATATC 
TACAA 
GATAG

s = 10
<latexit sha1_base64="mO3M/53YPix5QsEQsLWLZnmHvJQ=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoBeh6MVjBfsBbSib7aZdursJuxuhhP4FLx4U8eof8ua/cZPmoK0PBh7vzTAzL4g508Z1v53S2vrG5lZ5u7Kzu7d/UD086ugoUYS2ScQj1QuwppxJ2jbMcNqLFcUi4LQbTO8yv/tElWaRfDSzmPoCjyULGcEmk/SN5w6rNbfu5kCrxCtIDQq0htWvwSgiiaDSEI617ntubPwUK8MIp/PKINE0xmSKx7RvqcSCaj/Nb52jM6uMUBgpW9KgXP09kWKh9UwEtlNgM9HLXib+5/UTE177KZNxYqgki0VhwpGJUPY4GjFFieEzSzBRzN6KyAQrTIyNp2JD8JZfXiWdRt27qDceLmvN2yKOMpzAKZyDB1fQhHtoQRsITOAZXuHNEc6L8+58LFpLTjFzDH/gfP4AQD+Ntw==</latexit>

x
<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit> TACGC

Figure A.3: Samples from the Thorne-Kishino-Felsensteinmodel. Initial sequence TACGC,µ = 0.02, andλ = 0.01. A.
s = 0.01 and varying τ . B. τ = 1 and varying s.

With these definitions, Y ∼ MuE(X, c, ℓ, a(0), a(t)) is the distribution of the Thorne-Kishino-

Felsenstein model after the sequenceX evolves for time τ . Note that the limit τ → 0 is the no-

mutation limit. Figure A.3 illustrates samples from the TKFmodel with changing parameters.

Proof Wewill show that the joint probability ofW and Y under the MuE distribution is iden-

tical to the joint probability of the corresponding alignment pairwise alignment and Y under the

TKFmodel. To start, we systematically enumerate state transitions in the MuEmodel and compute

the corresponding probability factor under the TKF alignment scoring system. Our alignment nota-

tion in this section follows the original paper. “X” represents a residue and “-” a gap. “.” represents

the “immortal link” in the model, the start of the sequence. We use “$” as a termination symbol.

Following the original paper, we define, for ν ∈ {1, 2, . . .},

pν(τ) := e−µτ [1− λβ(τ)][λβ(τ)]ν−1

p′
0(τ) := µβ(τ)

p′
ν(τ) := [1− e−µτ − µβ(τ)][1− λβ(τ)][λβ(τ)]ν−1

p′′
ν(τ) := [1− λβ(τ)][λβ(τ)]ν−1

(A.6)
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The TKFmodel assigns probabilities to a pairwise alignment based on the pattern of residues and

gaps; we will break down possible pairwise alignments into chunks corresponding to state transi-

tions under the MuE and compute the probability factor that they contribute under the TKF scor-

ing system. When enumerating transitions in the Markov model we put a “|” symbol to the right of

the residue we are transitioning from.

1. Transitioning from a state (m, 0) to a state (m′ > m, 0) gives the probability factor

[p′
0(τ)]m′−m−1p1(τ) = [µβ(τ)]m′−m−1e−µτ [1 − λβ(τ)] according to the TKF scor-

ing system.

X | X ... X X

X | - ... - X

2. Transitioning from (m, 1) to (m′ ≥ m, 0) gives the factor

[p′
0(τ)]m′−mp1(τ) = [µβ(τ)]m′−me−µτ [1− λβ(τ)].

- | X ... X X

X | - ... - X

3. Transitioning from (m, 1) to (m, 1), situation 1. This gives a factor pν+2(t)
pν+1(t) = λβ(τ).

X - ... - | -

X X ... X | X

4. Transitioning from (m, 1) to (m, 1), situation 2. This gives a factor p′
ν+2(τ)

p′
ν+1(τ) = λβ(τ).

205



X - ... - | -

- X ... X | X

5. Transitioning from (m, 0) to (m+ 1, 1). This gives a factor p2(τ)
p1(τ) = λβ(τ).

X | -

X | X

6. Transitioning from (m, 0) to (m′ > m+ 1, 1). This gives a factor [p′
0(τ)]m′−m−2p′

1(τ) =

[µβ(τ)]m′−m−2[1− e−µτ − µβ(τ)][1− λβ(τ)].

X | X ... X -

X | - ... - X

7. Transitioning from (m, 1) to (m′ > m, 1). This gives a factor [p′
0(τ)]m′−m−1p′

1(τ) =

[µβ(τ)]m′−m−1[1− e−µτ − µβ(τ)][1− λβ(τ)].

- | X ... X -

X | - ... - X

8. Terminating after (m, 0). This gives a factor [p′
0(τ)]M−m = [µβ(τ)]M−m.

X | X ... X $

X | - ... - $

9. Terminating after (m, 1). This gives a factor [p′
0(τ)]M+1−m = [µβ(τ)]M+1−m.
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- | X ... X $

X | - ... - $

10. Initial transition to (1, 1). This gives a factor p′′
2(τ) = p′′

1(τ)λβ(τ) = [1− λβ(τ)][λβ(τ)].

. | -

. | X

11. Initial transition to (m, 0). This gives a factor

p′′
1(τ)[p′

0(τ)]m−1p1(τ) = [1− λβ(τ)][µβ(τ)]m−1e−µτ [1− λβ(τ)].

. | X ... X X

. | - ... - X

12. Initial transition to (m > 1, 1). This gives a factor p′′
1(τ)[p′

0(τ)]m−2p′
1(τ) = [1 −

λβ(τ)][µβ(τ)]m−2[1− e−µτ − µβ(τ)][1− λβ(τ)].

. | X ... X -

. | - ... - X

13. Terminating in the first step. This gives a factor [p′
0(τ)]M = [µβ(τ)]M .

. | X ... X $

. | - ... - $
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Compiling these results yields the probability factors associated with each transition between states

(m, g)→ (m′, g′) :



[µβ(t)]m′−m−1+ge−µt[1− λβ(t)]

ifm− g < m′ < M + 1 and g′ = 0

λβ(t) ifm− g = m′ − 1 and g′ = 1

[µβ(t)]m′−m−2+g[1− e−µt − µβ(t)][1− λβ(t)]

ifm− g < m′ − 1 and g′ = 1

0 otherwise

(m, g)→ termination : [µβ(t)]M−m+g

(A.7)
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And with each initial transition

initial→ (m, g) :



[1− λβ(t)][µβ(t)]m−1e−µt[1− λβ(t)] if 0 < m < M + 1

and g = 0

[1− λβ(t)]λβ(t) ifm = 1 and g = 1

[1− λβ(t)][µβ(t)]m−2

×[1− e−µt − µβ(t)][1− λβ(t)] if 1 < m and g = 1

0 otherwise

initial→ termination : [1− λβ(t)][µβ(t)]M

(A.8)

However, these are unnormalized probability factors, not complete probabilities. Note that every

alignment will include a factor [1− λβ(t)], which in the original TKF description is associated with

the initial transition. However, if we instead rearrange this factor and assign it to the final transition

we obtain the transition matrix given in Equation A.3. We can check that this transition matrix

209



normalized. From a state (m, 0), the total outward transition probability is one:

M∑
m′=m+1

[µβ]m′−m−1e−µτ [1− λβ] + λβ +
M+1∑

m′=m+2
[µβ]m′−m−2[1− e−µτ − µβ][1− λβ]

+ [µβ]M−m(1− λβ)

= 1− (µβ)M−m

1− µβ
[1− e−µτ − µβ + e−µτ ][1− λβ] + λβ + [µβ]M−m(1− λβ)

= 1− (µβ)M−m[1− λβ] + [µβ]M−m(1− λβ)

= 1.

(A.9)

The same expression holds for the initial transition, plugging inm = 0. From (m, 1), we have

M∑
m′=m

[µβ]m′−me−µτ [1− λβ] + λβ +
M+1∑

m′=m+1
[µβ]m′−m−1[1− e−µτ − µβ][1− λβ]

+ [µβ]M+1−m(1− λβ)

= 1− (µβ)M+1−m

1− µβ
[1− e−µτ − µβ + e−µτ ][1− λβ] + λβ + [µβ]M+1−m(1− λβ)

= 1− (µβ)M+1−m[1− λβ] + [µβ]M+1−m(1− λβ)

= 1.

(A.10)

Conditional on themth residue ofX being aligned to the lth residue of Y (i.e. wl = m), the

TKFmodel specifies that the probability of yl given xm is
∑

b,b′ xm,bℓb,b′yl,b′ , which is identical to

the probability under the MuEmodel. In the case where the lth residue of y is aligned to a gap (i.e.
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gl = 1), the TKFmodel says the probability of choosing the specific base b is πb, the equilibrium

probability of the base. We can check that the MuE provides the same factor:

pMuE(yl,b = 1|w, x, c, ℓ) =
∑
b′

cm,b′ℓb′,b

= πbe
−sτ + (πb)2(1− e−sτ ) +

∑
b′′ 6=b

πb′′πb(1− e−sτ )

= πbe
−sτ + πb(1− e−sτ ) = πb.

(A.11)

□

Pair HMM

The pair HMMmodel generates pairwise alignments by switching between three states: (1) a state

emitting residues in bothX and Y (a match state), (2) a state emitting a residue inX and a gap in

the alignment of Y , and (3) a state emitting a gap in the alignment ofX and a residue in Y (Durbin

et al. 67 , Chapter 4.1).

Statement Figure A.4 shows a standard pair HMM diagram and state probabilities, with γ the

probability of transitioning to a gap state, ϵ the probability of staying in a gap state, and κ the proba-

bility of the Markov chain terminating. We assume 1 − 2γ − κ ≥ 0 and 1 − ϵ − κ ≥ 0. When in

a match state, the pair HMM emits letters b and b′ in the x and y sequences with probability ψb,b′ ;

otherwise, in gap states, the probability of letter b in the non-gapped sequence is πb.
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Define the MuE transition matrix and termination probability vector as

a
(t)
k,k′ :=



1−2γ−κ

1−(γϵM−m−1(1−κ)+κ+γκ 1−ϵM−m−1
1−ϵ

)
ifm+ 1 = m′ ≤M and g = g′ = 0

γϵm′−m−2(1−ϵ−κ)
1−(γϵM−m−1(1−κ)+κ+γκ 1−ϵM−m−1

1−ϵ
)

ifm+ 1 < m′ ≤M and g = g′ = 0

γ

1−(γϵM−m−1(1−κ)+κ+γκ 1−ϵM−m−1
1−ϵ

)
ifm+ 1 = m′ ≤M and g = 0 and g′ = 1

γ
γ+κ ifm+ 1 = m′ = M + 1 and g = 0 and g′ = 1

1−ϵ−κ
1−κ ifm = m′ ≤M and g = 1 and g′ = 0

ϵ
1−κ ifm = m′ ≤M and g = g′ = 1

ϵ
ϵ+κ ifm = m′ = M + 1 and g = g′ = 1

0 otherwise

(A.12)

t
(t)
k :=



γϵM−m−1κ

1−(γϵM−m−1(1−κ)+κ+γκ 1−ϵM−m−1
1−ϵ

)
ifm < M and g = 0

κ
γ+κ ifm = M and g = 0

κ
ϵ+κ ifm = M + 1 and g = 1

0 otherwise

(A.13)

The initial transition vector is defined by a(0)
k := a

(t)
0,k and initial termination probability is t

(0) :=

t
(t)
0 . Define the substitution matrix

ℓb,b′ :=
ψb,b′

πb
(A.14)
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initial match

x alone

y alone

termination
<latexit sha1_base64="bD1kN69KciN2AkFMW9xq/coE4K4=">AAAB7XicbVBNSwMxEM3Wr1q/qh69BIvgqexWQY9FLx4r2A9olzKbZtvYbBKSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvUpwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jEw1oU0iudSdCAzlTNCmZZbTjtIUkojTdjS+nfntJ6oNk+LBThQNExgKFjMC1kmt3hiUgn654lf9OfAqCXJSQTka/fJXbyBJmlBhCQdjuoGvbJiBtoxwOi31UkMVkDEMaddRAQk1YTa/dorPnDLAsdSuhMVz9fdEBokxkyRynQnYkVn2ZuJ/Xje18XWYMaFSSwVZLIpTjq3Es9fxgGlKLJ84AkQzdysmI9BArAuo5EIIll9eJa1aNbio1u4vK/WbPI4iOkGn6BwF6ArV0R1qoCYi6BE9o1f05knvxXv3PhatBS+fOUZ/4H3+AJd6jyM=</latexit>


<latexit sha1_base64="bD1kN69KciN2AkFMW9xq/coE4K4=">AAAB7XicbVBNSwMxEM3Wr1q/qh69BIvgqexWQY9FLx4r2A9olzKbZtvYbBKSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvUpwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jEw1oU0iudSdCAzlTNCmZZbTjtIUkojTdjS+nfntJ6oNk+LBThQNExgKFjMC1kmt3hiUgn654lf9OfAqCXJSQTka/fJXbyBJmlBhCQdjuoGvbJiBtoxwOi31UkMVkDEMaddRAQk1YTa/dorPnDLAsdSuhMVz9fdEBokxkyRynQnYkVn2ZuJ/Xje18XWYMaFSSwVZLIpTjq3Es9fxgGlKLJ84AkQzdysmI9BArAuo5EIIll9eJa1aNbio1u4vK/WbPI4iOkGn6BwF6ArV0R1qoCYi6BE9o1f05knvxXv3PhatBS+fOUZ/4H3+AJd6jyM=</latexit>


<latexit sha1_base64="bD1kN69KciN2AkFMW9xq/coE4K4=">AAAB7XicbVBNSwMxEM3Wr1q/qh69BIvgqexWQY9FLx4r2A9olzKbZtvYbBKSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvUpwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jEw1oU0iudSdCAzlTNCmZZbTjtIUkojTdjS+nfntJ6oNk+LBThQNExgKFjMC1kmt3hiUgn654lf9OfAqCXJSQTka/fJXbyBJmlBhCQdjuoGvbJiBtoxwOi31UkMVkDEMaddRAQk1YTa/dorPnDLAsdSuhMVz9fdEBokxkyRynQnYkVn2ZuJ/Xje18XWYMaFSSwVZLIpTjq3Es9fxgGlKLJ84AkQzdysmI9BArAuo5EIIll9eJa1aNbio1u4vK/WbPI4iOkGn6BwF6ArV0R1qoCYi6BE9o1f05knvxXv3PhatBS+fOUZ/4H3+AJd6jyM=</latexit>

�
<latexit sha1_base64="IoELSitFJaTQ4WT4pr8f01q0csw=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexGQY9BLx4jmAckS+idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnAkM5k7RpmeW0k2gKIuK0HY1vZ377iWrDlHywk4SGAoaSxYyAdVKrNwQhoF+u+FV/DrxKgpxUUI5Gv/zVGyiSCiot4WBMN/ATG2agLSOcTku91NAEyBiGtOuoBEFNmM2vneIzpwxwrLQrafFc/T2RgTBmIiLXKcCOzLI3E//zuqmNr8OMySS1VJLFojjl2Co8ex0PmKbE8okjQDRzt2IyAg3EuoBKLoRg+eVV0qpVg4tq7f6yUr/J4yiiE3SKzlGArlAd3aEGaiKCHtEzekVvnvJevHfvY9Fa8PKZY/QH3ucPiDmPGQ==</latexit>

�
<latexit sha1_base64="IoELSitFJaTQ4WT4pr8f01q0csw=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexGQY9BLx4jmAckS+idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnAkM5k7RpmeW0k2gKIuK0HY1vZ377iWrDlHywk4SGAoaSxYyAdVKrNwQhoF+u+FV/DrxKgpxUUI5Gv/zVGyiSCiot4WBMN/ATG2agLSOcTku91NAEyBiGtOuoBEFNmM2vneIzpwxwrLQrafFc/T2RgTBmIiLXKcCOzLI3E//zuqmNr8OMySS1VJLFojjl2Co8ex0PmKbE8okjQDRzt2IyAg3EuoBKLoRg+eVV0qpVg4tq7f6yUr/J4yiiE3SKzlGArlAd3aEGaiKCHtEzekVvnvJevHfvY9Fa8PKZY/QH3ucPiDmPGQ==</latexit>

�
<latexit sha1_base64="IoELSitFJaTQ4WT4pr8f01q0csw=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexGQY9BLx4jmAckS+idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnAkM5k7RpmeW0k2gKIuK0HY1vZ377iWrDlHywk4SGAoaSxYyAdVKrNwQhoF+u+FV/DrxKgpxUUI5Gv/zVGyiSCiot4WBMN/ATG2agLSOcTku91NAEyBiGtOuoBEFNmM2vneIzpwxwrLQrafFc/T2RgTBmIiLXKcCOzLI3E//zuqmNr8OMySS1VJLFojjl2Co8ex0PmKbE8okjQDRzt2IyAg3EuoBKLoRg+eVV0qpVg4tq7f6yUr/J4yiiE3SKzlGArlAd3aEGaiKCHtEzekVvnvJevHfvY9Fa8PKZY/QH3ucPiDmPGQ==</latexit>

�
<latexit sha1_base64="IoELSitFJaTQ4WT4pr8f01q0csw=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKexGQY9BLx4jmAckS+idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnAkM5k7RpmeW0k2gKIuK0HY1vZ377iWrDlHywk4SGAoaSxYyAdVKrNwQhoF+u+FV/DrxKgpxUUI5Gv/zVGyiSCiot4WBMN/ATG2agLSOcTku91NAEyBiGtOuoBEFNmM2vneIzpwxwrLQrafFc/T2RgTBmIiLXKcCOzLI3E//zuqmNr8OMySS1VJLFojjl2Co8ex0PmKbE8okjQDRzt2IyAg3EuoBKLoRg+eVV0qpVg4tq7f6yUr/J4yiiE3SKzlGArlAd3aEGaiKCHtEzekVvnvJevHfvY9Fa8PKZY/QH3ucPiDmPGQ==</latexit>

✏
<latexit sha1_base64="S940j+PXnpyPoS6EHFdj/RxnHVw=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2k3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzU6WGiuYhlv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7vlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jwZcIXMiIkllClubyVsRBVlxkZUsiF4yy+vklat6l1Ua/eXlfpNHkcRTuAUzsGDK6jDHTSgCQwEPMMrvDmPzovz7nwsWgtOPnMMf+B8/gBOH5Ak</latexit>

✏
<latexit sha1_base64="S940j+PXnpyPoS6EHFdj/RxnHVw=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2k3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzU6WGiuYhlv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7vlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jwZcIXMiIkllClubyVsRBVlxkZUsiF4yy+vklat6l1Ua/eXlfpNHkcRTuAUzsGDK6jDHTSgCQwEPMMrvDmPzovz7nwsWgtOPnMMf+B8/gBOH5Ak</latexit>


<latexit sha1_base64="bD1kN69KciN2AkFMW9xq/coE4K4=">AAAB7XicbVBNSwMxEM3Wr1q/qh69BIvgqexWQY9FLx4r2A9olzKbZtvYbBKSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvUpwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jEw1oU0iudSdCAzlTNCmZZbTjtIUkojTdjS+nfntJ6oNk+LBThQNExgKFjMC1kmt3hiUgn654lf9OfAqCXJSQTka/fJXbyBJmlBhCQdjuoGvbJiBtoxwOi31UkMVkDEMaddRAQk1YTa/dorPnDLAsdSuhMVz9fdEBokxkyRynQnYkVn2ZuJ/Xje18XWYMaFSSwVZLIpTjq3Es9fxgGlKLJ84AkQzdysmI9BArAuo5EIIll9eJa1aNbio1u4vK/WbPI4iOkGn6BwF6ArV0R1qoCYi6BE9o1f05knvxXv3PhatBS+fOUZ/4H3+AJd6jyM=</latexit>

1� ✏� 

<latexit sha1_base64="Cez26O2bFLLARBBrRHI8cknmzvY=">AAAB+nicbVDLSgMxFM3UV62vqS7dBIvgpmWmCrosunFZwT6gM5RMmmlDM0lIMkoZ+yluXCji1i9x59+YtrPQ1gMXDufcy733RJJRbTzv2ymsrW9sbhW3Szu7e/sHbvmwrUWqMGlhwYTqRkgTRjlpGWoY6UpFUBIx0onGNzO/80CUpoLfm4kkYYKGnMYUI2Olvlv2qwGRmjLBq8EYSYn6bsWreXPAVeLnpAJyNPvuVzAQOE0IN5ghrXu+J02YIWUoZmRaClJNJMJjNCQ9SzlKiA6z+elTeGqVAYyFssUNnKu/JzKUaD1JItuZIDPSy95M/M/rpSa+CjPKZWoIx4tFccqgEXCWAxxQRbBhE0sQVtTeCvEIKYSNTatkQ/CXX14l7XrNP6/V7y4qjes8jiI4BifgDPjgEjTALWiCFsDgETyDV/DmPDkvzrvzsWgtOPnMEfgD5/MHsQyTow==</latexit>

1�
✏�



<latexit sha1_base64="Cez26O2bFLLARBBrRHI8cknmzvY=">AAAB+nicbVDLSgMxFM3UV62vqS7dBIvgpmWmCrosunFZwT6gM5RMmmlDM0lIMkoZ+yluXCji1i9x59+YtrPQ1gMXDufcy733RJJRbTzv2ymsrW9sbhW3Szu7e/sHbvmwrUWqMGlhwYTqRkgTRjlpGWoY6UpFUBIx0onGNzO/80CUpoLfm4kkYYKGnMYUI2Olvlv2qwGRmjLBq8EYSYn6bsWreXPAVeLnpAJyNPvuVzAQOE0IN5ghrXu+J02YIWUoZmRaClJNJMJjNCQ9SzlKiA6z+elTeGqVAYyFssUNnKu/JzKUaD1JItuZIDPSy95M/M/rpSa+CjPKZWoIx4tFccqgEXCWAxxQRbBhE0sQVtTeCvEIKYSNTatkQ/CXX14l7XrNP6/V7y4qjes8jiI4BifgDPjgEjTALWiCFsDgETyDV/DmPDkvzrvzsWgtOPnMEfgD5/MHsQyTow==</latexit>

1� 2� �


<latexit sha1_base64="k1Pc3GxMw2VHY/h/5wJbQMiOv6c=">AAAB+XicbVBNSwMxEM3Wr1q/Vj16WSyCl5bdKuix6MVjBfsB3aXMpmkbmmRDki2Upf/EiwdFvPpPvPlvTNs9aOuDgcd7M8zMiyWj2vj+t1PY2Nza3inulvb2Dw6P3OOTlk5ShUkTJyxRnRg0YVSQpqGGkY5UBHjMSDse38/99oQoTRPxZKaSRByGgg4oBmOlnusGlVo4BM6hEo5BSui5Zb/qL+CtkyAnZZSj0XO/wn6CU06EwQy07ga+NFEGylDMyKwUpppIwGMYkq6lAjjRUba4fOZdWKXvDRJlSxhvof6eyIBrPeWx7eRgRnrVm4v/ed3UDG6jjAqZGiLwctEgZZ5JvHkMXp8qgg2bWgJYUXurh0egABsbVsmGEKy+vE5atWpwVa09Xpfrd3kcRXSGztElCtANqqMH1EBNhNEEPaNX9OZkzovz7nwsWwtOPnOK/sD5/AFXJZLU</latexit>

1� 2� � 
<latexit sha1_base64="k1Pc3GxMw2VHY/h/5wJbQMiOv6c=">AAAB+XicbVBNSwMxEM3Wr1q/Vj16WSyCl5bdKuix6MVjBfsB3aXMpmkbmmRDki2Upf/EiwdFvPpPvPlvTNs9aOuDgcd7M8zMiyWj2vj+t1PY2Nza3inulvb2Dw6P3OOTlk5ShUkTJyxRnRg0YVSQpqGGkY5UBHjMSDse38/99oQoTRPxZKaSRByGgg4oBmOlnusGlVo4BM6hEo5BSui5Zb/qL+CtkyAnZZSj0XO/wn6CU06EwQy07ga+NFEGylDMyKwUpppIwGMYkq6lAjjRUba4fOZdWKXvDRJlSxhvof6eyIBrPeWx7eRgRnrVm4v/ed3UDG6jjAqZGiLwctEgZZ5JvHkMXp8qgg2bWgJYUXurh0egABsbVsmGEKy+vE5atWpwVa09Xpfrd3kcRXSGztElCtANqqMH1EBNhNEEPaNX9OZkzovz7nwsWwtOPnOK/sD5/AFXJZLU</latexit>

⇡b
<latexit sha1_base64="w6w1igLvct5p5NKe6dNulxJLY3Y=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOTTjJkdnaYmRXCko/w4kERr36PN//GSbIHTSxoKKq66e6KlODG+v63t7a+sbm1Xdgp7u7tHxyWjo6bJkk1wwZLRKLbETUouMSG5VZgW2mkcSSwFY3vZn7rCbXhiXy0E4VhTIeSDzij1kmtruK9LJr2SmW/4s9BVkmQkzLkqPdKX91+wtIYpWWCGtMJfGXDjGrLmcBpsZsaVJSN6RA7jkoaowmz+blTcu6UPhkk2pW0ZK7+nshobMwkjlxnTO3ILHsz8T+vk9rBTZhxqVKLki0WDVJBbEJmv5M+18ismDhCmebuVsJGVFNmXUJFF0Kw/PIqaVYrwWWl+nBVrt3mcRTgFM7gAgK4hhrcQx0awGAMz/AKb57yXrx372PRuublMyfwB97nD4iRj7I=</latexit>

⇡b
<latexit sha1_base64="w6w1igLvct5p5NKe6dNulxJLY3Y=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84BkCbOTTjJkdnaYmRXCko/w4kERr36PN//GSbIHTSxoKKq66e6KlODG+v63t7a+sbm1Xdgp7u7tHxyWjo6bJkk1wwZLRKLbETUouMSG5VZgW2mkcSSwFY3vZn7rCbXhiXy0E4VhTIeSDzij1kmtruK9LJr2SmW/4s9BVkmQkzLkqPdKX91+wtIYpWWCGtMJfGXDjGrLmcBpsZsaVJSN6RA7jkoaowmz+blTcu6UPhkk2pW0ZK7+nshobMwkjlxnTO3ILHsz8T+vk9rBTZhxqVKLki0WDVJBbEJmv5M+18ismDhCmebuVsJGVFNmXUJFF0Kw/PIqaVYrwWWl+nBVrt3mcRTgFM7gAgK4hhrcQx0awGAMz/AKb57yXrx372PRuublMyfwB97nD4iRj7I=</latexit>

 b,b0
<latexit sha1_base64="crb5P+O8ivvCw3FG2XXQSbcYs7k=">AAAB8nicbVBNS8NAEJ34WetX1aOXYBE9SEmqoMeiF48V7AekoWy223bpZjfsToQS+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8KBHcoOd9Oyura+sbm4Wt4vbO7t5+6eCwaVSqKWtQJZRuR8QwwSVrIEfB2olmJI4Ea0Wju6nfemLacCUfcZywMCYDyfucErRS0EkM72bRRXQ26ZbKXsWbwV0mfk7KkKPeLX11eoqmMZNIBTEm8L0Ew4xo5FSwSbGTGpYQOiIDFlgqScxMmM1OnrinVum5faVtSXRn6u+JjMTGjOPIdsYEh2bRm4r/eUGK/Zsw4zJJkUk6X9RPhYvKnf7v9rhmFMXYEkI1t7e6dEg0oWhTKtoQ/MWXl0mzWvEvK9WHq3LtNo+jAMdwAufgwzXU4B7q0AAKCp7hFd4cdF6cd+dj3rri5DNH8AfO5w/qQZEC</latexit>

Figure A.4: Pair HMM state diagram.

for all b, b′ ∈ {1, ..., B}. Let the rows of the insertion matrix c be

cm := (ℓ−1)> · π (A.15)

where ℓ−1 is the inverse of the substitution matrix, which is assumed to be an invertible matrix, and

> indicates the matrix transpose.

With these definitions, Y ∼ MuE(X, c, ℓ, a(0), a(t)) is equivalent to the conditional distribu-

tion of Y givenX under the pair HMM. Note that if γ = 0 and ψ = diag(π) (theB × B matrix

with diagonal entries π and all other entries 0) then we recover the no-mutation limit of the MuE

distribution.

Proof Wewill show that the joint probability ofW and Y under the MuEmodel is identical

to the joint probability of the corresponding alignment and Y under the pair HMM, conditional

onX . We start by enumerating all possible transitions between states of the MuEMarkov chain
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and computing their probability under the pair HMMmodel without conditioning onX . Define

ωx
j := I(A(x)

j ∈ B) and ωy likewise. We use ωx, ωy notation to represent possible alignments, with

the symbol “|” placed to the right of the residue we are transitioning from.

1. Transitioning from (m, 0) to (m+ 1 ≤M, 0) has probability 1− 2γ − κ.

x: 1 | 1

y: 1 | 1

2. Transitioning from (m, 0) to (m′ > m + 1, 0) form′ < M + 1 has probability

γϵm
′−m−2(1− ϵ− κ).

x: 1 | 1 ... 1 1

y: 1 | 0 ... 0 1

3. Transitioning from (m, 0) to (m+ 1, 1) has probability γ.

x: 1 | 0

y: 1 | 1

4. Terminating after (m < M, 0) has probability γϵM−m−1κ.

x: 1 | 1 ... 1 $

y: 1 | 0 ... 0 $

5. Terminating after (M, 0) has probability κ.
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x: 1 | $

y: 1 | $

6. Transitioning from (m, 1) to (m ≤M, 0) has probability 1− ϵ− κ.

x: 0 | 1

y: 1 | 1

7. Transitioning from (m, 1) to (m, 1) has probability ϵ.

x: 0 | 0

y: 1 | 1

8. Terminating after (M + 1, 1) has probability κ

x: 0 | $

y: 1 | $

9. Transitioning from the initial state to (1, 0) has probability 1− 2γ − κ.

x: | 1

y: | 1

10. Transitioning from the initial state to (m > 1, 0) form < M + 1 has probability

γϵm−2(1− ϵ− κ).
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x: | 1 ... 1 1

y: | 0 ... 0 1

11. Transitioning from the initial state to (1, 1) has probability γ.

x: | 0

y: | 1

12. Terminating immediately from the initial state has probability γϵM−1κwhenM > 0.

x: | 1 ... 1 $

y: | 0 ... 0 $

13. Terminating immediately from the initial state has probability κwhenM = 0.

x: | $

y: | $

These transition probabilities were derived without conditioning on the fact that we have observed

X , which has lengthM . To compute this conditional probability, we calculate the probability that

the pair HMM generates an alignment with too many or too fewX residues starting from each

MuEMarkov model state.

1. Starting from a state (m < M, 0), the probability of the pair HMM generating an invalid

alignment that is too long (rather than transitioning to a valid MuE state) is γϵM−m−1(1 −
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ϵ− κ) + γϵM−m = γϵM−m−1(1− κ). The first term is from alignments that use a match

state instead of terminating.

x: 1 | 1 ... 1 1

y: 1 | 0 ... 0 1

The second term is from alignments that use an x-alone state instead of terminating.

x: 1 | 1 ... 1 1

y: 1 | 0 ... 0 0

2. Starting from a state (m < M, 0), the probability of generating an invalid alignment that is

too short (rather than transitioning to a valid MuE state) is κ +
∑M−1

m′=m+1 γϵ
m′−m−1κ =

κ+ γκ1−ϵM−m−1

1−ϵ . The first term is from alignments that immediately terminate.

x: 1 | $

y: 1 | $

The second term is from alignments that terminate early after transitioning to the x-alone

state.

x: 1 | 1 ... 1 $

y: 1 | 0 ... 0 $
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3. Starting from the state (M, 0), the probability of generating an invalid alignment is (1 −

2γ − κ) + γ = 1 − γ − κ. The first term is from alignments that use a match state instead

of terminating.

x: 1 | 1

y: 1 | 1

The second term is from alignments that use an x-alone state instead of terminating.

x: 1 | 1

y: 1 | 0

4. Starting from a state (m ≤ M, 1) the probability of generating an invalid alignment that is

too short is κ.

x: 0 | $

y: 1 | $

5. Starting from the state (M + 1, 1), the probability of generating an invalid alignment that is

too long is 1− ϵ− κ.

x: 0 | 1

y: 1 | 1
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6. Starting from the initial state, the probability of generating an invalid alignment that is too

long is γϵM−1(1− ϵ− κ) + γϵM−m = γϵM−1(1− κ). The first term is from alignments

that use a match state instead of terminating.

x: | 1 ... 1 1

y: | 0 ... 0 1

The second term is from alignments that use an x-alone state instead of terminating.

x: | 1 ... 1 1

y: | 0 ... 0 0

7. Starting from the initial state, the probability of generating an invalid alignment that is too

short is κ +
∑M−1

m′=1 γϵ
m′−1κ = κ + γκ1−ϵM−1

1−ϵ whenM > 0. The first term is from

alignments that immediately terminate.

x: | $

y: | $

The second term is from alignments that terminate early after transitioning to the x-alone

state.

x: | 1 ... 1 $

y: | 0 ... 0 $
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8. Starting from the initial state, ifM = 0, then the probability of generating an invalid align-

ment is (1− 2γ − κ) + γ = 1− γ − κ. The first term is from alignments that use a match

state.

x: | 1

y: | 1

The second term is from alignments that use an x-alone state.

x: | 1

y: | 0

We can confirm that all possible trajectories of the pair HMM are either valid transitions under the

MuEMarkov model or produce alignments with too few or too manyX residues, by checking that

the outward transition probabilities from each state sum to one.

1. From a state (m < M, 0), the total outward transition probability is

(1− 2γ − κ) + γ
M∑

m′=m+2
ϵm

′−m−2(1− ϵ− κ) + γ + γϵM−m−1κ+ γϵM−m−1(1− κ)

+ (κ+ γκ
1− ϵM−m−1

1− ϵ
)

= 1− γ + γ(1− ϵ− κ)1− ϵM−m−1

1− ϵ
+ γϵM−m−1 + γκ

1− ϵM−m−1

1− ϵ

= 1− γ + γ(1− ϵM−m−1) + γϵM−m−1

= 1

(A.16)
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2. From the state (M, 0), the total outward transition probability is

γ + κ+ (1− γ − κ) = 1 (A.17)

3. From a state (m ≤M, 1), the total outward transition probability is

(1− ϵ− κ) + ϵ+ κ = 1 (A.18)

4. From the state (M + 1, 1), the total outward transition probability is

κ+ ϵ+ (1− ϵ− κ) = 1 (A.19)

5. From the initial state, withM > 0, the total outward transition probability is

(1− 2γ − κ) +
M∑

m=2
γϵm−2(1− ϵ− κ) + γ + γϵM−1κ+ γϵM−1(1− κ)

+ (κ+ γκ
1− ϵM−1

1− ϵ
)

= 1− γ + γ(1− ϵ− κ)1− ϵM−1

1− ϵ
+ γκϵM−1 + γϵM−1(1− κ) + γκ

1− ϵM−1

1− ϵ

= 1− γ + γ(1− ϵM−1)− γκ1− ϵM−1

1− ϵ
+ γϵM−1 + γκ

1− ϵM−1

1− ϵ

= 1

(A.20)
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6. From the initial state, withM = 0, the total outward transition probability is

γ + κ+ (1− γ − κ) = 1 (A.21)

Consolidating transition probabilities and conditioning on the length ofX yields the transition

matrix Equation A.12.

Next we consider sequence emission probabilities, given an alignment. Recall thatX and Y are

one-hot encodings of sequences.

1. Consider the case that Yl is aligned toXm, ie.

x: 1

y: 1

The conditional probability of Yl,b′ = 1 givenXm,b = 1 is, according to the pair HMM,

ψb,b′/πb. This matches the conditional probability assigned by the MuE,

Yl ∼ Categorical
(∑

b′′

Xm,b′′ℓb′′
)

= Categorical
(ψb

πb

)
. (A.22)

2. Consider the case that Yl is aligned to a gap, ie.

x: 0

y: 1
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The conditional probability of Yl,b givenX is just πb (sinceX is not informative in this case).

This matches the conditional probability assigned by the MuE,

Yl ∼ Categorical
(
(π> · ℓ−1 · ℓ)>) = Categorical(π). (A.23)

3. Consider the case thatXm is aligned to a gap, ie.

x: 1

y: 0

The conditional probability ofXm givenX is trivially one, so this term does not contribute

to the conditional probability of Y givenX under the pair HMM. It also does not con-

tribute to the probability under the MuE.

Thus, term-by-term, the joint probability ofW and Y under the proposedMuE distribution

matches the joint probability of the corresponding alignment and Y under the pair HMM condi-

tional onX .

□

Profile HMM

The profile HMM (pHMM) is a widely used model for defining protein sequence families, inferring

multiple sequence alignments, and performing database searches67.
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StatementDefine the pHMM insertion parameter rm,j ∈ [0, 1] for allm ∈ {1, ...,M + 1} and

j ∈ {0, 1, 2}, and the deletion parameter um,j ∈ [0, 1] for allm ∈ {1, ...,M} and j ∈ {0, 1, 2}.

Then define the MuE transition matrix and termination probability

a
(t)
k,k′ :=



(1− rm+1−g,g)(1− um+1−g,g)

ifm+ 1− g = m′ and g′ = 0

(1− rm+1−g,g)um+1−g,g(
∏m′−1

m′′=m+2−g[(1− rm′′,2)um′′,2])(1− rm′,2)(1− um′,2)

ifm+ 1− g < m′ and g′ = 0

rm+1−g,g

ifm+ 1− g = m′ and g′ = 1

(1− rm+1−g,g)um+1−g,g(
∏m′−1

m′′=m+2−g[(1− rm′′,2)um′′,2])rm′,2

ifm+ 1− g < m′ and g′ = 1

0 otherwise

(A.24)
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t
(t)
k :=



1− rM+1,g

ifm− g = M

(1− rm+1−g,g)um+1−g,g(
∏M

m′′=m+2−g[(1− rm′′,2)um′′,2])(1− rM+1,2)

ifm− g < M

(A.25)

The initial transition vector is given by a(0)
k := a

(t)
0,k and the initial termination probability is given

by t(0) = t
(t)
0 . Let the MuE substitution matrix ℓ be the identity matrix IB , ie.

ℓb,b′ := δb,b′ (A.26)

for b, b′ ∈ {1, ..., B}.

With these definitions the profile HMM can be written as Y ∼ MuE(X, c, ℓ, a(0), a(t)). Fig-

ure A.5 illustrates samples from the pHMM. Intuitively, r controls insertion probabilities and u

controls deletion probabilities; when rm,j = 0 and um,j = 0 for allm and j, we recover the no-

mutation limit of the MuE.

Proof This result follows from the relabeling of the profile HMMMarkov state architecture

with the (m, g) notation (Figure A.6). So-called “delete states” in profile HMMs do not generate

observations Yl. To compute the probability of transitioning between two observable states (m, g)

and (m′, g′), we compute the probability of (1) direct paths between the two states and (2) all possi-
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TACGC 
TACGC 
TACGC 
TACGC 
TACGC 
TACGC 
TACGC 
TACGC 
TACGC 
TACGC

TACGC 
TACGC 
TACGC 
TCGC 
TACGC 
TCGC 
TACGC 
TACGC 
TCGC 
TCGC

TACGTGC 
TACGC 
TACCGC 
TACGC 
TACAGC 
TACGC 
TACCGGC 
TACGC 
TACAAGC 
TACGC

r = (0, 0, 0, 0, 0, 0)
<latexit sha1_base64="8KQkZYG9EbadWtrSNOhV6BXoekk=">AAAB+nicbVDLSgMxFL3js9bXVJdugkWoIGWmCroRim5cVrAPaIeSSTNtaCYzJBmljP0UNy4UceuXuPNvTNtBtPVcLhzOuZfcHD/mTGnH+bKWlldW19ZzG/nNre2dXbuw11BRIgmtk4hHsuVjRTkTtK6Z5rQVS4pDn9OmP7ye+M17KhWLxJ0exdQLcV+wgBGsjdS1CxJdopJz8lPHXbvolJ0p0CJxM1KEDLWu/dnpRSQJqdCEY6XarhNrL8VSM8LpON9JFI0xGeI+bRsqcEiVl05PH6Mjo/RQEEnTQqOp+nsjxaFSo9A3kyHWAzXvTcT/vHaigwsvZSJONBVk9lCQcKQjNMkB9ZikRPORIZhIZm5FZIAlJtqklTchuPNfXiSNStk9LVduz4rVqyyOHBzAIZTAhXOowg3UoA4EHuAJXuDVerSerTfrfTa6ZGU7+/AH1sc3++GQlQ==</latexit>

r = (0, 0, 0, 0, 0, 0)
<latexit sha1_base64="8KQkZYG9EbadWtrSNOhV6BXoekk=">AAAB+nicbVDLSgMxFL3js9bXVJdugkWoIGWmCroRim5cVrAPaIeSSTNtaCYzJBmljP0UNy4UceuXuPNvTNtBtPVcLhzOuZfcHD/mTGnH+bKWlldW19ZzG/nNre2dXbuw11BRIgmtk4hHsuVjRTkTtK6Z5rQVS4pDn9OmP7ye+M17KhWLxJ0exdQLcV+wgBGsjdS1CxJdopJz8lPHXbvolJ0p0CJxM1KEDLWu/dnpRSQJqdCEY6XarhNrL8VSM8LpON9JFI0xGeI+bRsqcEiVl05PH6Mjo/RQEEnTQqOp+nsjxaFSo9A3kyHWAzXvTcT/vHaigwsvZSJONBVk9lCQcKQjNMkB9ZikRPORIZhIZm5FZIAlJtqklTchuPNfXiSNStk9LVduz4rVqyyOHBzAIZTAhXOowg3UoA4EHuAJXuDVerSerTfrfTa6ZGU7+/AH1sc3++GQlQ==</latexit>

r = (0, 0, 0, 0.4, 0, 0)
<latexit sha1_base64="HrX/IheqBYdk54800GkySf46b58=">AAAB/HicbVBNS8MwGE7n15xf1R29BIcwQUo7B3oRhl48TnAfsJWRZukWlqYlSYVS5l/x4kERr/4Qb/4b064H3XxCXh6e533Jm8eLGJXKtr+N0tr6xuZWebuys7u3f2AeHnVlGAtMOjhkoeh7SBJGOekoqhjpR4KgwGOk581uM7/3SISkIX9QSUTcAE049SlGSksjsyrgNazb5/mxmlk9G5k127JzwFXiFKQGCrRH5tdwHOI4IFxhhqQcOHak3BQJRTEj88owliRCeIYmZKApRwGRbpovP4enWhlDPxT6cgVz9fdEigIpk8DTnQFSU7nsZeJ/3iBW/pWbUh7FinC8eMiPGVQhzJKAYyoIVizRBGFB9a4QT5FAWOm8KjoEZ/nLq6TbsJwLq3HfrLVuijjK4BicgDpwwCVogTvQBh2AQQKewSt4M56MF+Pd+Fi0loxipgr+wPj8AeGOkQs=</latexit>

x
<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit> TACGC

u = (0, 0, 0, 0, 0, 0)
<latexit sha1_base64="s049XXbm+WQtO+Mthw/uDmOAzds=">AAAB+nicbVDLSgMxFL3js9bXVJdugkWoIGWmCroRim5cVrAPaIeSSTNtaCYzJBmljP0UNy4UceuXuPNvTNtBtPVcLhzOuZfcHD/mTGnH+bKWlldW19ZzG/nNre2dXbuw11BRIgmtk4hHsuVjRTkTtK6Z5rQVS4pDn9OmP7ye+M17KhWLxJ0exdQLcV+wgBGsjdS1Cwm6RCXn5KeOu3bRKTtToEXiZqQIGWpd+7PTi0gSUqEJx0q1XSfWXoqlZoTTcb6TKBpjMsR92jZU4JAqL52ePkZHRumhIJKmhUZT9fdGikOlRqFvJkOsB2rem4j/ee1EBxdeykScaCrI7KEg4UhHaJID6jFJieYjQzCRzNyKyABLTLRJK29CcOe/vEgalbJ7Wq7cnhWrV1kcOTiAQyiBC+dQhRuoQR0IPMATvMCr9Wg9W2/W+2x0ycp29uEPrI9vAKyQmA==</latexit>

u = (0, 0.5, 0, 0, 0, 0)
<latexit sha1_base64="3P+eaWY0bOSU5JIlobPAf9q7NH4=">AAAB/HicbVDLSgMxFM34rPU12qWbYBEqlCFTFd0IRTcuK9gHtEPJpJk2NJMZkowwDPVX3LhQxK0f4s6/MW1noa3ncuFwzr3k5vgxZ0oj9G2trK6tb2wWtorbO7t7+/bBYUtFiSS0SSIeyY6PFeVM0KZmmtNOLCkOfU7b/vh26rcfqVQsEg86jakX4qFgASNYG6lvlxJ4DSuoipyLKprXad8uIwfNAJeJm5MyyNHo21+9QUSSkApNOFaq66JYexmWmhFOJ8VeomiMyRgPaddQgUOqvGx2/ASeGGUAg0iaFhrO1N8bGQ6VSkPfTIZYj9SiNxX/87qJDq68jIk40VSQ+UNBwqGO4DQJOGCSEs1TQzCRzNwKyQhLTLTJq2hCcBe/vExaNcc9c2r35+X6TR5HARyBY1ABLrgEdXAHGqAJCEjBM3gFb9aT9WK9Wx/z0RUr3ymBP7A+fwDn9ZEP</latexit>

u = (0, 0, 0, 0, 0, 0)
<latexit sha1_base64="s049XXbm+WQtO+Mthw/uDmOAzds=">AAAB+nicbVDLSgMxFL3js9bXVJdugkWoIGWmCroRim5cVrAPaIeSSTNtaCYzJBmljP0UNy4UceuXuPNvTNtBtPVcLhzOuZfcHD/mTGnH+bKWlldW19ZzG/nNre2dXbuw11BRIgmtk4hHsuVjRTkTtK6Z5rQVS4pDn9OmP7ye+M17KhWLxJ0exdQLcV+wgBGsjdS1Cwm6RCXn5KeOu3bRKTtToEXiZqQIGWpd+7PTi0gSUqEJx0q1XSfWXoqlZoTTcb6TKBpjMsR92jZU4JAqL52ePkZHRumhIJKmhUZT9fdGikOlRqFvJkOsB2rem4j/ee1EBxdeykScaCrI7KEg4UhHaJID6jFJieYjQzCRzNyKyABLTLRJK29CcOe/vEgalbJ7Wq7cnhWrV1kcOTiAQyiBC+dQhRuoQR0IPMATvMCr9Wg9W2/W+2x0ycp29uEPrI9vAKyQmA==</latexit>

Figure A.5: Samples from the profile HMM. The regressor sequenceX1,...,M is set to TACGC, and we set rm,j=0 =
rm,j=1 = rm,j=2 andum,j=0 = um,j=1 = um,j=2 for allm.
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<latexit sha1_base64="jBHHhwIuq2bkyjxuYIXL9vGd07A=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIFbTMVEGXRTcuK9gHtMOQSTNtaCYzJBmhDsVfceNCEbf+hzv/xvSx0NYDl3s4515yc4KEM6Ud59vKLS2vrK7l1wsbm1vbO/buXkPFqSS0TmIey1aAFeVM0LpmmtNWIimOAk6bweBm7DcfqFQsFvd6mFAvwj3BQkawNpJvH5RcdIakn7mnzugknXbfLjplZwK0SNwZKcIMNd/+6nRjkkZUaMKxUm3XSbSXYakZ4XRU6KSKJpgMcI+2DRU4osrLJteP0LFRuiiMpSmh0UT9vZHhSKlhFJjJCOu+mvfG4n9eO9XhlZcxkaSaCjJ9KEw50jEaR4G6TFKi+dAQTCQztyLSxxITbQIrmBDc+S8vkkal7J6XK3cXxer1LI48HMIRlMCFS6jCLdSgDgQe4Rle4c16sl6sd+tjOpqzZjv78AfW5w8cnJMV</latexit>

r1,0
<latexit sha1_base64="NGbsBBZfY0p4JvmZWVoy7pMpmIM=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCnosevFYwX5AG8pmO2mXbjZhdyOU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8NJME/YgOJQ85o8ZKbdXPvAt32i9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOyVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhDd+xmWSGpRssShMBTExmf1OBlwhM2JiCWWK21sJG1FFmbEJlWwI3vLLq6RVq3qX1drDVaV+m8dRhBM4hXPw4BrqcA8NaAKDMTzDK7w5ifPivDsfi9aCk88cwx84nz+hP48a</latexit>

r1,1
<latexit sha1_base64="Ro9fLmYZTZYF1EGwHh32F0668hQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCnosevFYwX5AG8pmO2mXbjZhdyOU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8NJME/YgOJQ85o8ZKbdXPvAtv2i9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOyVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhDd+xmWSGpRssShMBTExmf1OBlwhM2JiCWWK21sJG1FFmbEJlWwI3vLLq6RVq3qX1drDVaV+m8dRhBM4hXPw4BrqcA8NaAKDMTzDK7w5ifPivDsfi9aCk88cwx84nz+ixI8b</latexit>

r2,0
<latexit sha1_base64="DdJumI1/hgCHGdn0drMpD/DzsRE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCnosevFYwX5AG8pmO2mXbjZhdyOU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8NJME/YgOJQ85o8ZKbdXPahfutF+uuFV3DrJKvJxUIEejX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/d0rOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCW/8jMskNSjZYlGYCmJiMvudDLhCZsTEEsoUt7cSNqKKMmMTKtkQvOWXV0mrVvUuq7WHq0r9No+jCCdwCufgwTXU4R4a0AQGY3iGV3hzEufFeXc+Fq0FJ585hj9wPn8AosaPGw==</latexit>

r2,1
<latexit sha1_base64="DMkmtcgLZkTKpRHpXJUKr1Pek8I=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCnosevFYwX5AG8pmu2mXbjZhdyKU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDfz209cGxGrR5wk3I/oUIlQMIpWaut+Vrvwpv1yxa26c5BV4uWkAjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/m507JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzxM6GSFLlii0VhKgnGZPY7GQjNGcqJJZRpYW8lbEQ1ZWgTKtkQvOWXV0mrVvUuq7WHq0r9No+jCCdwCufgwTXU4R4a0AQGY3iGV3hzEufFeXc+Fq0FJ585hj9wPn8ApEuPHA==</latexit>

(1, 0)
<latexit sha1_base64="EZddxjycCzjGiiosqiztSzP2a4E=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BItQQcpuFfRY9OKxgtsW2qVk02wbms0uSVYoS3+DFw+KePUHefPfmLZ70NYHA4/3ZpiZFySCa+M436iwtr6xuVXcLu3s7u0flA+PWjpOFWUejUWsOgHRTHDJPMONYJ1EMRIFgrWD8d3Mbz8xpXksH80kYX5EhpKHnBJjJa/qXjjn/XLFqTlz4FXi5qQCOZr98ldvENM0YtJQQbTuuk5i/Iwow6lg01Iv1SwhdEyGrGupJBHTfjY/dorPrDLAYaxsSYPn6u+JjERaT6LAdkbEjPSyNxP/87qpCW/8jMskNUzSxaIwFdjEePY5HnDFqBETSwhV3N6K6YgoQo3Np2RDcJdfXiWtes29rNUfriqN2zyOIpzAKVTBhWtowD00wQMKHJ7hFd6QRC/oHX0sWgsonzmGP0CfPxeUjY4=</latexit>

(1, 1)
<latexit sha1_base64="DV5eQYbg03EPQqsGq6ruFsB/fXw=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BItQQcpuFfRY9OKxgtsW2qVk02wbms0uSVYoS3+DFw+KePUHefPfmLZ70NYHA4/3ZpiZFySCa+M436iwtr6xuVXcLu3s7u0flA+PWjpOFWUejUWsOgHRTHDJPMONYJ1EMRIFgrWD8d3Mbz8xpXksH80kYX5EhpKHnBJjJa/qXrjn/XLFqTlz4FXi5qQCOZr98ldvENM0YtJQQbTuuk5i/Iwow6lg01Iv1SwhdEyGrGupJBHTfjY/dorPrDLAYaxsSYPn6u+JjERaT6LAdkbEjPSyNxP/87qpCW/8jMskNUzSxaIwFdjEePY5HnDFqBETSwhV3N6K6YgoQo3Np2RDcJdfXiWtes29rNUfriqN2zyOIpzAKVTBhWtowD00wQMKHJ7hFd6QRC/oHX0sWgsonzmGP0CfPxkZjY8=</latexit>

(2, 1)
<latexit sha1_base64="ENAoPGfQ6jT1lh2xsKA2lu8BJgk=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BItQQcpuFfRY9OKxgtsW2qVk02wbms0uSVYoS3+DFw+KePUHefPfmLZ70NYHA4/3ZpiZFySCa+M436iwtr6xuVXcLu3s7u0flA+PWjpOFWUejUWsOgHRTHDJPMONYJ1EMRIFgrWD8d3Mbz8xpXksH80kYX5EhpKHnBJjJa9av3DP++WKU3PmwKvEzUkFcjT75a/eIKZpxKShgmjddZ3E+BlRhlPBpqVeqllC6JgMWddSSSKm/Wx+7BSfWWWAw1jZkgbP1d8TGYm0nkSB7YyIGellbyb+53VTE974GZdJapiki0VhKrCJ8exzPOCKUSMmlhCquL0V0xFRhBqbT8mG4C6/vEpa9Zp7Was/XFUat3kcRTiBU6iCC9fQgHtoggcUODzDK7whiV7QO/pYtBZQPnMMf4A+fwAaoI2Q</latexit>

(2, 0)
<latexit sha1_base64="/o2qrbAgMDlzP7LlPl1mS2il/FA=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BItQQcpuFfRY9OKxgtsW2qVk02wbms0uSVYoS3+DFw+KePUHefPfmLZ70NYHA4/3ZpiZFySCa+M436iwtr6xuVXcLu3s7u0flA+PWjpOFWUejUWsOgHRTHDJPMONYJ1EMRIFgrWD8d3Mbz8xpXksH80kYX5EhpKHnBJjJa9av3DO++WKU3PmwKvEzUkFcjT75a/eIKZpxKShgmjddZ3E+BlRhlPBpqVeqllC6JgMWddSSSKm/Wx+7BSfWWWAw1jZkgbP1d8TGYm0nkSB7YyIGellbyb+53VTE974GZdJapiki0VhKrCJ8exzPOCKUSMmlhCquL0V0xFRhBqbT8mG4C6/vEpa9Zp7Was/XFUat3kcRTiBU6iCC9fQgHtoggcUODzDK7whiV7QO/pYtBZQPnMMf4A+fwAZG42P</latexit>

(3, 0)
<latexit sha1_base64="LjoYLIVOQ5vkxpGRi5c6CHFSEEY=">AAAB7HicbVBNSwMxEJ34WetX1aOXYBEqSNltBT0WvXis4LaFdinZNNuGZrNLkhXK0t/gxYMiXv1B3vw3pu0etPXBwOO9GWbmBYng2jjON1pb39jc2i7sFHf39g8OS0fHLR2nijKPxiJWnYBoJrhknuFGsE6iGIkCwdrB+G7mt5+Y0jyWj2aSMD8iQ8lDTomxklepXzoX/VLZqTpz4FXi5qQMOZr90ldvENM0YtJQQbTuuk5i/Iwow6lg02Iv1SwhdEyGrGupJBHTfjY/dorPrTLAYaxsSYPn6u+JjERaT6LAdkbEjPSyNxP/87qpCW/8jMskNUzSxaIwFdjEePY5HnDFqBETSwhV3N6K6YgoQo3Np2hDcJdfXiWtWtWtV2sPV+XGbR5HAU7hDCrgwjU04B6a4AEFDs/wCm9Iohf0jj4WrWsonzmBP0CfPxqijZA=</latexit>

(3, 1)
<latexit sha1_base64="YjBmGjc9i97UYR6K+GbZxHS7SBw=">AAAB7HicbVBNSwMxEJ34WetX1aOXYBEqSNltBT0WvXis4LaFdinZNNuGZrNLkhXK0t/gxYMiXv1B3vw3pu0etPXBwOO9GWbmBYng2jjON1pb39jc2i7sFHf39g8OS0fHLR2nijKPxiJWnYBoJrhknuFGsE6iGIkCwdrB+G7mt5+Y0jyWj2aSMD8iQ8lDTomxklepX7oX/VLZqTpz4FXi5qQMOZr90ldvENM0YtJQQbTuuk5i/Iwow6lg02Iv1SwhdEyGrGupJBHTfjY/dorPrTLAYaxsSYPn6u+JjERaT6LAdkbEjPSyNxP/87qpCW/8jMskNUzSxaIwFdjEePY5HnDFqBETSwhV3N6K6YgoQo3Np2hDcJdfXiWtWtWtV2sPV+XGbR5HAU7hDCrgwjU04B6a4AEFDs/wCm9Iohf0jj4WrWsonzmBP0CfPxwnjZE=</latexit>

r3,0
<latexit sha1_base64="GcSfuXIxDwPP9WDJB2o29ZWBg8g=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4kJK0gh6LXjxWsB/QhrLZbtqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dtbWNza3tgs7xd29/YPD0tFxy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYjVI04S7kd0qEQoGEUrtXU/q126036p7FbcOcgq8XJShhyNfumrN4hZGnGFTFJjup6boJ9RjYJJPi32UsMTysZ0yLuWKhpx42fzc6fk3CoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGN74mVBJilyxxaIwlQRjMvudDITmDOXEEsq0sLcSNqKaMrQJFW0I3vLLq6RVrXi1SvXhqly/zeMowCmcwQV4cA11uIcGNIHBGJ7hFd6cxHlx3p2PReuak8+cwB84nz+kTY8c</latexit>

r3,1
<latexit sha1_base64="tvdf4MnZ6rcjxmyxoFid11smWLU=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4kJK0gh6LXjxWsB/QhrLZTtqlm03Y3Qgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSK4Nq777aytb2xubRd2irt7+weHpaPjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GdzO//YRK81g+mkmCfkSHkoecUWOltupntUtv2i+V3Yo7B1klXk7KkKPRL331BjFLI5SGCap113MT42dUGc4ETou9VGNC2ZgOsWuppBFqP5ufOyXnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhDd+xmWSGpRssShMBTExmf1OBlwhM2JiCWWK21sJG1FFmbEJFW0I3vLLq6RVrXi1SvXhqly/zeMowCmcwQV4cA11uIcGNIHBGJ7hFd6cxHlx3p2PReuak8+cwB84nz+l0o8d</latexit>

r3,2
<latexit sha1_base64="QbfNfIuYyAgIsuBxSgyzPxroOAk=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4kJK0gh6LXjxWsB/QhrLZbtqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dtbWNza3tgs7xd29/YPD0tFxy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYjVI04S7kd0qEQoGEUrtXU/q11Wp/1S2a24c5BV4uWkDDka/dJXbxCzNOIKmaTGdD03QT+jGgWTfFrspYYnlI3pkHctVTTixs/m507JuVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzxM6GSFLlii0VhKgnGZPY7GQjNGcqJJZRpYW8lbEQ1ZWgTKtoQvOWXV0mrWvFqlerDVbl+m8dRgFM4gwvw4BrqcA8NaAKDMTzDK7w5ifPivDsfi9Y1J585gT9wPn8Ap1ePHg==</latexit>

r2,2
<latexit sha1_base64="IqVDtbxLuHMAvhzH70ZyQxPxYQI=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkCnosevFYwX5AG8pmu2mXbjZhdyKU0B/hxYMiXv093vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDfz209cGxGrR5wk3I/oUIlQMIpWaut+VruoTfvlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nz52SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjjZ0IlKXLFFovCVBKMyex3MhCaM5QTSyjTwt5K2IhqytAmVLIheMsvr5JWrepdVmsPV5X6bR5HEU7gFM7Bg2uowz00oAkMxvAMr/DmJM6L8+58LFoLTj5zDH/gfP4ApdCPHQ==</latexit>

…

(1� r1,0)(1� u1,0)
<latexit sha1_base64="PbUiLWKLiKFx4j777XpOIAYy+fo=">AAACAXicbZDLSsNAFIZP6q3WW9SN4GawCBVsSaqgy6IblxXsBdoQJtNpO3QyCTMToYS68VXcuFDErW/hzrdx2mah1R8GPv5zDmfOH8ScKe04X1ZuaXlldS2/XtjY3NresXf3mipKJKENEvFItgOsKGeCNjTTnLZjSXEYcNoKRtfTeuueSsUicafHMfVCPBCszwjWxvLtg5KLykj6qXvqTE5KbjnJ0LeLTsWZCf0FN4MiZKr79me3F5EkpEITjpXquE6svRRLzQink0I3UTTGZIQHtGNQ4JAqL51dMEHHxumhfiTNExrN3J8TKQ6VGoeB6QyxHqrF2tT8r9ZJdP/SS5mIE00FmS/qJxzpCE3jQD0mKdF8bAATycxfERliiYk2oRVMCO7iyX+hWa24Z5Xq7XmxdpXFkYdDOIISuHABNbiBOjSAwAM8wQu8Wo/Ws/Vmvc9bc1Y2sw+/ZH18A861k+w=</latexit>

(1�
r
1,1 )(1�

u
1,1 )

<latexit sha1_base64="Bg9akbmcdE5NALiIEpW3EdPVpjY=">AAACAXicbZDLSgMxFIbP1Futt1E3gptgESrYMqmCLotuXFawF2iHIZOmbWjmQpIRylA3voobF4q49S3c+Tam7Sy0+kPg4z/ncHJ+PxZcacf5snJLyyura/n1wsbm1vaOvbvXVFEiKWvQSESy7RPFBA9ZQ3MtWDuWjAS+YC1/dD2tt+6ZVDwK7/Q4Zm5ABiHvc0q0sTz7oIRRGUkvxad4clLC5SRDzy46FWcm9BdwBkXIVPfsz24voknAQk0FUaqDnVi7KZGaU8EmhW6iWEzoiAxYx2BIAqbcdHbBBB0bp4f6kTQv1Gjm/pxISaDUOPBNZ0D0UC3WpuZ/tU6i+5duysM40Syk80X9RCAdoWkcqMclo1qMDRAqufkrokMiCdUmtIIJAS+e/Bea1Qo+q1Rvz4u1qyyOPBzCEZQAwwXU4Abq0AAKD/AEL/BqPVrP1pv1Pm/NWdnMPvyS9fEN0cyT7g==</latexit>

(1
�
r 1,

1
)u

1,
1

<latexit sha1_base64="kXIT2nT0G46JOSdxqFBovzIA9zs=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIFbRMqqDLohuXFewD2mHIpJk2NPMgyQh1KP6KGxeKuPU/3Pk3po+Fth643MM595Kb4yeCK+0431ZuaXlldS2/XtjY3NresXf3GipOJWV1GotYtnyimOARq2uuBWslkpHQF6zpD27GfvOBScXj6F4PE+aGpBfxgFOijeTZByWMzpD0MnyKRyfptHt20Sk7E6BFgmekCDPUPPur041pGrJIU0GUamMn0W5GpOZUsFGhkyqWEDogPdY2NCIhU242uX6Ejo3SRUEsTUUaTdTfGxkJlRqGvpkMie6reW8s/ue1Ux1cuRmPklSziE4fClKBdIzGUaAul4xqMTSEUMnNrYj2iSRUm8AKJgQ8/+VF0qiU8Xm5cndRrF7P4sjDIRxBCTBcQhVuoQZ1oPAIz/AKb9aT9WK9Wx/T0Zw129mHP7A+fwAfrpMX</latexit>

(1
�
r 2

,0
)u

2,
0

<latexit sha1_base64="oG+qqq8gZt5SrMhAwr9i5Ip+wcU=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIFbTMVEGXRTcuK9gHtMOQSTNtaCYzJBmhDsVfceNCEbf+hzv/xvSx0NYDl3s4515yc4KEM6Ud59vKLS2vrK7l1wsbm1vbO/buXkPFqSS0TmIey1aAFeVM0LpmmtNWIimOAk6bweBm7DcfqFQsFvd6mFAvwj3BQkawNpJvH5RcdIakn1VOndFJOu2+XXTKzgRokbgzUoQZar791enGJI2o0IRjpdquk2gvw1Izwumo0EkVTTAZ4B5tGypwRJWXTa4foWOjdFEYS1NCo4n6eyPDkVLDKDCTEdZ9Ne+Nxf+8dqrDKy9jIkk1FWT6UJhypGM0jgJ1maRE86EhmEhmbkWkjyUm2gRWMCG4819eJI1K2T0vV+4uitXrWRx5OIQjKIELl1CFW6hBHQg8wjO8wpv1ZL1Y79bHdDRnzXb24Q+szx8fspMX</latexit>

(1
�
r 3

,0
)u

3,
0

<latexit sha1_base64="Vn1zlWzyWWX3EMnHoJ63Jtd17/w=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIFbTMtIIui25cVrAPaIchk2baYCYzJBmhDsVfceNCEbf+hzv/xvSx0NYDl3s4515yc4KEM6Ud59vKLS2vrK7l1wsbm1vbO/buXlPFqSS0QWIey3aAFeVM0IZmmtN2IimOAk5bwf312G89UKlYLO70MKFehPuChYxgbSTfPii56AxJP6ueOqOTdNp9u+iUnQnQInFnpAgz1H37q9uLSRpRoQnHSnVcJ9FehqVmhNNRoZsqmmByj/u0Y6jAEVVeNrl+hI6N0kNhLE0JjSbq740MR0oNo8BMRlgP1Lw3Fv/zOqkOL72MiSTVVJDpQ2HKkY7ROArUY5ISzYeGYCKZuRWRAZaYaBNYwYTgzn95kTQrZbdartyeF2tXszjycAhHUAIXLqAGN1CHBhB4hGd4hTfryXqx3q2P6WjOmu3swx9Ynz8iyJMZ</latexit>

(1� r3,0)(1� u3,0)
<latexit sha1_base64="Hb7hPjpfAMMBKCAP8S7HAwQ1YbM=">AAACAXicbZDLSsNAFIZP6q3WW9SN4GawCBVsSVpBl0U3LivYC7QhTKaTdujkwsxEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPn92LOpLKsbyO3srq2vpHfLGxt7+zumfsHLRklgtAmiXgkOh6WlLOQNhVTnHZiQXHgcdr2RjfTevuBCsmi8F6NY+oEeBAynxGstOWaRyUblZFw09q5NTkr2eUkQ9csWhVrJrQMdgZFyNRwza9ePyJJQENFOJaya1uxclIsFCOcTgq9RNIYkxEe0K7GEAdUOunsggk61U4f+ZHQL1Ro5v6eSHEg5TjwdGeA1VAu1qbmf7VuovwrJ2VhnCgakvkiP+FIRWgaB+ozQYniYw2YCKb/isgQC0yUDq2gQ7AXT16GVrVi1yrVu4ti/TqLIw/HcAIlsOES6nALDWgCgUd4hld4M56MF+Pd+Ji35oxs5hD+yPj8AdTrk/A=</latexit>

(1� r2,0)(1� u2,0)
<latexit sha1_base64="ataSVu4BUXUodYduaYFWTxCnm4M=">AAACAXicbZDLSsNAFIZP6q3WW9SN4GawCBVsSaqgy6IblxXsBdoQJtNpO3QyCTMToYS68VXcuFDErW/hzrdx2mah1R8GPv5zDmfOH8ScKe04X1ZuaXlldS2/XtjY3NresXf3mipKJKENEvFItgOsKGeCNjTTnLZjSXEYcNoKRtfTeuueSsUicafHMfVCPBCszwjWxvLtg5KLykj6afXUmZyU3HKSoW8XnYozE/oLbgZFyFT37c9uLyJJSIUmHCvVcZ1YeymWmhFOJ4VuomiMyQgPaMegwCFVXjq7YIKOjdND/UiaJzSauT8nUhwqNQ4D0xliPVSLtan5X62T6P6llzIRJ5oKMl/UTzjSEZrGgXpMUqL52AAmkpm/IjLEEhNtQiuYENzFk/9Cs1pxzyrV2/Ni7SqLIw+HcAQlcOECanADdWgAgQd4ghd4tR6tZ+vNep+35qxsZh9+yfr4BtHQk+4=</latexit>

(1�
r
2,1 )(1�

u
2,1 )

<latexit sha1_base64="o9JFrl2076YZ39QN0Xcs4+ds0sA=">AAACAXicbZDLSsNAFIZP6q3WW9SN4GawCBVsSaqgy6IblxXsBdoQJtNpO3QyCTMToYS68VXcuFDErW/hzrdx2mah1R8GPv5zDmfOH8ScKe04X1ZuaXlldS2/XtjY3NresXf3mipKJKENEvFItgOsKGeCNjTTnLZjSXEYcNoKRtfTeuueSsUicafHMfVCPBCszwjWxvLtg5KLykj6afXUnZyU3HKSoW8XnYozE/oLbgZFyFT37c9uLyJJSIUmHCvVcZ1YeymWmhFOJ4VuomiMyQgPaMegwCFVXjq7YIKOjdND/UiaJzSauT8nUhwqNQ4D0xliPVSLtan5X62T6P6llzIRJ5oKMl/UTzjSEZrGgXpMUqL52AAmkpm/IjLEEhNtQiuYENzFk/9Cs1pxzyrV2/Ni7SqLIw+HcAQlcOECanADdWgAgQd4ghd4tR6tZ+vNep+35qxsZh9+yfr4BtTnk/A=</latexit>

(1�
r
2,2 )(1�

u
2,2 )

<latexit sha1_base64="G36TTvRwBhKz1dT59UmusnuPG00=">AAACAXicbZDLSsNAFIZP6q3WW9SN4GawCBVsSaKgy6IblxXsBdoQJtNJO3RyYWYilFA3voobF4q49S3c+TZO2yy0+sPAx3/O4cz5/YQzqSzryygsLa+srhXXSxubW9s75u5eS8apILRJYh6Ljo8l5SyiTcUUp51EUBz6nLb90fW03r6nQrI4ulPjhLohHkQsYAQrbXnmQcVGVSS8zDl1JicVu5rm6Jllq2bNhP6CnUMZcjU887PXj0ka0kgRjqXs2lai3AwLxQink1IvlTTBZIQHtKsxwiGVbja7YIKOtdNHQSz0ixSauT8nMhxKOQ593RliNZSLtan5X62bquDSzViUpIpGZL4oSDlSMZrGgfpMUKL4WAMmgum/IjLEAhOlQyvpEOzFk/9Cy6nZZzXn9rxcv8rjKMIhHEEFbLiAOtxAA5pA4AGe4AVejUfj2Xgz3uetBSOf2YdfMj6+Adf+k/I=</latexit> (1�
r
3,2 )(1�

u
3,2 )

<latexit sha1_base64="9yB8DolvNFllbEpjdE2FO/ifVRw=">AAACAXicbZDLSsNAFIZP6q3WW9SN4GawCBVsSVpBl0U3LivYC7QhTKaTdujkwsxEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPn92LOpLKsbyO3srq2vpHfLGxt7+zumfsHLRklgtAmiXgkOh6WlLOQNhVTnHZiQXHgcdr2RjfTevuBCsmi8F6NY+oEeBAynxGstOWaRyUblZFw09p5dXJWsstJhq5ZtCrWTGgZ7AyKkKnhml+9fkSSgIaKcCxl17Zi5aRYKEY4nRR6iaQxJiM8oF2NIQ6odNLZBRN0qp0+8iOhX6jQzP09keJAynHg6c4Aq6FcrE3N/2rdRPlXTsrCOFE0JPNFfsKRitA0DtRnghLFxxowEUz/FZEhFpgoHVpBh2AvnrwMrWrFrlWqdxfF+nUWRx6O4QRKYMMl1OEWGtAEAo/wDK/wZjwZL8a78TFvzRnZzCH8kfH5A9sZk/Q=</latexit>

(1�
r
3,1 )(1�

u
3,1 )

<latexit sha1_base64="tVNGqeYnONrdtIUd//qtqeHCsnY=">AAACAXicbZDLSgMxFIYz9VbrbdSN4CZYhAq2TFpBl0U3LivYC7TDkEkzbWgmMyQZoQx146u4caGIW9/CnW9j2s5CW38IfPznHE7O78ecKe0431ZuZXVtfSO/Wdja3tnds/cPWipKJKFNEvFIdnysKGeCNjXTnHZiSXHoc9r2RzfTevuBSsUica/HMXVDPBAsYARrY3n2UQnBMpReWjtHk7MSKicZenbRqTgzwWVAGRRBpoZnf/X6EUlCKjThWKkucmLtplhqRjidFHqJojEmIzygXYMCh1S56eyCCTw1Th8GkTRPaDhzf0+kOFRqHPqmM8R6qBZrU/O/WjfRwZWbMhEnmgoyXxQkHOoITuOAfSYp0XxsABPJzF8hGWKJiTahFUwIaPHkZWhVK6hWqd5dFOvXWRx5cAxOQAkgcAnq4BY0QBMQ8AiewSt4s56sF+vd+pi35qxs5hD8kfX5A9gCk/I=</latexit>
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)u
3,
1

<latexit sha1_base64="LfS/IC/vVyJgwGI6Rl7WOxqQUAg=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIFbTMtIIui25cVrAPaIchk2baYCYzJBmhDsVfceNCEbf+hzv/xvSx0NYDl3s4515yc4KEM6Ud59vKLS2vrK7l1wsbm1vbO/buXlPFqSS0QWIey3aAFeVM0IZmmtN2IimOAk5bwf312G89UKlYLO70MKFehPuChYxgbSTfPii56AxJP6ueuqOTdNp9u+iUnQnQInFnpAgz1H37q9uLSRpRoQnHSnVcJ9FehqVmhNNRoZsqmmByj/u0Y6jAEVVeNrl+hI6N0kNhLE0JjSbq740MR0oNo8BMRlgP1Lw3Fv/zOqkOL72MiSTVVJDpQ2HKkY7ROArUY5ISzYeGYCKZuRWRAZaYaBNYwYTgzn95kTQrZbdartyeF2tXszjycAhHUAIXLqAGN1CHBhB4hGd4hTfryXqx3q2P6WjOmu3swx9Ynz8l2pMb</latexit>

(1� r3,2)u3,2
<latexit sha1_base64="PGTVfjrNTorRECxyN5cpYJHhgjg=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIFbTMtIIui25cVrAPaIchk2baYCYzJBmhDsVfceNCEbf+hzv/xvSx0NYDl3s4515yc4KEM6Ud59vKLS2vrK7l1wsbm1vbO/buXlPFqSS0QWIey3aAFeVM0IZmmtN2IimOAk5bwf312G89UKlYLO70MKFehPuChYxgbSTfPii56AxJP6ueVkYn6bT7dtEpOxOgReLOSBFmqPv2V7cXkzSiQhOOleq4TqK9DEvNCKejQjdVNMHkHvdpx1CBI6q8bHL9CB0bpYfCWJoSGk3U3xsZjpQaRoGZjLAeqHlvLP7ndVIdXnoZE0mqqSDTh8KUIx2jcRSoxyQlmg8NwUQycysiAywx0SawggnBnf/yImlWym61XLk9L9auZnHk4RCOoAQuXEANbqAODSDwCM/wCm/Wk/VivVsf09GcNdvZhz+wPn8AKOyTHQ==</latexit>

(1� r2,2)u2,2
<latexit sha1_base64="4MgeFyekX9EzN6Tv3lrAJSDhc2U=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEClqSKOiy6MZlBfuANoTJdNIOnTyYmQg1FH/FjQtF3Pof7vwbp20W2nrgcg/n3MvcOX7CmVSW9W0UlpZXVteK66WNza3tHXN3rynjVBDaIDGPRdvHknIW0YZiitN2IigOfU5b/vBm4rceqJAsju7VKKFuiPsRCxjBSkueeVCx0RkSXuacOuOTdNY9s2xVrSnQIrFzUoYcdc/86vZikoY0UoRjKTu2lSg3w0Ixwum41E0lTTAZ4j7taBrhkEo3m14/Rsda6aEgFroihabq740Mh1KOQl9PhlgN5Lw3Ef/zOqkKrtyMRUmqaERmDwUpRypGkyhQjwlKFB9pgolg+lZEBlhgonRgJR2CPf/lRdJ0qvZ51bm7KNeu8ziKcAhHUAEbLqEGt1CHBhB4hGd4hTfjyXgx3o2P2WjByHf24Q+Mzx8l1pMb</latexit>
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)u
2,
1

<latexit sha1_base64="TOSgbFUvUFtM2uCL3AoltM4fqnQ=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIFbTMVEGXRTcuK9gHtMOQSTNtaCYzJBmhDsVfceNCEbf+hzv/xvSx0NYDl3s4515yc4KEM6Ud59vKLS2vrK7l1wsbm1vbO/buXkPFqSS0TmIey1aAFeVM0LpmmtNWIimOAk6bweBm7DcfqFQsFvd6mFAvwj3BQkawNpJvH5RcdIakn1VO3dFJOu2+XXTKzgRokbgzUoQZar791enGJI2o0IRjpdquk2gvw1Izwumo0EkVTTAZ4B5tGypwRJWXTa4foWOjdFEYS1NCo4n6eyPDkVLDKDCTEdZ9Ne+Nxf+8dqrDKy9jIkk1FWT6UJhypGM0jgJ1maRE86EhmEhmbkWkjyUm2gRWMCG4819eJI1K2T0vV+4uitXrWRx5OIQjKIELl1CFW6hBHQg8wjO8wpv1ZL1Y79bHdDRnzXb24Q+szx8ixJMZ</latexit>

(M, 0)
<latexit sha1_base64="Y28X80N3h5PalBtD70jtvfL7Xv4=">AAAB7HicbVBNSwMxEJ31s9avqkcvwSJUkLJbBT0WvXgRKrhtoV1KNs22oUl2SbJCWfobvHhQxKs/yJv/xrTdg7Y+GHi8N8PMvDDhTBvX/XZWVtfWNzYLW8Xtnd29/dLBYVPHqSLUJzGPVTvEmnImqW+Y4bSdKIpFyGkrHN1O/dYTVZrF8tGMExoIPJAsYgQbK/mV+3P3rFcqu1V3BrRMvJyUIUejV/rq9mOSCioN4VjrjucmJsiwMoxwOil2U00TTEZ4QDuWSiyoDrLZsRN0apU+imJlSxo0U39PZFhoPRah7RTYDPWiNxX/8zqpia6DjMkkNVSS+aIo5cjEaPo56jNFieFjSzBRzN6KyBArTIzNp2hD8BZfXibNWtW7qNYeLsv1mzyOAhzDCVTAgyuowx00wAcCDJ7hFd4c6bw4787HvHXFyWeO4A+czx9CWI2q</latexit> 1� rM+1,0

<latexit sha1_base64="hsUBARnqbrwWYd5qPJO808Xe0yM=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRZBUMumCnosevEiVLAf0C4lm2bb0Gx2TbKFsvR3ePGgiFd/jDf/jWm7B60+GHi8N8PMPD8WXBvX/XJyS8srq2v59cLG5tb2TnF3r6GjRFFWp5GIVMsnmgkuWd1wI1grVoyEvmBNf3gz9ZsjpjSP5IMZx8wLSV/ygFNirORhdIZUN707wafupFssuWV3BvSX4IyUIEOtW/zs9CKahEwaKojWbezGxkuJMpwKNil0Es1iQoekz9qWShIy7aWzoyfoyCo9FETKljRopv6cSEmo9Tj0bWdIzEAvelPxP6+dmODKS7mME8MknS8KEoFMhKYJoB5XjBoxtoRQxe2tiA6IItTYnAo2BLz48l/SqJTxeblyf1GqXmdx5OEADuEYMFxCFW6hBnWg8AhP8AKvzsh5dt6c93lrzslm9uEXnI9vL9WQbA==</latexit>
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r
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1,1

<latexit sha1_base64="349JAeJO0tX8jaj9NWV1Ube1aDI=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRZBUMumCnosevEiVLAf0C4lm2bb0Gx2TbKFsvR3ePGgiFd/jDf/jWm7B60+GHi8N8PMPD8WXBvX/XJyS8srq2v59cLG5tb2TnF3r6GjRFFWp5GIVMsnmgkuWd1wI1grVoyEvmBNf3gz9ZsjpjSP5IMZx8wLSV/ygFNirORhdIZUN707wad40i2W3LI7A/pLcEZKkKHWLX52ehFNQiYNFUTrNnZj46VEGU4FmxQ6iWYxoUPSZ21LJQmZ9tLZ0RN0ZJUeCiJlSxo0U39OpCTUehz6tjMkZqAXvan4n9dOTHDlpVzGiWGSzhcFiUAmQtMEUI8rRo0YW0Ko4vZWRAdEEWpsTgUbAl58+S9pVMr4vFy5vyhVr7M48nAAh3AMGC6hCrdQgzpQeIQneIFXZ+Q8O2/O+7w152Qz+/ALzsc3MVqQbQ==</latexit>
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r
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+
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<latexit sha1_base64="imvpwT6u+Y8lgE6pab0brgyCUL8=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRZBUMumCnosevEiVLAf0C4lm2bb0Gx2TbKFsvR3ePGgiFd/jDf/jWm7B60+GHi8N8PMPD8WXBvX/XJyS8srq2v59cLG5tb2TnF3r6GjRFFWp5GIVMsnmgkuWd1wI1grVoyEvmBNf3gz9ZsjpjSP5IMZx8wLSV/ygFNirORhdIZUN707waeVSbdYcsvuDOgvwRkpQYZat/jZ6UU0CZk0VBCt29iNjZcSZTgVbFLoJJrFhA5Jn7UtlSRk2ktnR0/QkVV6KIiULWnQTP05kZJQ63Ho286QmIFe9Kbif147McGVl3IZJ4ZJOl8UJAKZCE0TQD2uGDVibAmhittbER0QRaixORVsCHjx5b+kUSnj83Ll/qJUvc7iyMMBHMIxYLiEKtxCDepA4RGe4AVenZHz7Lw57/PWnJPN7MMvOB/fMt+Qbg==</latexit>

rM+1,2
<latexit sha1_base64="VcOG9EJKKYVSmK6HS0Y34fv/xRk=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRZBUMpuK+ix6MWLUMF+SLuUbJptQ5PskmSFsvRXePGgiFd/jjf/jWm7B219MPB4b4aZeUHMmTau++3kVlbX1jfym4Wt7Z3dveL+QVNHiSK0QSIeqXaANeVM0oZhhtN2rCgWAaetYHQz9VtPVGkWyQczjqkv8ECykBFsrPSoeundmXdemfSKJbfszoCWiZeREmSo94pf3X5EEkGlIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUokF1X46O3iCTqzSR2GkbEmDZurviRQLrccisJ0Cm6Fe9Kbif14nMeGVnzIZJ4ZKMl8UJhyZCE2/R32mKDF8bAkmitlbERlihYmxGRVsCN7iy8ukWSl71XLl/qJUu87iyMMRHMMpeHAJNbiFOjSAgIBneIU3RzkvzrvzMW/NOdnMIfyB8/kDqN+PqA==</latexit>

rM+1,1
<latexit sha1_base64="S+EOi3qt9aucJ4RDjwmxxzrx750=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRZBUMpuK+ix6MWLUMF+SLuUbJptQ5PskmSFsvRXePGgiFd/jjf/jWm7B219MPB4b4aZeUHMmTau++3kVlbX1jfym4Wt7Z3dveL+QVNHiSK0QSIeqXaANeVM0oZhhtN2rCgWAaetYHQz9VtPVGkWyQczjqkv8ECykBFsrPSoeundmXfuTXrFklt2Z0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDKT5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSrJS9arlyf1GqXWdx5OEIjuEUPLiEGtxCHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwBp1qPpw==</latexit>

rM+1,0
<latexit sha1_base64="DMDPTgTdd8MLHpRcGUrxrrJQLKY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRZBUMpuK+ix6MWLUMF+SLuUbJptQ5PskmSFsvRXePGgiFd/jjf/jWm7B219MPB4b4aZeUHMmTau++3kVlbX1jfym4Wt7Z3dveL+QVNHiSK0QSIeqXaANeVM0oZhhtN2rCgWAaetYHQz9VtPVGkWyQczjqkv8ECykBFsrPSoeundmXfuTnrFklt2Z0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDKT5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSrJS9arlyf1GqXWdx5OEIjuEUPLiEGtxCHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwBpdWPpg==</latexit>

(M + 1, 1)
<latexit sha1_base64="CID+It6NV3NR0rPx+BofX561pJc=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahopRNFfRY9OJFqGA/oF1KNs22odnskmSFsvRHePGgiFd/jzf/jWm7B219MPB4b4aZeX4suDau++3kVlbX1jfym4Wt7Z3dveL+QVNHiaKsQSMRqbZPNBNcsobhRrB2rBgJfcFa/uh26reemNI8ko9mHDMvJAPJA06JsVKrfH+Gz/Fpr1hyK+4MaJngjJQgQ71X/Or2I5qETBoqiNYd7MbGS4kynAo2KXQTzWJCR2TAOpZKEjLtpbNzJ+jEKn0URMqWNGim/p5ISaj1OPRtZ0jMUC96U/E/r5OY4NpLuYwTwySdLwoSgUyEpr+jPleMGjG2hFDF7a2IDoki1NiECjYEvPjyMmlWK/iiUn24LNVusjjycATHUAYMV1CDO6hDAyiM4Ble4c2JnRfn3fmYt+acbOYQ/sD5/AEbX44b</latexit>

initial termination

Figure A.6: Profile HMMstate architecture. The conventional profile HMM state architecture labeled withMuE states,

using (m, g) notation. Squares indicate “match states”, diamonds indicate “insert states”, and circles indicate “delete
states”.

ble paths between the two states that go only through deletion states. This yields Equation A.24.

The emission probability of each state in the pHMM is set by its associated emission probability

vector. Without loss of generality, we can write any emission matrix of the pHMM as x̃ (Definition

2.1) since ℓ is the identity matrix.

□

Needleman-Wunsch

The Needleman-Wunsch (NW) algorithm is a classic non-probabilistic alignment method187.
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Summary LetG be the NW gap penalty, which we assume to be negative, and define u := eG.

We define the MuE transition matrix and termination probabilities

a
(t)
k,k′ :=



1−u
1+uu

m′−m−1+g ifm− g < m′ < M + 1 and g′ = 0

1−u
1+uu

m′−m+g ifm− g < m′ ≤M + 1 and g′ = 1

0 otherwise

(A.27)

t
(t)
k := 1 + u2

1 + u
uM−m+g (A.28)

The initial transition vector is defined by a(0)
k := a

(t)
0,k and the initial termination probability is

t
(0)
k := t

(t)
0 . Let Sb,b′ be the NW similarity matrix, for which we assume that

∑
b′ eSb,b′ = B for all

b. We define, for b, b′ ∈ {1, ..., B},

ℓb,b′ := eSb,b′

B
. (A.29)

Finally, for allm ∈ {1, ...,M + 1},

cm := (ℓ−1)> · (1/B, ..., 1/B)> (A.30)

where ℓ−1 is the inverse of the substitution matrix (assumed to be invertible) and (1/B, ..., 1/B)>

is a lengthB column vector. LetX and Y be the sequences to be aligned.

Under the MuEmodel Y ∼ MuE(X, c, ℓ, a(0), a(t)), the maximum a posteriori estimator of the

alignment variablew givenX and Y corresponds to the Needleman-Wunsch pairwise alignment
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betweenX and Y . Note that in the limitG→ −∞ and Sb,b′ → −∞ for all b′ 6= b, we recover the

no-mutation limit of the MuE distribution.

Proof We can organize the NW scoring system according to transitions in the MuEMarkov

model. We use ωx, ωy notation to represent alignments, with the symbol “|” placed to the right

of the residue we are transitioning from. We assign l′ to be the residue of Y at the column of the

alignment corresponding to state k′.

1. Transitioning from (m, 0) to (m′ > m, 0) gives a NW score of (m′ − m − 1)G +

∑
b,b′ xm′,bSb,b′yl′,b′ .

x: 1 | 1 ... 1 1

y: 1 | 0 ... 0 1

2. Transitioning from (m, 0) to (m′ > m, 1) gives a NW score of (m′ −m)G

x: 1 | 1 ... 1 0

y: 1 | 0 ... 0 1

3. Transitioning from (m, 1) to (m′ ≥ m, 0) gives a NW score of (m′−m)G+
∑

b,b′ xm′,bSb,b′yl′,b′

x: 0 | 1 ... 1 1

y: 1 | 0 ... 0 1

4. Transitioning from (m, 1) to (m′ ≥ m, 1) gives a NW score of (m′ −m+ 1)G.
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x: 0 | 1 ... 1 0

y: 1 | 0 ... 0 1

5. Terminating after (m, 0) gives a NW score of (M −m)G.

x: 1 | 1 ... 1 $

y: 1 | 0 ... 0 $

6. Terminating after (m, 1) gives a NW score of (M −m+ 1)G.

x: 0 | 1 ... 1 $

y: 1 | 0 ... 0 $

Nowwe can rewrite the Needleman-Wunsch objective function in terms of these transitions,

rather than in terms of gap and insert scoring. In particular, define

∆(l′,m, g,m′, g′) :=



(m′ −m− 1 + g)G

+
∑

b,b′ xm′,bSb,b′yl′,b′ ifm− g < m′ < M and g′ = 0

(m′ −m+ g)G ifm− g < m′ ≤M and g′ = 1

−∞ otherwise

(A.31)

Based on the cases outlined above, the NW objective function can now be rewritten as

argmax
m⃗,g⃗

L∑
l=1

∆(l,ml−1, gl−1,ml, gl) + (M −mL + gL)G (A.32)
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where we setm0 = 0, g0 = 0. If we find the solution to this objective function, then follow

the mapping from the list of Markov chain states (m1, g1), ..., (mL, gL) back to an alignment, we

obtain the Needleman-Wunsch alignment between sequences x and y.

Now we examine the maximum a posteriori estimator ofw under the MuE distribution. We have

argmax
w

log p(y, w|x, c, a, ℓ) = argmax
w

[
log p(term.|wL)+

L∑
l=2

log p(yl, wl|wl−1)+log p(y1, w1)
]

(A.33)

where p(term.|wL) is the termination probability after statewL, which reduces to p(term.|init.)

whenL = 0. Under the givenMuEmodel,

p(yl, wl|wl−1) =



1−u
1+uu

ml−ml−1−1+gl−1 1
B exp(

∑
b,b′ xml,bSb,b′yl,b′)

ifml−1 − gl−1 < ml < M + 1 and gl = 0

1−u
1+uu

ml−ml−1+gl−1 1
B ifml−1 − gl−1 < ml ≤M + 1

and gl = 1

0 otherwise

(A.34)

p(term.|wL) = 1 + u2

1 + u
uM−mL+gL (A.35)
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p(y1, w1) =



1−u
1+uu

m1−1 1
B exp(

∑
b,b′ xm1,bSb,b′y1,b′) ifm1 < M + 1 and g1 = 0

1−u
1+uu

m1 1
B ifm1 ≤M + 1 and g1 = 1

0 otherwise

(A.36)

p(term.|init.) = 1 + u2

1 + u
uM (A.37)

Now, the maximum a posteriori estimator ofw can be written as

argmax
w

log p(y, w|x) = argmax
m⃗,g⃗

[
L log(1− u

1 + u

1
B

) + log(1 + u2

1 + u
) +

L∑
l=1

∆(l,ml−1, gl−1,ml, gl)

+ (M −mL + gL)G
]

= argmax
m⃗,g⃗

[ L∑
l=1

∆(l,ml−1, gl−1,ml, gl) + (M −mL + gL)G
]

(A.38)

where againm0 = 0 and g0 = 0. This objective function is identical to the NW objective function

(Equation A.32), so the maximum a posteriori estimator ofw in the MuE distribution corresponds

to the Needleman-Wunsch pairwise alignment ofX and Y .

We can confirm that the transition probabilities of the MuE distribution are normalized by con-
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sidering transitions from state (m, g):

1− u
1 + u

M∑
m′=m−g+1

um′−m−1+g + 1− u
1 + u

M+1∑
m′=m−g+1

um′−m+g + 1 + u2

1 + u
uM−m+g

= 1− u
1 + u

[M−m−1+g∑
m′′=0

um′′ + u
M−m+g∑

m′′=0
um′′]+ 1 + u2

1 + u
uM−m+g

= 1
1 + u

[1− uM−m+g + u− uM−m+g+2] + 1 + u2

1 + u
uM−m+g

= 1− 1 + u2

1 + u
uM−m+g + 1 + u2

1 + u
uM−m+g

= 1.

(A.39)

□

A.2.3 Inferring multiple sequence alignments

In this section we describe howMuE observation models can be used to infer multiple sequence

alignments. First we define a multiple sequence alignment, analogously to Definition 4.2.

Definition A.2.2 (Multiple sequence alignment). Let Y1, . . . , YN be sequences with lengthsL1, . . . , LN .

A multiple sequence alignment YMSA ∈ (B ∪ {−})J has rows YMSA,1, . . . , YMSA,N each consisting

of the letters of Yi, in order, interspersed with gap symbols. The alignment YMSA must satisfy the condi-

tion that for every j ∈ {1, . . . , J}, there exists some i ∈ {1, . . . , N} such that YMSA,i,j ∈ B.

Consider models of the form of Equation 2, and letWi be the latent alignment variable associ-

ated with sequence Yi, i.e.Wi,1, . . . ,Wi,Li is the path through the latent state space that generated

Yi with lengthLi. Algorithm 2 constructs a multiple sequence alignment of the dataset Y1, . . . , YN

232



Algorithm 2Multiple sequence alignment construction
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givenW1, . . . ,WN , placing Yi,l that are generated from the same state (m, 0) (corresponding to a

particular position in the “ancestral” sequenceXi) in the same column. Note in the case of multiple

sequence alignments, as opposed to pairwise alignments, there is no longer a unique alignment given

W , sinceX is not observed. The Algorithm 2 construction is chosen to match a standard construc-

tion used for the profile HMM (see Durbin et al. 67 , Chapter 6.5), using the fact that the profile

HMM is a special case of Equation 2 with pθ(v) = δv0(v), where δv0(v) is the Dirac delta function

at v0. In MuE observation models we can apply the same algorithm as for pHMMs, placing Yi,l that

are generated from the same state (m, 0) in the same column.

A.2.4 Proof of Proposition 4.5

We require that with probability 1, the set {j1, . . . , jL} defined by Definition 4.3 is valid, i.e. it

must be ordered such that jl < jl+1 for all l ∈ {1, . . . , L − 1}. Plugging in Definition 4.3, this is

equivalent to the requirement that

ml+1 > ml − gl, (A.40)

where recallml := Wl −Mgl. For this inequality to hold with probability 1 for any sampleW ,

Condition 2.2 is necessary and sufficient.

A.2.5 Vogel et al. natural language translation

The Vogel et al. 276 translation model takes the same general form as a MuE distribution, withX a

sentence in one language and Y a sentence in another language (encoded as sequences of words). In
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particular, with states k indexed by tuples (m, g), the transition matrix takes the form

a
(t)
k,k′ :=


rM+m′−m∑M

m′′=1 rM+m′′−m

if g = g′ = 0 andm,m′ ≤M

0 otherwise

(A.41)

where r ∈ R2M
+ is a vector of non-negative weights. The initial transition vector is defined by

a
(0)
k := a

(t)
0,k. The lengthL of Y is sampled independently ofW . We can see that for general r,

Condition 2.2 is violated.

A.3 Models

In this section we provide a detailed description of the models evaluated in the main text. We param-

eterized the transition matrix a(t) in terms of r and u following Equation A.24 (the profile HMM

parameterization). We also considered a simplified variation on Equation A.24 where we enforce the

constraint um,0 = um,1 = um,2 and likewise rm,0 = rm,1 = rm,2 for allm. We enforced (in both

cases) the constraint uM,j = 0 for j ∈ {0, 1, 2} (termination has probability zero); rather than

assign a termination state we assume the length of the sequence Yi, that isLi, is independent ofWi.

Since the probability ofLi does not contribute to the per residue perplexity performance metric

(Section A.5) we do not use an explicit model forLi. The initial transition vector followed the same

form as the transition matrix, i.e. a(0)
k = a

(t)
0,k.

Note that in our experiments we go slightly beyond the vanilla MuE observation model pre-

sented in the main text (Equation 2), and allow the insertion sequence c to also depend on pθ.

235



A.3.1 Profile HMM

The profile HMM is

Yi ∼ MuE(x, c, ℓ = IB, a
(0)(r, u), a(t)(r, u)) (A.42)

where a(0)(r, u) and a(t)(r, u) depend deterministically on the parameters r and u according to

Equation A.24,D = B, and IB is theB ×B identity matrix.

A.3.2 RegressMuE

The RegressMuEmodel uses a linear regression model as the MuE observation’s continuous-space

vector model. LetHi,1, ..., Hi,T be covariates associated with sequence Yi. Let β
(x)
0 , ..., β

(x)
T ∈

RM×D be a set of coefficients associated withX , and let β(c)
0 , ..., β

(c)
T ∈ R(M+1)×D be a set of

coefficients associated with c. Then the RegressMuE is

V
(x)

i = β
(x)
0 +

T∑
t=1

Hi,tβ
(x)
t

V
(c)

i = β
(c)
0 +

T∑
t=1

Hi,tβ
(c)
t

Yi ∼ MuE(Xi = softmax(V (x)
i ), Ci = softmax(V (c)

i ), ℓ, a(0)(r, u), a(t)(r, u)).

(A.43)

Note that in this model, unlike the pHMM, the substitution matrix ℓ is not constrained to the iden-

tity. When rm = qm = 0 for allm and ℓ = IB , the RegressMuE reduces to a multi-output

multinomial logit regression model.
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A.3.3 FactorMuE

The FactorMuEmodel is the latent linear version of the RegressMuE. Instead of observing covari-

atesH , we draw a latent variableZ from a standard normal prior,

Zi,t ∼ Normal(0, 1)

V
(x)

i = β
(x)
0 +

T∑
t=1

Zi,tβ
(x)
t

V
(c)

i = β
(c)
0 +

T∑
t=1

Zi,tβ
(c)
t

Yi ∼ MuE(Xi = softmax(V (x)
i ), Ci = softmax(V (c)

i ), ℓ, a(0)(r, u), a(t)(r, u))

(A.44)

A.3.4 ICAMuE

The ICAMuEmodel the same as the FactorMuEmodel, except that it uses a Laplace prior instead

of a Normal prior on the local latent variable (Murphy 185 , Chapter 12.6).

Zi,t ∼ Laplace(0, 1)

V
(x)

i = β
(x)
0 +

T∑
t=1

Zi,tβ
(x)
t

V
(c)

i = β
(c)
0 +

T∑
t=1

Zi,tβ
(c)
t

Yi ∼ MuE(Xi = softmax(V (x)
i ), Ci = softmax(V (c)

i ), ℓ, a(0)(r, u), a(t)(r, u))

(A.45)
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A.3.5 NeuralMuE

The NeuralMuEmodel uses a fully connected neural network as the MuE observation’s continuous-

space vector model. We use a network Γ layers using relu nonlinearities, widths T1:(Γ+1), and weights

β1:(Γ+1). LetHi,1:T(Γ+1) be a vector of covariates.

Vi,Γ+1 = βΓ+1,0 +
TΓ+1∑
t=1

Hi,tβΓ+1,t

Vi,Γ = βΓ,0 +
TΓ∑
t=1

relu(Vi,Γ+1,t)βΓ,t

...

V
(x)

i,1 = β
(x)
1,0 +

T1∑
t=1

relu(Vi,2,t)β(x)
1,t

V
(c)

i,1 = β
(c)
1,0 +

T1∑
t=1

relu(Vi,2,t)β(c)
1,t

Yi ∼ MuE(Xi = softmax(V (x)
i,1 ), Ci = softmax(V (c)

i,1 ), ℓ, a(0)(r, u), a(t)(r, u))

(A.46)

A.3.6 LatentNeuralMuE

The LatentNeuralMuEmodel uses a neural network latent variable model as the MuE observation’s

continuous-space vector model. It is the latent covariate version of the NeuralMuE, where instead
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of observingH we draw a latent variableZ from a standard normal prior.

Zi,t ∼ Normal(0, 1)

Vi,Γ+1 = βΓ+1,0 +
TΓ+1∑
t=1

Zi,tβΓ+1,t

Vi,Γ = βΓ,0 +
TΓ∑
t=1

relu(Vi,Γ+1,t)βΓ,t

...

V
(x)

i,1 = β
(x)
1,0 +

T1∑
t=1

relu(Vi,2,t)β(x)
1,t

V
(c)

i,1 = β
(c)
1,0 +

T1∑
t=1

relu(Vi,2,t)β(c)
1,t

Yi ∼ MuE(Xi = softmax(V (x)
i,1 ), Ci = softmax(V (c)

i,1 ), ℓ, a(0)(r, u), a(t)(r, u))

(A.47)

A.3.7 Priors

We place standard normal priors Normal(0, 1) over each element of each coefficient matrix β in

each model. Recall that each row of the matrix ℓ is constrained to the simplex, ℓd ∈ ∆B . To enable

easy gradient-based optimization and stochastic variational inference147, we transform an uncon-

strained parameter ℓ̃ ∈ RD×B with a Gaussian prior to the simplex,

ℓ̃d,b ∼ Normal(0, 1)

ℓd = softmax(ℓ̃d).
(A.48)
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The variables rm,j and um,j are constrained to [0, 1] for allm and j. This corresponds to the first

dimension of a simplex∆2, and so we apply the same approach,

r̃m,j,ϑ ∼ Normal(µ(r)
ϑ , 1) for ϑ ∈ {1, 2}

rm,j = exp(r̃m,j,2)
exp(r̃m,j,1) + exp(r̃m,j,2)

(A.49)

where µ(r) is a hyperparameter. The variable um is handled identically, with prior

ũm,j,ϑ ∼ Normal(µ(u)
ϑ , 1) for ϑ ∈ {1, 2}.

In the case of the ICAMuEmodel we found that training improved with an annealing strategy:

we multiplied each coefficient matrix β by a scalar inverse-temperature parameter ξ, drawn accord-

ing to ξ̃ ∼ Normal(100, 1) and ξ = softplus(ξ̃)where softplus = log(1 + exp(·)); the variational

approximation to ξ (see below) was initialized such that q(ξ̃) had mean 0. Note that this anneal-

ing approach does not change the expressivity of the model, only the prior and training dynamics.

Details can be found in the supplementary code (see Section A.4.2).

A.4 Inference

A.4.1 Stochastic variational inference

Variational inference approximates the posterior distribution p(θ|Y1:N ) of a given probabilistic

model using a tractable family of distributions qη(θ|Y1:N ) parameterized by η 27. To form this ap-

proximation, variational inference minimizes the Kullback-Leibler (kl) divergence between the two
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distributions,

η0 := argmin
η

kl(qη(θ|Y1:N )||p(θ|Y1:N )) (A.50)

This objective can be rewritten as maximizing the evidence lower bound (elbo),

η0 = argmax
η

Eqη(θ|Y1:N )[log p(Y1:N , θ)]− Eqη(θ|Y1:N )[log qη(θ|Y1:N )] = argmax
η

elbo(η)

(A.51)

We employ mean-field variational inference for MuE observation models. We use a diagonal

Gaussian distribution, with unknownmean and standard deviation, for the variational distribu-

tion over the global parameters r̃, ũ, ℓ̃, ξ̃ and β. For the local variable z in the FactorMuE and La-

tentNeuralMuE, we amortize inference using an inference network (also known as an encoder net-

work)139,213. In particular, we set

qηz (z1:N |Y1:N ) =
N∏

i=1
qηz (zi|Yi) =

N∏
i=1
N (zi|f (µ)(Yi; ηz), f (σ)(Yi; ηz)) (A.52)

whereN (z|µ, σ) is the probability distribution function of a Gaussian with mean µ and standard

deviation σ, and f (µ)(Yi; ηz) and f (σ)(Yi; ηz) are differentiable functions of ηz . We parameterize
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f (µ) and f (σ) using a neural network,

y
(q)
i,l = EY ′∼MuE(Yi,c(q),ℓ(q),a(0)(r(q),u(q)),a(t)(r(q),u(q)))[Y

′
l ]

v
(q)
i,Γ(q)+1 = β

(q)
Γ(q)+1,0 +

L(q)∑
l=1

B∑
b=1

y
(q)
i,l,bβ

(q)
Γ(q)+1,l,b

v
(q)
i,Γ(q) = β

(q)
Γ(q),0 +

TΓ(q)∑
t=1

relu(v(q)
i,Γ(q)+1,t

)β(q)
Γ(q),t

...

f (µ) = β
(q,µ)
1,0 +

T1∑
t=1

relu(v(q)
i,2,t)β

(q,µ)
1,t

f (σ) =
∣∣β(q,σ)

1,0 +
T1∑

t=1
relu(v(q)

i,2,t)β
(q,σ)
1,t

∣∣.

(A.53)

where we have introduced the variational parameters (β(q), c(q), r(q), u(q), ℓ(q)) =: ηz . The first

layer of the encoder employs the MuE distribution and computes the expected value of mutants of

Yi, at positions l ∈ {1, ..., L(q)}; this expected value is a differentiable function of the MuE parame-

ters, and can be tractably computed using the forward algorithm. We use the same parameterization

of the MuE distribution as in the models (Section A.3), but fix r(q)
1,0 = r

(q)
1,1 = r

(q)
1,2 = r

(q)
2,0 = ... =

r
(q)
M,2 and u

(q)
1,0 = u

(q)
1,1 = u

(q)
1,2 = u

(q)
2,0 = ... = u

(q)
M−1,2 and c

(q)
1 = c

(q)
2 = ... = c

(q)
M . Intuitively,

the MuE encoding serves to “smear out” the one-hot encoded sequence Yi according to learnable

insertion, deletion and substitution probabilities, making it easier for the encoder to learn which

sequences are similar, and making each encoded sequence y(q)
i the same lengthL(q).

To optimize the variational approximation we need to compute the gradient of the ELBOwith

respect to the variational parameters η. To enable faster optimization we employ stochastic varia-
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tional inference, approximating the gradient at each update step using a minibatch of data208. Let

ϕ := (β, r, u, ℓ) be the global parameters of the MuE observation models proposed in Section A.3

and let ηϕ be the parameters of the associated mean-field variational distribution. Then the gradient

of the ELBO is

∇ηelbo(η) =
N∑

i=1

(
∇ηEqηϕ

(ϕ)qηz (zi|Yi)[log p(Yi|Zi, ϕ)] +∇ηEqηz (zi|Yi)
[
log

p(Zi)
qηz (Zi|Yi)

])

+∇ηEqηϕ
(ϕ)
[
log

p(ϕ)
qηϕ

(ϕ)

]
≈ N

|S|
∑
i∈S

(
∇ηEqηϕ

(ϕ)qηz (zi|Yi)[log p(Yi|Zi, ϕ)] +∇ηEqηz (zi|Yi)
[
log

p(Zi)
qηz (Zi|Yi)

])

+∇ηEqηϕ
(ϕ)
[
log

p(ϕ)
qηϕ

(ϕ)

]
(A.54)

where S ⊆ {1, ..., N} is the set of datapoint indices making up the minibatch and |S| is the

size of the set S . We estimate the gradient of the first term on the right hand side of this equation

using the reparameterization trick Monte Carlo estimator (with a single sample) and automatic

differentiation147,139,213. The remaining terms can be computed analytically (see e.g. Kingma &

Welling 139 , Rezende et al. 213). Note that this approach relies crucially on the fact that the marginal

likelihood of the MuEmodel, pMuE(y|x, c, ℓ, a(0), a(t)) =
∑

w pMuE(y|w, x, c, ℓ, a(0), a(t)), is

a differentiable function of x, c, a and ℓ. We integrate over all possible values of the Markov chain

state variablew using the forward algorithm.

It is useful in some circumstances to reweight the variational objective to reduce the amount of
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regularization placed on the local latent variable. In particular, for χ ∈ [0, 1], we reweight the ELBO

as

ELBOχ(η) =
N∑

i=1

(
Eqηϕ

(ϕ)qηz (zi|Yi)[log p(Yi|Zi, ϕ)] + χEqηz (zi|Yi)
[
log

p(Zi)
qηz (Zi|Yi)

])

+Eqηϕ
(ϕ)
[
log

p(ϕ)
qηϕ

(ϕ)

]
.

(A.55)

We achieved improved training performance by annealing the weight χ from 0 to 1 linearly over the

course of an initial time period during training29. To avoid posterior collapse and produce infor-

mative latent representations, we found it useful in certain cases to anneal χ only up to a low value

χ0 << 1 in which case we are approximating the maximum likelihood estimator of z; this anneal-

ing schedule was only used for producing data visualizations, rather than prediction of held out data

(Section A.8)7.

A.4.2 Probabilistic programming

We implemented a MuE distribution in both Pyro23 and Edward2263, probabilistic programming

languages that are GPU-enabled and can use a variety of different inference procedures including

both stochastic variational inference andMCMCmethods. Probabilistic programming systems

make it easy to try out different priors and different continuous-space matrix models pθ; they also

make it easy to build joint models of sequences and other types of data.

Documentation for the Pyro implementation can be found at https://docs.pyro.ai/en/

dev/contrib.mue.html. Example Pyro models can be found at https://github.com/pyro-ppl/
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pyro/tree/dev/examples/contrib/mue. The Edward2 implementation, along with a brief tu-

torial, is available at https://github.com/debbiemarkslab/MuE.

A.5 Evaluation

The per residue perplexity of a probabilistic sequence model p(y), over a dataset Y1:N , is defined as

Ω := exp
(
− 1
N

N∑
i=1

1
Li

log p(Yi|Li)
)
. (A.56)

In evaluating our models, we computed the average log likelihood performance on a heldout test set

YT for the model distribution learned from the training set YD. More precisely, we use

Ω̂ := exp
(
− 1
|T |

∑
i∈T

1
Li

Eq(ϕ|YD)[log p(Yi|Li, ϕ)]
)

(A.57)

where q(ϕ|yD) is the variational approximation to the posterior distribution from the training

dataset and |T | is the size of the test set. For models with local latent variables zi, we approximate

the marginal likelihood using the ELBO27,

Ω̂ ≈ exp
(
− 1
|T |

∑
i∈T

1
Li

(
Eq(ϕ|YD)q(zi|Yi)[log p(Yi|Li, Zi, ϕ)] + Eq(zi|Yi)

[
log

p(Zi)
q(Zi|Yi)

]))
.

(A.58)

We use Monte Carlo estimation for the expectations. In comparing between different models p1 and

p2, we also report the log Bayes factor associated with the held out data, ie. the difference in total log
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probability of the heldout data between the two models,

log bf1,2 :=
∑
i∈T

Eq2(ϕ|YD)[log p2(Yi|Li, ϕ)]−
∑
i∈T

Eq1(ϕ|YD)[log p1(Yi|Li, ϕ)] (A.59)

where q1 and q2 are the variational approximations associated with p1 and p2. For models with

local latent variables, we can use the ELBO approximation as in Equation A.58. The Bayes factor

provides a measurement of the total evidence in favor of one model versus another.

Per residue perplexity is a useful performance metric for biological sequence models because it

is an absolute scale and comparable across datasets as well as models. Since per residue perplexity is

not yet widely used in the biological literature, in the interest of making it more interpretable we

computed the expected per-residue perplexity for a variety of different protein sequence models, cov-

ering different data regimes. In particular, for each model p(y), we examined the expected perplexity

in the large data limit, assuming that the model is true,

Ω0 := exp
(
− Ep(y)

[ 1
L
log p(Y |L)

])
. (A.60)

The expected perplexity is the exponentiated entropy of the model distribution, and so also provides

a measurement of sequence diversity under the model. Below, we compute the expected perplexity

for distributions ranging from the very high diversity regime (all of evolution) down to the very

small diversity regime (human population genetics).
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Naive

A naive model assigns an equal probability to each amino acid. In this case the per residue perplexity

is

Ω0 = exp(−E[log(1/20)]) = 20. (A.61)

Amino acid frequencies

A simple modeling approach is to predict individual amino acids solely based on their naturally

occurring frequency across evolution. Using the UniprotKB amino acid frequencies fb for b ∈

{1, ..., B = 20}, we have

Ω0 = exp
(
− EY ∼Categorical(f)[log(f> · Y )]

)
= exp(−

20∑
b=1

fb log fb) ≈ 17.92 (A.62)

where Y is a one-hot encoding265,84.

BLOSUM62

If we are studying specific evolutionary families of proteins, an idealized strategy for building a

model is to infer the sequence of the last common ancestor and then predict family members us-

ing the standard BLOSUM62 substitution matrix101. The BLOSUM62 matrix is a renormalized

copula density, but we can convert it into a mutation probability matrix ℓ by assuming the marginal
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probability of each amino acid follows the UniprotKB frequency across evolution:

log ℓb,b′ = log p(yb′ = 1|xb = 1) = log
(
fb,b′

fb

)
= log fb′ + log

(
fb,b′

fbfb′

)

= log fb′ + log(2)
2

BLOSUM62b,b′

(A.63)

where x is a one-hot encoding of the ancestral amino acid, y is a one-hot encoding the mutated

amino acid, and fb,b′ is the joint probability of amino acids b and b′, where b, b′ ∈ {1, ..., B = 20}.

(The log(2)/2 factor comes from the definition of BLOSUM62.) We renormalize the rows ℓb to

ensure ℓb ∈ ∆B (BLOSUM62 uses only small integers, producing non-negligible rounding error).

Next, we assume that the ancestral sequence is known exactly, has infinite length, and the frequency

of each amino acid within the ancestral sequence matches the UniprotKB overall frequency across

evolution. The expected per residue perplexity is then

Ω0 = exp(−EX∼Categorical(f)
[
EY ∼Categorical(X·ℓ)[log(X> · ℓ · Y )]

]
) ≈ 11.00. (A.64)

Human Population Genetics

Finally, we examined a simple model of human population variation. Each human has on aver-

age roughly 5 million single nucleotide polymorphisms (SNPs) relative to the reference genome1.

Naively assuming a constant mutation rate over the genome, the probability of a mutation occur-

ring in any particular codon is qcodon = 1 − (1 − 5/6400)3, since there are 6.4 billion total base

pairs. If we very naively assume a uniform probability of the codon mutating to any other amino
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acid, then we can use the substitution matrix ℓ defined by

ℓb,b′ =


qcodon

19 if b 6= b′

1− qcodon if b = b′.

(A.65)

If we further very naively assume that there are no correlations among mutations at different genome

locations when looking across individuals, then the expected per residue perplexity of the sequence

distribution is

Ω0 = exp
(
EY ∼Categorical(x>·ℓ)[log(x> · ℓ · Y )]

)
≈ 1.024. (A.66)

A.6 Predictive performance

A.6.1 Survey

Dihydrofolate reductase (DHFR) is a widely conserved enzyme, serine recombinase (PINE) is

used as a tool for genomic engineering, cyclin dependent kinase inhibitor 1B (CDKN1B/p27) is

a cell cycle inhibitor, and the human papillomavirus E6 protein (VE6) is an oncogenic viral pro-

tein110,261,254. Evolutionarily related sequences for each were collected using jackhmmer (v3.1) from

the UniRef100 dataset (date 6/2019)130,69,251. We used seed sequences with Uniprot identifiers

DYR_HUMAN (DHFR dataset), PINE_ECOLI (PINE dataset), CDN1B_HUMAN (CDKN1B

dataset), and VE6_HPV16 (VE6 dataset). Note that CDKN1B and VE6 have regions classified as

disordered. We set a bitscore threshold of 0.5 bits/residue as in Hopf et al. 110 and ran the jackhm-

mer search using the API from the EVcouplings package109. We included the full envelope of the
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profile HMMhit in the final dataset. The CDN1B dataset had 1,055 sequences and the VE6 dataset

1,609 sequences. We found 32,510 and 79,354 hits respectively for the DHFR and PINE datasets,

which we randomly subsampled to 10,000 sequences to create the final datasets. Note that the

jackhmmer search algorithm uses a profile HMM to find distant homologs, and thus may bias the

dataset to look more like samples from a pHMM; we therefore expect the performance gains from

using other MuE observation models, as compared to the pHMM, on these datasets to be smaller

(more conservative) than the performance gains that might be achieved on alternative datasets as-

sembled using different search methods. The TCR dataset was not assembled using jackhmmer.

Instead, we downloaded a public dataset from 10x Genomics of 6,327 TCR sequences found in

CD8+ cytotoxic T-cells https://support.10xgenomics.com/single-cell-vdj/datasets/

2.2.0/vdj_v1_hs_cd8_t (download file dated July 28, 2018). These were sequenced using single

cell sequencing of peripheral blood mononuclear cells obtained from an individual healthy donor.

Internal stop codons were removed from the sequence.

We set the latent alphabet sizeD = 25. In each experiment, we setM to be 10% longer than the

longest sequence in the dataset. We used T = 5 latent space dimensions in the FactorMuE and layer

sizes T2 = 5, T1 = 10 in the LatentNeuralMuE (we found a substantial dropoff in performance

when increasing network width or depth). In the recognition network, we setL(q) = M − 1. We

also used Γ(q) = 0 (no relu nonlinearities) in the FactorMuE recognition network and Γ(q) = 1,

T1 = 10 in the LatentNeuralMuE recognition network. For the MuE, we used the constraint

um,0 = um,1 = um,2 and likewise rm,0 = rm,1 = rm,2 for allm. For the prior on the MuE

insertion and deletion parameters we used µ(r) = µ(u) = (100, 1) to disfavor indels.
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In these particular experiments, models were implemented in PyTorch, with variational infer-

ence implemented by hand and without the parallelized forward algorithm (experiments in Sec-

tions A.6.2 and A.6.3 were performed second with the Pyro implementation). We optimized the

variational approximation using Adam138 and a minibatch size of 5. The mean of the variational

distribution was initialized at the prior mean, while the variance was initialized to a small random

value (the absolute value of a sample from a normal distribution with standard deviation 0.01).

We used oneMonte Carlo sample to estimate the ELBO gradient at each step. For each model and

dataset, we evaluated two different learning rates, 0.1 and 0.01, and three different random restarts,

selecting among training runs the parameter values that reached the highest ELBO on the training

set for making predictions. For models with local latent variables (the FactorMuE and LatentNeu-

ralMuE), we annealed the ELBO reweighting factor χ from 0 to 1 linearly over the first 2 epochs.

We trained for 4 epochs total on the DHFR and PINE datasets, and 7 epochs total on the smaller

CDKN1B, VE6 and TCR datasets, which was sufficient for convergence in each model. We esti-

mated the heldout perplexity using one independent Monte Carlo sample per batch. Computations

were performed on graphics processing units (NVIDIA Tesla M40, K80 and V100 GPUs), with

double precision, and we used gradient accumulation to reduce memory usage. Single training runs

ranged from∼30min. for smaller datasets (CDKN1B and VE6) to∼2.5 hours for larger datasets

(DHFR, PINE and TCR).
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A.6.2 Patient immune repertoires

We considered six datasets. “HC 1” consisted of 5,179 BCR sequences from a healthy donor, ob-

tained with single cell sequencing of peripheral blood mononuclear cells, available from 10x Ge-

nomics https://support.10xgenomics.com/single-cell-vdj/datasets/3.0.0/vdj_

v1_hs_pbmc2_b (download file dated November 15, 2018). The rest of the datasets all were taken

from a study of T cell receptors in patients with and without multiple sclerosis during pregnancy207.

Sequences were translated to amino acids based on the provided nucleotide sequence annotations.

The dataset “HC 2” is from a healthy patient, third trimester, CD8+ cells. “HC 3” is from a healthy

patient, third trimester, CD4+ cells. “MS 1” is from a patient withMS, before pregnancy, CD8+

cells. “MS 2” is from a patient withMS, second trimester, CD8+ cells. “MS 3” is from a patient

withMS, third trimester, CD4+ cells. Each of the datasets from Ramien et al. 207 was uniformly

subsampled to 20,000 sequences. Across all datasets, internal stop codons were modeled along with

the 20 amino acids (i.e. B = 21).

We again set the latent alphabet size toD = 25. We setM = 200, longer than most sequences

in each dataset. We used T = 5 latent dimensions in the ICAMuE. In the recognition network

we used Γ(q) = 0 and set r(q), u(q) and ℓ(q) to the no-mutation limit (avoiding the need for the

forward algorithm, to speed up inference at some cost in flexibility). We did not use either the con-

straint um,0 = um,1 = um,2 or the constraint rm,0 = rm,1 = rm,2 in these experiments.

For the prior on the MuE insertion and deletion parameters we used µ(r) = µ(u) = (10, 0), for

both the ICAMuE and pHMMmodels. We used the ξ̃ ∼ Normal(100, 1) prior as described in
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Section A.3.7 for the ICAMuEmodel.

Models were implemented in Pyro. We used Pyro’s stochastic variational inference method (in

particular, JitTrace_ELBO, the jit-compiled ELBO), and the parallelized forward algorithm227.

Optimization was performed with Adam, with a learning rate of 0.01, and a minibatch size of 5.

Initialization was performed the same as previously, with the exception that q(ξ̃)was initialized to

have mean zero. Pyro’s low-variance ELBO gradient estimators enabled more reliable inference, and

so we only used one initialization in each experiment (rather than three). For the HC 1 dataset we

trained for 10 epochs, annealing χ for the first 4; for the remaining (larger) datasets, we trained for

two epochs, annealing for 1. This was sufficient for convergence. We used the same GPU hardware

as previously, but did not use gradient accumulation. Training took∼20min. on the larger datasets

(the Pyro implementation offers considerable speedup advantages, thanks in part to the parallelized

filtering algorithm).

A.6.3 Disordered proteins

Toth-Petroczy et al. 261 collected datasets of evolutionarily related sequences using jackhmmer on

the Uniref and Uniprot databases, starting from regions of human proteins classified as disordered.

They developed a (heuristic) alignment uncertainty score to determine whether the MSA provided

by jackhmmer was trustworthy enough to apply a Potts model and reach conclusions about epistatic

interactions between positions in the MSA. They did not proceed with the Potts model analysis on

datasets with a sufficiently high uncertainty score; we examined these datasets in particular (https:

//marks.hms.harvard.edu/disorder/proteome). We focused on moderately sized datasets:
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those with more than 3,000 but less than 25,000 sequences, with the disordered segment less than

160 amino acids long. As before, we included the full envelope of the profile HMMhit in the final

dataset.

We used the same hyperparameters and training procedure as in Section A.6.2, but set the num-

ber of epochs to be the minimum number such that at least 50,000 optimization steps were taken,

and the number of epochs of χ annealing to half this number (rounded up).

Detailed results Perplexity on a randomly held out 20% of sequences are shown in Table A.2. In

55 out of the 56 datasets, the relative performance of the pHMM and ICAMuE on the training data

accurately reflected their relative performance on the test set, i.e. when the pHMM outperformed

the ICAMuEmodel on the training set it also did so on the test set and vice versa. The ICAMuE

seems to offer particular advantages when the pHMM itself has low perplexity: among datasets with

pHMMperplexity below 8, we find the ICAMuE performs better in more than half (16 out of 31),

while among datasets with pHMMperplexity below 5, the ICAMuE performs better in 5 out of 6.

Table A.2: Heldout perplexity on disordered protein datasets. “Disordered segment” is the region of the protein classified

as disordered that was used as a seed in jackhmmer. “Size” is the total number of sequences in the dataset. Rows sorted by

pHMMperplexity.

Gene name Uniprot id Disordered segment Size (sequences) pHMM ICAMuE

AKAP6 Q13023 293-431 6349 2.88 1.98

NSD1 Q96L73 2463-2590 6517 2.93 2.64

NFAT5 O94916 633-769 10283 2.94 1.98

Continued on next page
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Table A.2 – continued from previous page

Gene name Uniprot id Disordered segment Size (sequences) pHMM ICAMuE

CIC Q96RK0 48-207 7511 3.10 3.79

S26A8 Q96RN1 847-970 9466 4.14 2.67

TADBP Q13148 261-373 12873 4.78 2.97

TET2 Q6N021 1475-1587 22017 5.11 5.98

K2022 Q5QGS0 589-707 3719 5.14 5.99

YAF2 Q8IY57 53-180 16005 5.42 5.98

HDAC5 Q9UQL6 479-631 14275 5.44 5.85

MUC19 Q7Z5P9 5890-6021 13491 5.59 4.84

RBM27 Q9P2N5 91-247 11685 5.80 6.28

DEN1A Q8TEH3 453-567 6070 5.84 6.11

K1683 Q9H0B3 383-502 10098 5.94 4.39

FNBP1 Q96RU3 280-432 23781 5.96 3.82

TOX O94900 135-269 9881 6.02 6.48

SRPK3 Q9UPE1 238-348 9345 6.06 5.73

CAC1G O43497 470-626 16502 6.16 7.07

NGAP Q9UJF2 803-953 6356 6.39 4.45

PS1C1 Q9UIG5 1-126 3434 6.62 6.13

Continued on next page
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Table A.2 – continued from previous page

Gene name Uniprot id Disordered segment Size (sequences) pHMM ICAMuE

GPKOW Q92917 31-157 5888 6.67 4.90

GOG8B A8MQT2 1-131 3674 7.17 8.04

CPXM1 Q96SM3 30-137 3538 7.28 11.51

ESX1 Q8N693 34-147 10234 7.34 10.44

PPIL4 Q8WUA2 337-492 5897 7.38 6.06

TAOK3 Q9H2K8 316-433 8661 7.38 8.32

CAAP1 Q9H8G2 197-335 19715 7.54 5.00

CCD66 A2RUB6 681-830 9586 7.66 9.02

GCC2 Q8IWJ2 1416-1552 7593 7.74 5.71

ASXL3 Q9C0F0 107-236 5108 7.75 8.42

ARHGF O94989 273-413 4290 7.97 7.66

YJ013 Q6ZQT7 1-158 22994 8.07 4.32

PHLB2 Q86SQ0 842-976 22091 8.34 10.61

CC168 Q8NDH2 86-232 12240 8.40 9.73

41 P11171 690-805 7429 8.70 10.05

CEBPA P49715 161-314 20149 8.81 10.18

CP250 Q9BV73 2213-2346 17867 9.08 12.34

Continued on next page
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Table A.2 – continued from previous page

Gene name Uniprot id Disordered segment Size (sequences) pHMM ICAMuE

CHD6 Q8TD26 2312-2457 8843 9.19 10.62

ANKH1 Q8IWZ3 2000-2149 15540 9.22 10.59

CPLX4 Q7Z7G2 18-128 20000 9.42 11.16

WAC Q9BTA9 198-353 3385 9.58 9.15

BAHC1 Q9P281 1357-1482 9092 9.76 11.13

GOG6B A6NDN3 473-580 7947 9.78 11.50

NOB1 Q9ULX3 110-221 4659 9.86 11.93

DGKH Q86XP1 581-705 5903 9.86 11.41

CASZ1 Q86V15 1589-1735 7943 9.92 11.38

POTED Q86YR6 367-502 15076 9.95 11.48

POTEC B2RU33 367-502 15076 10.02 11.43

POTEH Q6S545 405-545 8777 10.32 11.90

ZKSC2 Q63HK3 586-738 18126 10.32 14.57

PTRF Q6NZI2 175-297 18730 10.35 14.07

PERQ1 O75420 289-441 10443 10.44 12.35

U17L8 P0C7I0 383-530 2759 10.57 9.99

LRCH2 Q5VUJ6 491-642 6832 10.66 12.60

Continued on next page
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Figure A.7: Latent space representation of human T-cell receptor sequences, colored by supervised annotations. Anno-

tations were providedwith the 10x Genomics dataset. (A)Cα versusCβ . (B)α chain V types. (C)α chain J types. (D)β
chain V types. (E)β chain D types. (F)β chain J types and subtypes.

Table A.2 – continued from previous page

Gene name Uniprot id Disordered segment Size (sequences) pHMM ICAMuE

EMIL2 Q9BXX0 121-259 5666 11.16 14.16

LMO7 Q8WWI1 763-901 7893 11.18 12.68
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Relative solvent accessibility

Figure A.8: ComparingMuE observationmodel features to T-cell receptor relative solvent accessibility. (A) Relative sol-

vent accessibility of TCRβ from the structure PDB:2BNR 38 (the TCRα chain is shown in gray), computed using DSSP 132

and themaximum values in Tien et al. 258 with the Biopython API 42. (B) Residue relative solvent accessibility versus Fac-

torMuE shift magnitude νl along vector 1 and vector 2 from Figure 5D. The correlation between the shift along vector 1

and the accessibility is Spearmanρ = 0.039, p = 0.64.

A B

Figure A.9: T-cell receptor structural annotations. (A) CDR segments of PDB:2BNR chain E 38, based on IgBLAST annota-

tions 295 of the nucleotide sequence of 1G4 TCRβ obtained fromRobbins et al. 218 , and translated from nucleotides into

the corresponding positions in the amino acid sequence. CDR1 in red, CDR2 in yellow and CDR3 in orange. (B) V (green),

J (yellow) and junction (red) segments of the 1G4 nucleotide sequence, based on the IgBLAST annotations, and translated

from nucleotides.
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Figure A.10: Shiftν from chainα to chainβ sequences learned by the RegressMuEmodel. νl was computed as in Equa-

tion 3, using the chain annotation in place of the latent variable z.

A.7 T-Cell receptor analysis

A.7.1 Details

We used the 10x Genomics single-cell TCR sequencing dataset described in Section A.6.1, along

with the CellRanger annotations of chain features provided along with the dataset. Annotations

of the reference structure PDB:2BNR are based on IgBLAST annotations295 of the nucleotide

sequence of 1G4 TCRβ obtained from Robbins et al. 218 , and translated from nucleotides into the

corresponding positions in the amino acid sequence (Figure A.9).

To obtain a latent space representation (Figure 5B), we trained the FactorMuE observation

model with T = 2 latent dimensions, and chose among training runs based on a randomly held

out test set (5% of the data). Hyperparameters were otherwise set as in Section A.6.1. The shift ν is

estimated using the variational approximation to the posterior of the FactorMuE (using 10Monte
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Carlo samples). ŵref is estimated using a single sample from the variational approximation to the

posterior and the Viterbi algorithm.

A.7.2 Further results

Along feature vector 2 (Figure 5D) we found weak positive correlation between the magnitude

of variation and the relative surface accessibility of each site (Spearman correlation ρ = 0.20,

p < 0.02; Figure A.8). Along feature vector 1 (Figure 5D) we observed high values of νl in the V

segment, suggesting that there are systematic and heterogeneous differences between the V segment

sequence distribution used in TCRα chains and in TCRβ chains. To confirm the observation, we

used the RegressMuEmodel to predict the entire TCR sequence based just on its annotation as

TCRα or TCRβ. In particular, as covariate vectorHi we used a one-hot encoding of the chain type

annotated by CellRanger; sequences without an annotation were labeled as (0, 0). We computed

the regression shift νl in the same way as Equation 3, with the covariateH in place of z. Figure A.10

plots the shift in amino acid preference between the two chains, showing that at a population level

there are key positions within the variable region with substantial differences in preference.

A.8 Influenza analysis

A.8.1 Details

We downloaded publicly available influenza A(H3N2) HA sequences from GISAID236. We se-

lected only sequences longer than 500 amino acids and with no ambiguous amino acids. Some se-
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Figure A.11: Comparing RegressMuEmodel coefficients to HA1 structural domains. (A) Head (orange) and stalk (green)

domains of the HA1 protein (PDB:4O5N); residues between sites 52 and 277 are defined as the head domain, and all

others as stalk, following Lee et al. 153 . (B) Violin plots of regression shift νl (Equation A.67) for residues in the head

domain (226 residues) versus the stalk domain (103 residues). Mean and standard deviation are shown in orange.

A B

⌫ l <latexit sha1_base64="cv6kX8ldCm862EFqpkibwZIG994=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip05fpIBOzQbniVt0FyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLcGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/Hcy5AqZEVNLKFPc3krYmCrKjE2oZEPwVl9eJ+1a1buq1h7qlcZtHkcRzuAcLsGDa2jAPTShBQwm8Ayv8OYkzovz7nwsWwtOPnMKf+B8/gCnEY/G</latexit>
Re

gr
es

si
on

 s
hi

ft 
m

ag
ni

tu
de

Figure A.12: ComparingMuE observationmodel regression coefficients to HA1 epitope regions. (A) Epitope regions A

(red), B (orange), C (yellow), D (green), E (blue) 288,184. (B) Violin plots of regression shift νl (Equation A.67) for residues in

each epitope region, for all epitope regions together, and for residues not in any epitope region; the number of residues in

each region is shown in parenthesis. Mean and standard deviation are shown in orange.
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Figure A.13: ComparingMuE observationmodel regression coefficients to HA1 relative solvent accessibility. (A) Rel-

ative solvent accessibility of the HA1 protein (PDB:4O5N), computed using DSSP 132 and themaximum values in Tien

et al. 258 with the Biopython API 42. HA2 protein shown in dark gray. (B) Relative solvent accessibility versus regression

shift magnitude νl (Equation A.67), residue-by-residue. Spearmanρ = 0.41, p < 10−13.
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Figure A.14:

ComparingMuE observationmodel regression coefficients to a deepmutational scan

of HA. X-axis: regression shift for each amino acid at each position from 1968 to 2019,

νl,b := E[yl,b|ŵref, t = 2019]− E[yl,b|ŵref, t = 1968]
(terms defined as in Equation A.67). Y-axis: relative preference for point mutants with amino acid b at position l in the
deepmutational scan performed in Lee et al. 153 . Spearmanρ = 0.08, p < 10−11.

263



…

…

……

…

…

B
190 19510 15 20

21

A

1

2

Figure A.15: Generating forecasted samples. (A) Two locations in the reference structure PDB:4O5N, indicated in blue

and red, corresponding to low and high νl values (Figure 6B). (B) Segments of sequences sampled from the posterior

predictive distribution for the year 2024. The alignment variablewref is fixed based on the reference (PDB:4O5N), such

that segments 1 and 2 correspond to the annotated structural features in A, and the column numbering is standard for

influenza A(H3N2) 30.

quences were labeled at different levels of time resolution, with annotations providing months or

years rather than days; we assumed month and/or day were missing at random and imputed them

uniformly at random. Following Lee et al. 153 , we randomly subsampled six sequences per month,

from 1968 to October 2019, to form the dataset. In the forecasting experiments we removed the

mis-annotated data identified in the 2008 outlier cluster marked by ‡ in Figure 6E prior to subsam-

pling (GISAID identifiers EPI_ISL_24813, EPI_ISL_24814, ..., EPI_ISL_24867). Accession

numbers for the complete dataset can be found in the Supplementary Table 1 file in the published

paper284; our results were stable upon resampling. We extracted only the first 350 amino acids of

each HA sequence, covering HA1 in the reference A(H3N2) numbering30.

We usedM = 361 in the MuE distribution. We set the prior on indels to µ(r) = µ(u) =

(1000, 1). We trained each model for 7 epochs, which was sufficient for convergence. Hyperparam-

eters and training schedule were otherwise set as in Section A.6.1. To produce the latent embedding
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in Figure 6D, however, we annealed the ELBOweighting χ only up to χ0 = 0.001 after 7 epochs,

providing only very weak prior regularization such that the embedding corresponds to approxi-

mately the maximum likelihood estimator of z (and we avoid posterior collapse).

To visualize features, we trained the RegressMuEmodel on the full time period (1968 to 2019),

with 5% of datapoints randomly held out to choose among training runs. We computed the magni-

tude of the shift in sequence space from time t0 to time t1 in the RegressMuE as

νl =
[ B∑

b=1

(
E[Yl,b|ŵref, t = 2019]− E[Yl,b|ŵref, t = 1968]

)2]1/2
(A.67)

using as reference the HA1 sequence from PDB:4O5N. The expectation is estimated using the varia-

tional approximation to the posterior with 10Monte Carlo samples. ŵref is estimated using a single

sample from the variational approximation to the posterior and the Viterbi algorithm. In evaluating

the association between the shift vector νl and epitope regions of HA1, we specifically compared to

the 16 sites with clear antigenic selection in at least one human sera identified in Lee et al. 152 .

A.8.2 Further results

In addition to the classic epitope regions, we also compared the regression shift ν to the structural

domains of the HA1 protein (Figure A.11), relative solvent accessibility (Figure A.13), and rela-

tive amino acid preference in a deep mutational scan evaluating fitness effects of mutations (Fig-

ure A.14).

The cluster marked ‡ in Figure 6E appears around 2008 but the latent representation of these
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sequences is close to that of sequences from the late 1960s or 1970s; this cluster comes from an ex-

periment performed in 2008 on 1968 sequences, rather than contemporary patient samples as in the

rest of the GISAID dataset.

MuE observation models can be used to generate samples of future sequences, enabling exper-

imental tests of immune response and antibody titer on sequences that are likely to emerge in the

future. We generated samples for the year 2024 from the RegressMuE, and confirmed that they

are similar to previously observed sequences, as would be expected (Figure A.15). In particular, we

sampled from

ϕ ∼ q(ϕ|YD)

Yi ∼ pRegressMuE(y|ŵref, ϕ, t = 2024)
(A.68)

where q(ϕ|YD) is the variational approximation to the posterior over model parameters, under the

model trained on the full time period (1968 to 2019), and PDB:4O5N is again used as a reference

sequence.
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B
Supplementary Material for Chapter 2

Sections B.1-B.6 are our theoretical results. Section B.7 describes our simulation experiments. Sec-

tion B.8 details how we implemented scalable inference for BEARmodels. Sections B.9-B.13 pro-

vide details on our empirical results based on real data. The Datasets.xlsx file in the supplementary

material of the publication contains information on all the datasets, including links or accession

numbers for public databases. Code and documentation are available at https://github.com/
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debbiemarkslab/BEAR.

B.1 Theory introduction

BEARmodels can be used to address a variety of different estimation and testing problems, and the

theoretical questions that arise in each case are related but distinct. One crucial, high-level distinc-

tion is between the “finite-lag case” (where we assume the model lagL is finite) and the “infinite-lag

case” (where we allow the model lagL to approach infinity). In addressing nonparametric density

estimation, it is crucial to consider the infinite lag case, since it is likely in practice that the true distri-

bution can only be matched in the infiniteL limit. On the other hand, when it comes to diagnosing

misspecification or constructing hypothesis tests, the finite lag case is more acceptable since it is

likely in practice that any differences between the model and the data, or between two datasets, will

be reflected in finite marginals of the data distribution. The finite lag case is complicated by the fact

that it is likely that many kmer-to-base transitions have extremely low probability in practice; even

on massive datasets, we observe many transitions with no counts whatsoever. To deal with this case,

we develop theoretical tools to accommodate the possibility that some transitions truly have proba-

bility zero under the data generating distribution.

An essential and innovative aspect of our formalism is the focus on ”subexponential” sequence

distributions that obey an exponential moment bound on their length. Our choice to consider se-

quence distributions that have no upper bound on the lengths of sequences they produce separates

our theory from the theory of distributions on finite sets. On the other hand, moment bound as-
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sumptions separate our theory from the theory of distributions on countable sets.

The theory will be organized as follows. Section B.2 describes basic theoretical properties finite-

lag Markov sequence models, including their expressiveness and subexponentiality. Subexponential

sequence models will be introduced in general here. Section B.3 demonstrates consistency of infer-

ence with a fixed lag and in model selection between lags. A connection is established between effec-

tive model dimensions and topologies of de Bruijn graphs. Section B.4 describes the behavior of the

model when inference proceeds by empirical Bayes. The parameter h is established as a descriptor

of misspecification. Section B.5 describes theoretical guarantees on the behavior of goodness-of-fit

and two-sample tests. Finally, section B.6 demonstrates consistency in the infinite lag case. Later

sections depend on definitions and results established in previous sections with the exception that

section B.6 may be read immediately after reading the definitions at the top of section B.3.

B.1.1 Notation

We consider an alphabet B with more than one letter. Define B̃ = B ∪ {$}where $ is interpreted as

the stop symbol, i.e. $may only appear as the last letter of a sequence. Also define the set of strings

of the alphabet B of lengthL that start with any number (including 0) of repeated ∅ symbols, Bo
L.

For a sequenceX of letters in B, possibly terminated by $, we define |X| as its length, including

the stop symbol $ but not any start symbols ∅. For two stringsX,X ′ define#X ′(X) the number

of occurrences ofX ′ as a substring inX and, ifX is not terminated by $, define (X,X ′) as the

concatenated string. We also define the substring from index i to j (inclusive) ofX asXi:j .

Define the set S of all finite sequences terminated by a stop symbol and give it the discrete topol-
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ogy. Note that S is countable. Say p is a distribution of S. We will use Ep, or E if there is an unam-

biguous data-generating distribution, to denote taking an expectation; for example, Ep#X ′ is the

expected number of occurrences of the substringX ′ in sequences drawn from p. For a sequence Y

possibly not terminated by a stop symbol, we define p(Y . . . ) = p({X ∈ S |Xi = Yi ∀i ≤ |Y |}).

We also define subexponential moment bounds, an assumption we will make great use of:

Definition B.1.1 (Subexponential sequence distributions). We say a distribution p on S is subexpo-

nential if for a t > 0, Ep exp(t|X|) <∞.

For a random variableZ on a probability space with probability P , and a measurable setA in the

sample space, we define

E[Z;A] = E[Z1A] = E[Z|A]P (A)

where 1A is the random variable with 1A = 1 onA and 1A = 0 outside ofA. As well, for two real

sequences (an)n∈N, (bn)n∈N, both possibly undefined for small n, we write an ≲ bn to mean that

there is a positive constantC such that eventually an ≤ Cbn. We write an ∼ bn when an ≲ bn and

an ≳ bn. We define a ∧ b as the minimum of a and b, and a ∨ b as the maximum.

B.2 Finite-lagMarkov models

In this section we define finite-lag Markov models, and then study the expressiveness of the model

class. After defining finite-lag Markov models, this section will concern itself with the expressiveness

of the model class. We first show that while there are sequence distributions over S that are not
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finite-lag Markov models, the set of finite-lag Markov models is nevertheless dense in the space of

distributions over S. We then show that finite-lag Markov models are subexponential.

The class of finite-lag Markov models is defined to be

Parameters: lagL, transition probabilities {vk,b}k∈Bo
L,b∈B̃

Xi = ∅ for i ≤ 0

Xi+1 ∼ Categorical({vXi−L+1:i,b}b∈B̃)

stopping generation when a $ symbol is drawn and with parameters picked so that |X| < ∞ a.s..

These models are equivalent to Markov processes on the set Bo
L ∪ {(X, $) |X ∈ Bo

L−1}. The

requirement that generated sequences be finite length a.s. is equivalent to the requirement that for

every k ∈ Bo
L that is Markov-accessible, there is another k′ ∈ Bo

L that is Markov-accessible from

k such that vk′,$ > 0. Call pv a probability distribution generated this way with parametersL, v.

Call the set of such probability distributions with lagLML. Define the set of all finite lag Markov

modelsM := ∪∞
L=1ML and noteM1 ⊂ M2 ⊂ . . . . Defining∆B̃ as the |B̃| − 1-dimensional

simplex with coordinates indexed by B̃,ML is parametrized by transition probabilities in∆Bo
L

B̃ .

This parametrization is not defined everywhere on the boundary and is not injective as if anL-mer

k is not Markov-accessible by a distribution pv , the vector of probabilities vk does not affect pv’s dis-

tribution. This parametrization is continuous in the sense of the topology described by proposition

B.2.2.

We first give some examples of simple sequence distributions that are not finite-lag Markov.
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Proposition B.2.1. Not all possible distributions over S are inM.

Proof. LetA ∈ B and p∗ be a distribution over finite sequences that puts probability ai on the

sequenceA × i := A . . . A of length iwith
∑∞

i=0 ai = 1. Assume p∗ ∈ ML with transition

probabilities {vk,b}k∈Bo
L,b∈B̃.

For i ≤ L, define vi := v(∅×(L−i),A×i), i.e. the vector of transition probabilities from theL-mer

that isL− i ∅ symbols followed by i A symbols. For i ≥ L call vi := vL.

Notice that for any i, the $-component of the vector vi is p∗(|X| = i | |X| ≥ i) = ai
Si
where

Si :=
∑∞

j=i aj . Thus theA-component is 1 − ai
Si

= Si+1
Si

. By the definition of the sequence

(vi)∞
i=1, it is constant for i ≥ L. Call α := SL+1/SL = vL,A = vi,A = Si+1/Si for all i ≥ L.

Thus for all i > L, ai = Sivi,$ = αi−LSLvL,$ = αi−LaL. Thus the sequence ai eventually

decays exponentially and, as examples, it is impossible that ai ∼ 1/i! or ai ∼ 1/i2.

Next we show thatM is dense in the set of probability distributions on S. To speak of density,

we review the topology and types of convergence on the set of distributions of S in this next propo-

sition.

Proposition B.2.2. The topology of convergence in total variation, convergence in distribution, and

pointwise convergence of the probability of eachX ∈ S are identical.

Proof. Pointwise convergence of the probability of eachX ∈ S implies convergence in total varia-

tion by Scheffé’s lemma. It is also known that the topology induced by the total variation metric is

stronger than the topology of convergence in distribution. Finally, since for eachX ∈ S, the set
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Figure B.1: Example application of this construction to the distribution on the left. Transition probabilities for kmers

smaller thanL = 2 are those defined by the original distribution, while those for larger kmers are all 1/3. The thickness
of each line denotes the probability of the transition.

{X} is open and closed, so that the Portmanteau lemma shows that convergence in distribution

implies pointwise convergence.

Lemma B.2.3. Say p is a distribution on S. There is a lagLMarkov model, pL, such that for all

X ∈ S, if |X| ≤ L, pL(X) = p(X), and if |X| > L, pL(X) = p(X1:L)|B̃|−(|X|−L).

Proof. For all k ∈ Bo
L, b ∈ B̃, if there is a start symbol ∅ in k, define vk,b = p((k,b)...)

p(k...) , otherwise,

define vk,b = |B̃|−1. It is clear pv satisfies the properties of pL (Fig B.1).

Corollary B.2.4. M is dense in the set of distributions of S.

Proof. Define p to be a distribution on S with finite support, {Xn}Nn=1. Pick anL > |Xn| for

all n, so that with the definition of lemma B.2.3, pL = p and thus p ∈ ML. Now note that any

distribution on S can be approximated at finitely many points in S arbitrarily well by distributions

with finite support. The result follows from proposition B.2.2.
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Proposition B.2.5. Finite-lagMarkov models are subexponential.

Proof. Say p ∈ ML for someL, with transition probabilities v. Every k ∈ Bo
L that is Markov-

accessible by p has a k′ ∈ Bo
L that is Markov-accessible from k in less than sk transitions such that

vk′,$ > 0. Thus, infi p(|X| ≤ i+ sk | |X| > i,Xi−L+1:i = k) > 0. Define s = maxk accessible sk,

q = infi p(|X| ≤ i + s | |X| > i) > 0. Now note, for any positive integerm, p(|X| > ms) =

∏m
i=1 p(|X| > is | |X| > (i− 1)s) ≤ (1− q)m. For a random variableZ ∼ Geom(q),

Ep exp(t|X|) =
∫ ∞

0
dyp

(
|X| > s

( 1
st
log(y)

))
≤
∫ ∞

0
dyp

(
|X| > s

(
b 1
st
log(y)c

))
≤
∫ ∞

0
dyP

(
Z >

(
b 1
st
log(y)c

))
≤
∫ ∞

0
dyP

(
Z >

( 1
st
log(y)− 1

))
=E exp (ts(Z + 1))

(B.1)

The integral is finite for some t > 0 as geometric random variables are sub-exponential.

B.3 Consistency in the finite L case

In this section we consider fitting to data BEARmodels with fixed hyperparameters h and θ (that is,

standard BayesianMarkov models). We first study the asymptotic behavior of the posterior over v,

the transition probability parameter, conditional on a particular lagL. We prove a Wald-type consis-

tency result, showing that the posterior concentrates on a neighborhood of the true data-generating
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parameter value v∗, if such a value exists; when p∗ is not in the model classML, the posterior over v

concentrates at the point v∗ corresponding to the distribution pv∗ ∈ ML closest in KL divergence

to p∗. We next study the asymptotic behavior of the posterior over the lagL, building on the the-

ory of nested model selection sinceL is a discrete variable. We show that the posterior concentrates

at the true data-generating valueL∗ when such a lag exists (i.e. when there is someL∗ such that

p∗ ∈ ML∗), and otherwise diverges. At a high level, neither of these results are surprising, and they

would be expected to hold in general for well-behaved Bayesian models. The details of the model’s

asymptotic behavior, however, turn out to be somewhat unusual; as we shall see, the fact that some

transitions from a particular kmer k to a base b have probability zero under the data-generating dis-

tribution p∗ can complicate the normal story of Bayesian asymptotics.

To describe the possible kmer-base transitions, we define, for a distribution on S, p, and a lagL,

the set of accessible kmers accL(p) = {k ∈ Bo
L | p(#k > 0) > 0} and transitions suppL(p) =

{(k, b) |k ∈ Bo
L, b ∈ B̃, p(#(k, b) > 0) > 0}. Define also, for any particular a k ∈ Bo

L, the set

of allowed transitions suppL(p)|k := {b ∈ B̃ | (k, b) ∈ suppL(p)}. Define the restriction of the

parameter space∆Bo
L

B̃ to the support of p∗, ∆̃L(p∗) =
∏

k∈accL(p∗) ∆suppL(p∗)|k . If v ∈ ∆Bo
L

B̃ , we

will often use the abbreviation supp(v) = suppL(pv) for convenience.

Say p∗ is a distribution on S andL is a lag. Define the transition probabilities v∗, corresponding

to the closest model inML to p∗ (as measured by KL), as

v∗ = argmin
v∈∆

Bo
L

B̃

kl(p∗||pv) = argmax
v

E log pv(X) = argmax
v

∑
k,b

E [#(k, b)] log vk,b.
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Unlike for many other statistical models studied in other contexts, here we can easily compute the

closest model to the data-generating distribution: using Lagrange multipliers, one may see that for

all k ∈ accL(p∗), v∗
k,b = E [#(k, b)] /E [#k]. We then define p∗(L) = pv∗ as the best approxima-

tion to p∗ inML. Note supp(v∗) = suppL(p∗(L)) = suppL(p∗).

We now ask whether Bayesian inference onML is consistent, i.e., whether the posterior con-

verges to a point mass at p∗(L), even in the case where suppL(p∗) is not all of Bo
L × B̃. The result is

a classic Wald-type argument, adapted from theorem 2.3 of Miller 176 and theorem 1.3.4 in Ghosh

& Ramamoorthi 88 . The primary difficulty in the proof is that these previous theorems assume the

true parameter value lies on the interior of the parameter space and rely on uniform convergence of

the mean log likelihood in a neighborhood around the true value. In our case, we can have v∗
k,b = 0,

so that the true parameter value lies on the boundary of its space∆Bo
L

B̃ and the likelihood function

diverges at this boundary point.

Theorem B.3.1. Say p∗ is a distribution on S with E|X| <∞. Say Π is a prior on ∆Bo
L

B̃ that assigns

probability 0 to the set of v with pv /∈ ML. SayX1, X2, · · · ∼ p∗ iid. Call V = {v ∈ ∆Bo
L

B̃ | pv =

p∗(L)} and assume that it is not disjoint from the support of Π. Then for all open setsU containing V ,

Π(U |X1, . . . , XN )→ 1

a.s.. As a probability distribution on the space of measures on S, Π|X1, . . . , XN → δp∗(L) .

Proof. Define v∗ as the transition probabilities of p∗(L). Define lN (v) = − 1
N

∑N
n=1 log(pv(Xn)),
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which is continuous in v and ν∗ = min(k,b)∈supp(v∗) v
∗
k,b. Note that

E log p∗(L)(X) = E
|X|∑
i=1

log v∗
Xi−L:i−1,Xi

≥ E|X| log ν∗.

First we show that the likelihood of the data is eventually small in a neighborhood of the bound-

ary. Pick an η1 > 0. Say (k, b) ∈ supp(v∗) = suppL(p∗) and define qk,b = p∗(#(k, b) > 0)

which is positive. Pick a positive

νk,b < exp
(
−q−1

k,b(η1 − E|X| log ν∗)
)
∧ v∗

k,b.

E sup
v s.t. vk,b<νk,b

l1(v∗)− l1(v) =E

[
sup

v s.t. vk,b<νk,b

log pv(X)
]
− E [log pv∗(X)]

≤qk,b log νk,b + (− log ν∗)E|X| < −η1.

(B.2)

Thus definingU1 = {v ∈ ∆Bo
L

B̃ | there exists (k, b) ∈ supp(v∗) s.t. vk,b < νk,b}, a.s., for large

enoughN , lN (v∗)− lN (v) < −η1 for all v ∈ U1 by the SLLN.

Call the complement ofU1 K . K is compact and for all v ∈ K , supp(v∗) ⊆ supp(v). Note that

V is compact and in the interior ofK . Pick a positive νK which has, for every (k, b) ∈ supp(v∗),

νK < νk,b. Then

E sup
v∈K

|l1(v∗)− l1(v)| ≤ | log(νK ∧ ν∗)|E|X| <∞.
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Then by theorem 1.3.3 in Ghosh & Ramamoorthi 88 , a.s., lN (v∗) − lN (v) converges uniformly to

kl(p∗||p∗(L)) − kl(p∗||pv) ≤ 0 onK (note, for the application of theorem 1.3.3 in Ghosh &

Ramamoorthi 88 , this quantity is well defined even if pv is not a distribution over finite strings).

Now pick an open neighborhoodU of V . By the continuity of v 7→ kl(p∗||pv), sinceK \ U

is compact, infv∈K\U kl(p∗||pv) > kl(p∗||p∗(L)) otherwise there would be a v ∈ V \ K . Thus

we can pick a positive kl(p∗||p∗(L)) + η2 < infv∈K\U kl(p∗||pv). Since v 7→ kl(pv∗ ||pv) is

continuous andK is a neighborhood of V , there is an openU2 ⊂ K ∩ U containing V such that

one can pick an η3 with supv∈U2
kl(p∗||pv)−kl(p∗||p∗(L)) < η3 < η1 ∧ η2. Then a.s. eventually,

lN (v∗) − lN (v) < −η2 for all v ∈ K \ U and lN (v∗) − lN (v) > −η3 for all v ∈ U2. Thus, a.s.

for large enoughN ,

Π(U |X1, . . . , Xn)

=
∫

U dΠeN(lN (v∗)−lN (v))∫
U dΠeN(lN (v∗)−lN (v)) +

∫
K\U dΠeN(lN (v∗)−lN (v)) +

∫
U1\U dΠeN(lN (v∗)−lN (v))

≥

1 +
∫

K\U dΠeN(lN (v∗)−lN (v))∫
U2
dΠeN(lN (v∗)−lN (v)) +

∫
U1
dΠeN(lN (v∗)−lN (v))∫

U2
dΠeN(lN (v∗)−lN (v))

−1

≥
(

1 + Π(K \ U)e−Nη2

Π(U2)e−Nη3
+ Π(U1)e−Nη1

Π(U2)e−Nη3

)−1

→1.

(B.3)

Finally, as a probability distribution on the space of measures on S,Π|X1, . . . , Xn → δp∗(L) .

This follows from the fact that the prior and thus posterior probability of pv /∈ ML is 0 and so

one may push forward the measure from∆Bo
L

|B̃| to the space of probability measures on S. The im-
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age of V is a point pv∗ . Since this mapping is continuous, it preserves the weak convergence of the

measure, in this case to a point mass.

Next we will study the posterior distribution of the BEARmodel over the lagL, showing under

general assumptions that the posterior concentrates on the true data-generating valueL∗ (when

such a value exists). Our analysis builds off of standard asymptotic analyses of nested Bayesian

model selection, since models with different lags are nested, i.e.ML ⊂ ML′ whenL′ > L. Typ-

ically, when a simpler model (e.g.ML) is nested inside a more complex model (e.g.ML′), and the

data-generating distribution p∗ is in the simpler model, the log Bayes factor comparing the two mod-

els will asymptotically prefer the simpler model and scale as 1
2(dim′− dim) logN where dim′ is

the dimension of the parameter space in the more complex model and dim is the dimension in the

simpler model50. ThisO(logN) term, which is independent of the prior, can be thought of as origi-

nating from the Laplace approximation to the marginal likelihood; it is the basis of such widely used

model-selection techniques as the Bayesian information criterion.

Somewhat surprisingly, the fact that some transitions may have probability zero (v∗
k,b = 0)

changes the asymptotic behavior of the log Bayes factor, in particular by altering the dimension fac-

tor dim′− dim. In effect, dimensions of the parameter space corresponding to kmers that occur

with probability zero under p∗ do not contribute to the dimension count, while dimensions for

which v∗
k,b = 0 do not count as full dimensions; this leads to the notion of an “effective model di-

mension”, defined as dimeff
L (p∗) := |suppL(p∗)| − |accL(p∗)| +

∑
k∈accL(p∗)

∑
b/∈suppL(p∗)|k αk,b

where αk,b is the concentration of the Dirichlet prior. This effective dimension depends the data-
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generating distribution p∗ and on the prior hyperparameters, not just onL. Note that the unusual

asymptotic behavior of BEARmodels does not just come from their Markov structure; even in

the everyday example of a Dirichlet-Categorical model, if some outcomes of the Categorical dis-

tribution have probability exactly zero under the true data-generating distribution, the standard

Laplace approximation does not hold, and the Dirichlet prior contributesO(logN) terms to the log

marginal likelihood222.

Theorem B.3.2. Say p∗ is a distribution on S with E|X|2 < ∞ and sayX1, X2, · · · ∼ p∗ iid.

GivenL, consider aDirichlet(αk,b)b∈B̃ prior on the simplex in ∆Bo
L

B̃ corresponding to theL-mer k.

For allL, assume αk,b > 0 for (k, b) ∈ suppL(p∗) (otherwise p((Xn)N
n=1|ML) is eventually 0 a.s.).

Define kl(p∗||ML) := infp∈ML
kl(p∗||p). GivenL1 6= L2, if * kl(p∗||ML2) > kl(p∗||ML1),

log
p((Xn)N

n=1|ML1)
p((Xn)N

n=1|ML2)
= N (kl(p∗||ML2)− kl(p∗||ML1)) +Op(

√
N). (B.4)

Otherwise, if p∗ ∈ML1 ,ML2 and, defining, for a lagL, dimeff
L (p∗) := |suppL(p∗)|−|accL(p∗)|+

∑
k∈accL(p∗)

∑
b/∈suppL(p∗)|k αk,b,

log
p((Xn)N

n=1|ML1)
p((Xn)N

n=1|ML2)
= 1

2

(
dimeff

L2(p∗)− dimeff
L1(p∗)

)
logN +Op(1). (B.5)

*We do not need to assume E log p > −∞ as we may define in this case kl(p∗||ML2)−kl(p∗||ML1) =
−E log p∗(L2)(X) + E log p∗(L1)(X)which we will see is bounded by the moment bound assumption
E|X|2 <∞.
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Proof. For a lagL, note dim(∆̃L(p∗)) = suppL(p∗)−accL(p∗). Put a Dirichlet(αk,b)b∈suppL(p∗)|k

prior on each∆suppL(p∗)|k . Call M̃L the set of probability distributions described by ∆̃L(p∗). We

will show that kl(p∗||p·) is maximized in the interior of ∆̃L(p∗) so that the asymptotics of the

marginal likelihood
(
p(X|M̃L)

)
are well understood. In∆Bo

L

|B̃| however, there are dimensions that

correspond to k-mer - base transitions that are impossible under p∗. Using the symmetry of the

Dirichlet prior, we can de-couple the asymptotics of these excess dimensions from the asymptotics

of the much more ”natural” space of ∆̃L(p∗):

log
(
p((Xn)N

n=1|ML)
)

=
∑

k∈accL(p∗)

log Γ(
∑

b αk,b)
Γ(
∑

b αk,b + #k)
−

∑
suppL(p∗)|k

log
Γ(αk,b)

Γ(αk,b + #(k, b))


= log

(
p((Xn)N

n=1|M̃L)
)

+
∑

k∈accL(p∗)

(
log

Γ(
∑

b αk,b)
Γ(
∑

b αk,b + #k)
− log Γ(

∑′
b αk,b)

Γ(
∑′

b αk,b + #k)

)
(B.6)

where
∑′

b is a sum over the b ∈ suppL(p∗)|k, and where#k in this case is
∑N

n=1 #k(Xn) and

#(k, b) is similar. We will deal with each of these terms in turn.

To analyze the first of these terms, we first check regularity conditions. For v ∈ ∆̃L(p∗) and

stringsX1, . . . XN , define

lN (v) = − 1
N
log

N∏
n=1

pv(Xn) = − 1
N

∑
(k,b)∈suppL(p∗)

#(k, b) log vk,b

l(v) = −E log pv(X) = −
∑

(k,b)∈suppL(p∗)
E[#(k, b)] log vk,b.

281



Call vn the minimizer of lN and v∗ the minimizer of l. Note v∗ is also the minimizer of v 7→

kl(p∗||pv) for v ∈ ∆̃L(p∗) and has v∗
k,b = E#(k, b)/E#k. In particular pv∗ = p∗(L) so that

kl(p∗||ML) = kl(p∗||M̃L). One may check that lN isC∞, and, by seeing that it is a sum of con-

vex functions, convex. CallingDm the m-th derivative operator (D0 the identity), ‖ · ‖ some norm

on Rdim(∆̃L(p∗))m , andE some set whose closure is in the interior of ∆̃L(p∗)

E sup
v∈E

‖DmlN (v)‖ ≤
∑

(k,b)∈suppL(p∗)
E [#(k, b)] sup

v∈E

‖Dm log vk,b‖ <∞

sinceE is relatively compact. Thus, by theorem 1.3.3 of Ghosh & Ramamoorthi 88 ,DmlN →

EDml1 = Dml locally uniformly where the last equality is by Leibniz’s rule due to the local bound-

edness of all derivatives. In particular,D3lN are uniformly bounded acrossN on a neighborhood of

v∗ and, sendingE ↗ ∆̃L(p∗), and noting lN is a.s. eventually−∞ on the boundary of ∆̃L(p∗),

we see lN → l pointwise a.s..

As in the analysis of Dawid 50 , we write

log p((Xn)N
n=1|M̃L) = log

p((Xn)N
n=1|M̃L)

pvN (Xn)N
n=1

+ log
pvN (Xn)N

n=1
p∗(L)(Xn)N

n=1
+ log p∗(L)(Xn)N

n=1.

The above paragraph demonstrates that we satisfy conditions (2) of theorem 3.2 of Miller 176 and

thus we can write

log
p((Xn)N

n=1|M̃L)
pvN (Xn)N

n=1
= −1

2
dim

(
∆̃L(p∗)

)
logN +O(1)

282



and say that vN → v∗. Now, using the mean value theorem,

log
pvN (Xn)N

n=1
p∗(L)(Xn)N

n=1
= −n(lN (vN )− lN (v∗)) = −(

√
N(v∗ − vN ))TD2lN (v′)(

√
N(v∗ − vN ))

for some v′
N on the ray connecting v∗ and vN . CallZN =

√
D2lN (v′

N )(
√
N(v∗ − vN )). By

local uniform convergence, since vN → v∗,D2lN (v′
N ) → D2l(v∗). Satisfying the conditions

on a neighborhood of v∗, since vN → v∗, by theorem 5.41 in van der Vaart 268 ,
√
N(v∗ − vN )

converges in distribution toN(0, D2l(v∗)−1). Thus, by Slutsky’s theorem,Zn converges to

N(0, I), and by the continuous mapping theorem log pvn (Xn)N
n=1

pv0 (Xn)N
n=1

= ZT
n Zn converges in distri-

bution to χ2
dim(∆̃L(p∗)); thus this term isOP (1). Recall from the remark in the last paragraph that

kl(p∗||M̃L) = kl(p∗||ML) for allL; note in particular p∗ ∈ M̃L if and only if p∗ ∈ ML. Then

finally, by the analysis of Dawid 50 , since E[log p∗(L)(Xn)N
n=1]2 ≤ (log(mink,b v

−1
k,b))2E|X|2 <∞,

log p∗(L)(Xn)N
n=1 = log p∗(Xn)N

n=1 if p∗ ∈ M̃L and

log p∗(L)(Xn)N
n=1 = N [−kl(p∗||ML) + E log p(X)] +OP (

√
N)

otherwise.

By our analysis above we can say that givenL1 6= L2, if kl(p∗||ML2) > kl(p∗||ML1),

log
p((Xn)N

n=1|M̃L1)
p((Xn)N

n=1|M̃L2)
= N (kl(p∗||ML2)− kl(p∗||ML1)) +Op(

√
N). (B.7)
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Otherwise, if p∗ ∈ML1 ,ML2 ,

log
p((Xn)N

n=1|M̃L1)
p((Xn)N

n=1|M̃L2)
= 1

2

(
dim(∆̃L2(p∗))− dim(∆̃L1(p∗))

)
logN +Op(1). (B.8)

Moving to the second term, for a k ∈ supp(v∗), by Stirling’s formula,

(
log

Γ(
∑

b αk,b)
Γ(
∑

b αk,b + #k)
+ log

Γ(
∑′

b αk,b + #k)
Γ(
∑′

b αk,b)

)

=
(∑

b

αk,b −
1
2

)
log
(∑

b

αk,b

)
−
∑

b

αk,b

−
(

#k +
∑

b

αk,b −
1
2

)
log
(

#k +
∑

b

αk,b

)
+
(

#k +
∑

b

αk,b

)

−
(∑

b

′
αk,b −

1
2

)
log
(∑

b

′
αk,b

)
+
∑

b

′
αk,b

+
(

#k +
∑

b

′
αk,b −

1
2

)
log
(

#k +
∑

b

′
αk,b

)
−
(

#k +
∑

b

′
αk,b

)

+O(1)

=
(

#k +
∑

b

′
αk,b −

1
2

)
log
(∑′

b αk,b + #k∑
b αk,b + #k

)

−
(∑

b

αk,b −
∑

b

′
αk,b

)
log
(∑

b

αk,b + #k
)

+O(1)

=
(

#k +
∑

b

′
αk,b −

1
2

)
O

( 1
#k

)

−
(∑

b

αk,b −
∑

b

′
αk,b

)
log#k +O(1)

=−

 ∑
b/∈supp(p∗)|k

αk,b

 log#k +O(1)

(B.9)
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Now note log#k = logN + log
(

1
N #k

)
= logN + O(1) by the strong law of large numbers.

Putting this together with B.7, B.8, B.6, and B.9 gives the result.

So far, we’ve studied pairwise comparisons between models with different lags; we now study the

posterior over lags. We start with the case where there is no true data-generating lag, i.e. p∗ /∈ M. In

this case, we can apply theorem B.3.2 to show that the posterior over lags diverges to infinity.

Corollary B.3.3. Let π(L) denote a prior over lags, with π(L) > 0 for allL. Choose for each lag

a Dirichlet prior on the simplex ∆Bo
L

B̃ that satisfies the conditions of Theorem B.3.2. If p∗ is subexpo-

nential but p∗ /∈ M, the posterior diverges in the sense that for any choice of lag L̃, we have Π(L >

L̃|(Xn)N
n=1)→ 1 a.s..

Proof. It is shown in the proof of theorem B.6.1 that asL→∞, we have kl(p∗‖ML)→ 0. Say L̃

is a lag, so, since p∗ /∈ ML̃, there exists some L̃
′ > L̃ such that kl(p∗‖ML̃′) < kl(p∗‖ML̃) ≤

kl(p∗‖ML) for allL ≤ L̃. Note we have

Π(L ≤ L̃|(Xn)N
n=1) ≤

∑
L≤L̃ p((Xn)N

n=1|ML′)∑
L≤L̃ p((Xn)N

n=1|ML′) + p((Xn)N
n=1|ML̃′)

.

There are only finitely manyL′ less than or equal to L̃, so we can apply theorem B.3.2 and the con-

clusion follows.

We now consider the case where p∗ ∈ M. PickL∗ to be the minimum lag such that p∗ ∈ ML∗ .

We will need to assume, for theoretical tractability, that the prior over lags has finite support. Then

we can establish sufficient conditions for the posterior to concentrate on the true valueL∗.
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Lemma B.3.4. Let π(L) be a prior over lags with π(L) > 0 for allL less than some L̃ ≥ L∗, and

with π(L) = 0 for allL > L̃. Then Π(L∗|(Xn)N
n=1) → 1 in probability if (dimeff

L (p∗))L≥L∗ is

non-decreasing and dimeff
L∗+1(p∗) > dimeff

L∗(p∗).

Proof. Apply theorem B.3.2.

If transition probabilities v∗
k,b were always non-zero, the effective dimension of the model would

simply be the dimension of the parameter space∆Bo
L

B̃ , and thus the dimension would always increase

with increasing lag, making lag selection consistent. Allowing for v∗
k,b = 0makes the situation

more complicated, since in fact the effective dimension may not increase with increasing lag. If this

is indeed the case, the posterior will no longer be guaranteed to determine the trueL∗ from data,

even asymptotically. In order to describe how the effective dimension in fact scales with the lag, we

will introduce the notion of a distribution’s de Bruijn graph: for a distribution p on S, theL-mer

de Bruijn graph is the directed graph with nodes accL(p) and a directed edge connectingL-mers

k → k′ if k′ = (k2:L, b) for a b ∈ suppL(p)|k. (De Bruijn graphs are a common data analysis tool

in biological sequence analysis, where they are typically constructed from an empirical distribution

over observed sequences; here, we are in effect studying the asymptotic de Bruijn graph, i.e. the de

Bruijn graph that we would have if an infinite amount of data were observed.) Call a de Bruijn graph

a tree if every node has at most one parent (since sequences must start and end with start and stop

symbols, there cannot be a loop where each kmer has just one parent). The next two results show

that we can only consistently infer the true lag if the theL∗-mer de Bruijn graph of p∗ is not a tree.

Proposition B.3.5. Say p∗ ∈ ML∗ and for eachL, consider aDirichlet(αk,b)b∈B̃ prior on the
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simplex in ∆Bo
L

B̃ corresponding to theL-mer k. Say forL ≥ L∗, for allL-mers k and bases b, αk,b =

αkL−L∗+1:L,b (i.e. the prior concentration depends only on the lastL∗ letters of theL-mer). There exists

a L̃ (possibly infinity) such that for allL ≥ L∗, theL-mer de Bruijn graph is a tree if and only if

L > L̃. Then (dimeff
L (p∗))L≥L∗ is a non-decreasing sequence, strictly increasing until L̃, and constant

past L̃.

Proof. Call v∗ the transition coefficients of p∗. SayL > L∗, k ∈ accL(p∗). Call k′ ∈ accL∗(p∗)

the lastL∗ letters of k. If for some b ∈ B̃, p∗(#(k, b) > 0) > 0 then clearly p∗(#(k′, b) > 0)

thus suppL(p∗)|k ⊆ suppL∗(p∗)|k′ . On the other hand, say b ∈ suppL∗(p∗)|k′ = supp(v∗)|k′

and Y is a string, not terminated with $, and with its lastL characters equal to k and p∗(Y . . . ).

p∗((Y, b) . . . | Y . . . ) = v∗
k′,b > 0 so, p∗(#(k, b) > 0) > 0. Thus suppL(p∗)|k = suppL∗(p∗)|k′ .

Now write

dimeff
L (p∗) =

∑
k∈accL(p∗)

∑
b∈suppL(p∗)|k

[
1b∈suppL(p∗)|k + 1b/∈suppL(p∗)|kαk,b

]
− 1

where, for a statementA, 1A = 1 ifA is true and 1A = 0 ifA is false. Thus, since in this case

suppL(p∗)|k = suppL∗(p∗)|k′ , and by the assumption on the prior coefficients,

dimeff
L (p∗) =

∑
k′∈accL∗ (p∗)

∣∣{k ∈ accL∗(p∗) | kL−L∗+1:L = k′}
∣∣

×

 ∑
b∈suppL(p∗)|′

k

[
1b∈suppL(p∗)|k′ + 1b/∈suppL(p∗)|k′αk′,b

]
− 1

 . (B.10)

Since for each k′ ∈ accL∗(p∗) there is a k ∈ accL(p∗) that has its lastL∗ letters equal to k′,
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dimeff
L (p∗) ≥ dimeff

L∗(p∗). Since p∗ ∈ ML for allL ≥ L∗ the argument may be repeated for all

pairsL1 > L2 ≥ L∗ to conclude (dimeff
L (p∗))L≥L∗ is non-decreasing.

Note if forL′ > L, dimeff
L′(p∗) = dimeff

L (p∗) then for all k′ ∈ accL(p∗) there is a unique

k ∈ accL′(p∗)with its lastL letters equal to k. Thus ifX1, X2 ∈ S with p∗(X1), p∗(X2) > 0 and

X1, X2 end in the same lastL letters (not including $), thenX1, X2 end in the same lastL′ letters.

Looking at positions |Xj | − L′ : |Xj | − L′ + L− 1, one can also conclude thatX1, X2 end in the

same lastL′ + (L′ − L) letters. Continuing, one may concludeX1 = X2. It can be seen that this is

equivalent to theL-mer de Bruijn of p∗ being a tree. On the other hand it is not difficult to see that

if theL-mer de Bruijn of p∗ is a tree then dimeff
L′(p∗) = dimeff

L (p∗) for allL′ > L.

Corollary B.3.6. Say p∗ ∈ M andL∗ is the minimum lag such that p∗ ∈ ML∗ . Let π(L) be a

prior over lags with π(L) > 0 for allL less than some L̃ ≥ L∗, and with π(L) = 0 for allL > L̃.

For eachL, consider aDirichlet(αk,b)b∈B̃ prior on the simplex in ∆Bo
L

B̃ corresponding to theL-mer k.

Assume that forL ≥ L∗, for allL-mers k and bases b, αk,b = αkL−L∗+1:L,b. Then lag selection is

consistent if and only if theL∗-mer de Bruijn graph of p∗ is not a tree.

Remark B.3.7. If p∗(X) > 0 for infinitely manyX ∈ S, as is the case if the transition coefficients

of p∗ are all positive or there is a cycle in theL∗-mer de Bruijn graph of p∗, then noL-mer de Bruijn

graph of p∗ is a tree as sequences with p(X) > 0 cannot be identified by their lastL letters. As another

example, pick a particular sequenceX ∈ S and sayX ′ is one letter away fromX . For a 0 < q < 1,

define p = qδX + (1 − q)δX′ . PickL∗ the smallest lag such that p∗ ∈ ML∗ . Then theL∗-mer

de Bruijn graph splits into two paths at the position whereX andX ′ differ. These paths may rejoin
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afterL∗ nodes. Thus theL∗-mer de Bruijn graph is a tree if and only if the position at whichX and

X ′ differ is less thanL∗ letters away from the end symbol $.

B.4 Misspecification detection

In this section, we turn from studying the parameter v and lagL in the BEARmodel to studying

the hyperparameters h and θ. Intuitively, we expect the empirical Bayes estimate of h to behave as a

diagnostic of misspecification, since h controls the extent to which the prior predictive distribution

of the BEARmodel is concentrated at the embedded ARmodel. Here we make this idea rigorous

by examining the asymptotic behavior of the empirical Bayes estimates of h and θ.

We first briefly introduce the setup and some notation. We will assume p∗ is subexponential. We

will work with fixed lagL, though the results can be straightforwardly extended to the case of a prior

over a finite number of lags. The function f : Θ 7→ ∆Bo
L

B̃ defines an autoregressive model, with

parameter spaceΘ some set. For any h > 0, θ ∈ Θ, define a prior π(·|h, θ) on∆Bo
L

B̃ consisting

of independent Dirichlet( 1
hfk,b(θ))b∈B̃ priors on each simplex corresponding to k ∈ Bo

L. Define

m((Xn)N
n=1|h, θ) to be the marginal likelihood of the data (Xn)N

n=1 under the prior π(·|h, θ),

that ism((Xn)N
n=1|h, θ) =

∫
pv((Xn)N

n=1)π(v|h, θ). For our purposes we may assume fk,b(θ) >

0 for all (k, b) ∈ suppL(p∗); if this is not the case for some θ then the marginal likelihood at θ, for

any choice of h, is a.s. eventually 0. We will study maximummarginal likelihood/empirical Bayes

estimates (hN , θN ) = argmaxh,θm((Xn)N
n=1|h, θ).

Our starting point is the analysis of empirical Bayes presented in Petrone et al. 196 . Here is the
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(very heuristic) intuition behind their result: the Laplace approximation to the marginal likelihood

is proportional to the probability of the true data-generating parameter under the prior, so asymp-

totically we expectm((Xn)N
n=1|h, θ) ∝ π(v∗|h, θ). Then, roughly speaking, the empirical Bayes

estimate will be (hN , θN ) ≈ argmaxh,θπ(v∗|h, θ); in other words, the empirical Bayes estimate

should asymptotically maximize the probability of the true parameter parameter value under the

prior. Petrone et al. 196 give conditions under which this is indeed true, but BEARmodels fail to

meet them. There are two major problems: (1) in the limit as h → 0, the prior converges to a

point mass, making the Laplace approximation invalid (the “degenerate” case mentioned by Petrone

et al. 196) and (2) when some transitions have probability zero, v∗
k,b = 0, the standard Laplace ap-

proximation does not hold regardless of the value of h. Our analysis in this section adjusts for both

these issues, and also provides more detailed insight such as convergence rates and intuitive approxi-

mations for the optimal h.

In analyzing extremum estimators, such as the maximummarginal likelihood estimator used in

empirical Bayes, uniform convergence results are particularly powerful. Ideally, we might try to es-

tablish a Laplace-like approximation to the marginal likelihood that holds uniformly for all h and

θ, but this is unavailable because of the degeneracy at h = 0. Our strategy will be to first demon-

strate a uniform Laplace approximation over all h, θ with some caveats: (1) we ignore transitions

that are not possible under p∗ and analyze their contribution to the likelihood later; (2) if h → 0we

assume it does not decrease too fast; and (3) we assume similar control over the prior density at the

”true” transition probabilities v∗. In proposition B.4.3 we prove that (3) must indeed hold for when

hN , θN are the maximizers of the marginal likelihood.
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For any v ∈ ∆̃L(p∗), define the negative average log likelihood lN (v) = − 1
N log pv(Xn)N

n=1,

and let vN ∈ ∆̃L(p∗) be the (a.s. eventually unique) maximizer of lN . Define a prior π̃(·|h, θ)

on ∆̃L(p∗) consisting of independent Dirichlet( 1
hfk,b(θ))b∈suppL(p∗)|k priors on each simplex

corresponding to k ∈ accL(p∗) (for a scalar α, Dirichlet(α) is just defined as the point mass on the

0-dimensional simplex {1}). Let m̃((Xn)N
n=1|h, θ) denote the marginal likelihood under the prior

π̃(·|h, θ) and define

log rN (h, θ) =
∑

k∈accL(p∗)

(
log

Γ(
∑

b
1
hfk,b(θ))

Γ(
∑

b
1
hfk,b(θ) + #k)

− log
Γ(
∑′

b
1
hfk,b(θ))

Γ(
∑′

b
1
hfk,b(θ) + #k)

)

where
∑′

b is a sum over the b ∈ suppL(p∗)|k. So, as shown in theorem B.3.2, logm((Xn)N
n=1|h, θ) =

log m̃((Xn)N
n=1|h, θ) + log rN (h, θ). defineB(v, η) to be the ball of radius η around v in some

norm; finally, defineBkl(η) = {v ∈ ∆̃L(p∗) | E log p∗(L)(X)
pv(X) < η} and, for convenience

B(η) = B(v∗, η), for any η > 0.

Theorem B.4.1. With probability 1, for any sequence (hN )N and (θN )N , possibly dependent on the

data, if hNN
1/4−ϵ →∞ for an 1/4 > ϵ > 0 and lim inf(log π̃(v∗|hN , θN ))/

√
N 6= −∞, then

∣∣∣∣log m̃((Xn)N
n=1|hN , θN )−

(
−NlN (vN )− 1

2
dim ∆̃L(p∗) logN + log π̃(v∗|hN , θN ) + Cv∗

)∣∣∣∣→ 0

for a fixedCv∗ dependent only on v∗.

Proof. First note, calling ek,b the indicator vector at position k, b for some k ∈ accL(p∗), b, b′ ∈
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suppL(p∗)|k, the directional derivatives with respect to v

Dek,b−ek,b′ log π̃(v|h, θ) =
1
hfk,b(θ)− 1

vk,b
−

1
hfk,b′(θ)− 1

vk,b′

are bounded by J/h, for some J > 0 in a neighborhood of v∗ for all θ.

For an η > 0, define the KL ball

B̂kl(η) = {v ∈ ∆̃L(p∗) | vk,b ≥ v∗
k,b(1− η/E|X|) ∀k, b}.

Note if v ∈ B̂kl(η), then the KL divergence is bounded,

E log
p∗(L)(X)
pv(X)

≤ (E|X|) sup
k,b

log
v∗

k,b

vk,b
≤ η

so v ∈ Bkl(η). Note

(wk,b)(k,b)∈suppL(p∗) 7→
(

η

E|X|
wk,b + v∗

k,b

(
1− η

E|X|

))
(k,b)∈suppL(p∗)

is a diffeomorphism from ∆̃L(p∗) to B̂kl so by the change of variables theorem the volume of

B̂kl is (η/E|X|)dim ∆̃L(p∗) (which comes from the factor multiplyingwk,b) times the volume of

∆̃L(p∗). Finally note that by an application of the triangle inequality,

B̂kl(η) ⊂ B(2ηdiam(∆̃L(p∗))/E|X|).

Define the information matrix at ṽ∗, I = E[D2l1(ṽ∗)], and an ϵ′ > 0 less than the smallest
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eigenvalue of I (I is positive definite by the strict convexity of l0 described in theorem B.3.2). Also

pick an ϵ′′ < 1
8ϵ

′ such that B̂kl(ϵ′′η2) ⊂ B(η) for all small η. Now define a sequence ηN =
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N−(1/4−ϵ) noting ηN/hN → 0. Let |I| denote the determinant of the information matrix.

∣∣∣∣ log m̃((Xn)N
n=1|hN , θN )

−
(
−NlN (vN )− 1

2
dim ∆̃L(p∗) log(2πN)− 1

2
log |I|+ log π̃(v∗|hN , θN )

) ∣∣∣∣
≤
∣∣∣∣∣log

(∫
∆̃L(p∗)

e−NlN (v)π̃(v|hN , θN )
)
− log

(∫
B(ηN )

e−NlN (v)π̃(v|hN , θN )
)∣∣∣∣∣

+
∣∣∣∣∣log

(∫
B(ηN )

e−NlN (v)π̃(v|hN , θN )
)
− log

(∫
B(ηN )

e−NlN (v)π̃(v∗|hN , θN )
)∣∣∣∣∣

+
∣∣∣∣∣log

(∫
B(ηN )

e−NlN (v)π̃(v∗|hN , θN )
)
− log

(∫
B(vN ,ηN )

e−NlN (v)π̃(v∗|hN , θN )
)∣∣∣∣∣

+
∣∣∣∣∣ log

(∫
B(vN ,ηN )

e−NlN (v)π̃(v∗|hN , θN )
)

−
(
−NlN (vN )− 1

2
dim ∆̂L(p∗) log(2πN)− 1

2
log |I|+ log π̃(v∗|hN , θN )

) ∣∣∣∣∣
≤ log

(
1 +

∫
∆̃L(p∗)\B(ηN ) e

NlN (vN )−NlN (v)π̃(v|hN , θN )∫
B(ηN ) e

NlN (vN )−NlN (v)π̃(v|hN , θN )

)

+
∣∣∣∣∣log

((∫
B(ηN )

e−NlN (v) π̃(v|hN , θN )
π̃(v∗|hN , θN )

)
/

(∫
B(ηN )

e−NlN (v)
))∣∣∣∣∣

+ log
((∫

B(vN ,ηN +‖vN −v∗‖)
e−NlN (v)

)
/

(∫
B(vN ,ηN −‖vN −v∗‖)

e−NlN (v)
))

+
∣∣∣∣∣log

(
(2π)− 1

2 dim ∆̂l(p∗)|I|−1/2
∫

‖y‖<ηN

√
N
eN(lN (vN )−lN (vN +y/

√
N))
)∣∣∣∣∣

≤ exp
(
N sup

‖v∗−v‖>ηN

(lN (v∗)− lN (v))
)
/

(∫
B̂kl(ϵ′′η2

N )
eNlN (v∗)−NlN (v)π̃(v|hN , θN )

)

+ sup
v∈B(ηN )

|log π̃(v|hN , θN )− log π̃(v∗|hN , θN )|

+
(∫

B(vN ,ηN +‖vN −v∗‖)\B(vN ,ηN −‖vN −v∗‖)
e−NlN (v)

)
/

(∫
B(vN ,ηN −‖vN −v∗‖)

e−NlN (v)
)

+
∣∣∣∣∣log

(
(2π)− 1

2 dim ∆̂l(p∗)|I|−1/2
∫

‖y‖<ηN

√
N
eN(lN (vN )−lN (vN +y/

√
N))
)∣∣∣∣∣ .

(B.11)
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The third line in this inequality follows sinceB(vN , ηN − ‖vN − v∗‖) ⊆ B(vN , ηN ) ∩ B(ηN )

andB(vN , ηN ) ∪B(ηN ) ⊆ B(vN , ηN + ‖vN − v∗‖). First note that the second term is bounded

by JηN/hN and thus vanishes a.s.. We will show the rest of these terms also vanish a.s..

To analyze the last term, we will use a simplified proof of a Laplace approximation. First note,

given the regularity conditions established in the proof of theorem B.3.2, a.s. vN → v∗, and

D2lN → D2ElN locally uniformly. Thus, for each y, since ηN

√
N → ∞, and and ηN → 0

(so that if ‖y‖ < ηN

√
N then y/

√
N ≤ ηN → 0), a.s.

1‖y‖<ηN

√
Ne

N(lN (vN )−lN (vN +y/
√

N)) = 1‖y‖<ηN

√
Ne

− 1
2 yT D2lN (v′

N )y → e− 1
2 yT Iy,

where v′
N is on a ray connecting vN to vN + y/

√
N . As well, eventually,

1‖y‖<ηN

√
Ne

N(lN (vN )−lN (vN +y/
√

N)) = 1‖y‖<ηN

√
Ne

− 1
2 yT D2lN (v′

N )y ≤ e− 1
4 yT Iy.

The right hand side is integrable and takes the form of a Gaussian pdf. Thus, integrating the Gaus-

sian pdf, the last term of equation B.11 goes to 0 a.s. by the dominated convergence theorem.

To analyze the third term of equation B.11, recall from the proof of B.3.2 that lN is convex, so,

the value of−NlN is less on the annulusB(vN , ηN + ‖vN − v∗‖) \ B(vN , ηN − ‖vN − v∗‖)

than onB(vN , ηN − ‖vN − v∗‖). Thus, to demonstrate that this term vanishes, it suffices to show

that ‖vN − v∗‖/ηN → 0 a.s.. Recall from the proof of B.3.2 that we showed that a.s. vN → v∗

andD2lN converges to ED2l1 uniformly in a neighborhood of v∗. Thus, eventually, recalling the
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definition of ϵ′ as less than the minimal eigenvalue of I , and defining t 7→ vt as a linear path from

vN to v∗,

‖DlN (v∗)‖ = ‖DlN (v∗)−DlN (vN )‖ =
∥∥∥∥(∫ 1

0
dtD2lN (vt)

)
(v∗ − vN )

∥∥∥∥ ≥ 1
2
ϵ′‖v∗ − vN‖.

On the other hand, defining ek,b as above, |Dek,b−ek,b′ l1(v∗)| ≤ |X|/ infk,b v
∗
k,b and so,

Dek,b−ek,b′ l1(v∗) is subexponential. Recalling EDl1(v∗) = DEl1(v∗) = 0, using Bernstein’s

inequality (theorem 2.8.1 in Vershynin 274),

p∗(|Dek,b−ek,b′ lN (v∗)| > η2
N ) ≤ C exp(−C ′Nη4

N ) ≤ C exp(−C ′N4ϵ).

Since
∑∞

N=1C exp(−C ′N4ϵ) ≲
∫∞

0 dx exp
(
−C ′x4ϵ

)
< ∞, by the Borel-Cantelli lemma, a.s.

eventually, ‖DlN (v∗)‖ ≤ Cη2
N for someC > 0. Finally, since ηN → 0, we have ‖vN−v∗‖/ηN →

0 a.s..

To analyze the first term of equation B.11 first note that for small enough ηN , recalling that ElN

is convex with maximum at v∗, and by the definition of ϵ′, we can Taylor expand around v∗ and find

sup
‖v∗−v‖>ηN

(ElN (v∗)− ElN (v)) = sup
‖v∗−v‖=ηN

(ElN (v∗)− ElN (v)) ≤ −1/2ϵ′η2
N .

Wewill also show below that a.s. eventually, for all v away from the boundary (i.e. outside a fixed

neighborhood of the boundary), |lN (v) − ElN (v)| < 1
16ϵ

′η2
N . For now, assume that this is the

case. So, a.s. eventually, sup‖v∗−v‖>ηN
(lN (v∗) − lN (v)) < −3/8ϵ′η2

N , by the triangle inequality.
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Having bounded the numerator, we now turn to the denominator. Note that by equi-continuity,

since JηN/hN is eventually less than log 2, π̃(v|hN , θN ) ≥ 1
2 π̃(v∗|hN , θN ) for all v ∈ B(ηN ).

As well, again, by a triangle inequality, a.s. eventually, for all v ∈ Bkl(ϵ′′η2
N ), lN (v∗) − lN (v) ≥

−ϵ′′η2
N − 1

8ϵ
′η2

N ≥ −1
4ϵ

′η2
N . Recall that the volume of B̂kl(ϵ′′η2

N ) is equal toC(C ′η2
N )dim ∆̂L(p∗)

for someC,C ′ > 0. Then the first term of equation B.11 is bounded above by

2C exp
(
−1

8
ϵ′Nη2

N + 2 dim ∆̃L(p∗) log
(
η−1

N

)
− log π̃(v∗|hN , θN )

)

for someC > 0. This expression goes to 0 as log π̃(v∗|hN , θN )/
√
N is bounded below and thus

lim inf log π̃(v∗|hN , θN )/N1/2+2ϵ = 0.

We now show that a.s. eventually, for all v away from the boundary, |lN (v)−ElN (v)| < 1
16ϵ

′η2
N .

First write

Dek,b−ek,b′ lN (v) = 1
N

#(k, b)v−1
k,b −

1
N

#(k, b′)v−1
k,b′

which is almost surely eventually bounded by the strong law of large numbers for all v away from

the boundary of ∆̃L(p∗). The derivatives of ElN with respect to v are similarly bounded away from

the boundary; say the derivatives of both functions are eventually bounded by J ′. Also note that

the random variables |l1(v)(X)| ≤ C ′′|X| are uniformly sub-exponential for all v away from the

boundary. The covering number of ∆̃L(p∗) by balls of radius 1
64J

′−1ϵ′η2
N is≲ η

−2 dim ∆̂L(p∗)
N .

Say (vi)i are centers of the balls of such a covering. By uniform sub-exponentiality and Bernstein’s

inequality (theorem 2.8.1 in Vershynin 274), for small enough ηN , P (|lN (vi) − ElN (vi)| >
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1
32ϵ

′η2
N ) ≲ exp(−CNη4

N ) = exp(−CN4ϵ) for someC > 0. Now, for someC,C ′ > 0,

∞∑
N=0

P (there is a vi such that |lN (vi)− ElN (vi)| >
1
32
ϵ′η2

N )

≤
∞∑

N=0

∑
i

P (|lN (vi)− ElN (vi)| >
1
32
ϵ′η2

N )

≲
∞∑

N=0
exp

(
−CN4ϵ − 2 dim ∆̂L(p∗) log ηN

)

≲
∞∑

N=0
exp

(
−C ′N4ϵ

)

≲
∫ ∞

0
dx exp

(
−C ′x4ϵ

)
<∞.

(B.12)

By the Borel-Cantelli lemma, |lN (vi) − ElN (vi)| ≤ 1
32ϵ

′η2
N for all i a.s. eventually. Thus, eventu-

ally, by the triangle inequality and the a.s. eventual boundedness of the derivatives of lN and ElN ,

|lN (v)− ElN (v)| ≤ 1
16ϵ

′η2
N for all v away from the boundary a.s. eventually.

We now focus on the behavior of not just any sequence of hN , θN , but rather specifically on

hN , θN which maximize the marginal likelihood.† The next two results both use a proof by contra-

diction strategy that relies on the following logic.

Remark B.4.2. Fix h, θ. We showed in theorem B.3.2 that log rN (h, θ) = O(logN) a.s. and

we can conclude from theorem B.4.1 that log m̃((Xn)N
n=1 | h, θ) = −NlN (vN ) − O(log(N)).

Thus,m((Xn)N
n=1 | h, θ) = −NlN (vN ) − O(log(N)). On the other hand, for any h′, θ′,

log rN (h′, θ′) ≤ 0 and log m̃((Xn)N
n=1 | h′, θ′) ≤ −NlN (vN ). Thus for the maximizers of

†It is not crucial that maximizers of the marginal likelihood exist for any of the result below: the results
below hold assuming only that hN , θN are approximate maximizers, i.e. logm((Xn)N

n=1 | hN , θN ) =
suph,θ logm((Xn)N

n=1 | h, θ) + o(1) or in slightly altered form swapping the o(1) for oP (1).
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m, hN , θN , it is a contradiction if log rN (hN , θN ) ≲ −Nβ or log m̃((Xn)N
n=1 | hN , θN ) ≤

−NlN (vN ) − CNβ for any β > 0: say log m̃(hN , θN ) ≤ −NlN (vN ) − Nβ . Then, for some

C > 0,−C log(N) ≤ m((Xn)N
n=1 |h, θ) +NlN (vN ) ≤ m((Xn)N

n=1 |hN , θN ) +NlN (vN ) ≤

log m̃((Xn)N
n=1 |hN , θN ) + NlN (vN ) ≤ −CNβ , a contradiction. On the other hand, say

log rN (hN , θN ) ≲ −Nβ . Then−C log(N) ≤ m((Xn)N
n=1 |h, θ) + NlN (vN ) ≤

m((Xn)N
n=1 |hN , θN ) +NlN (vN ) ≤ log rN (hN , θN ) ≤ −C ′Nβ , also a contradiction.

Proposition B.4.3. Say (hN )N and (θN )N are sequences maximizing logm((Xn)N
n=1|hN , θN )

for eachN . Then a.s. there is no subsequence (hNj )j and (θNj )j such that for some ϵ > 0,

hNjN
1/4−ϵ
j →∞ and for some β > 0, lim log π̃(v∗|hNj , θNj )/Nβ

j < 0.

Proof. Assume the opposite. Define (vN )N and pick (ηN )N , ϵ
′ as in theorem B.4.1 such that a.s.

eventually, for all v away from the boundary, |lN (v) − ElN (v)| < 1
16ϵ

′η2
N , ηNj/hNj → 0, and

inf‖v∗−v‖>ηN
ElN (v) ≥ ElN (vN ) + 1

2ϵ
′η2

N . Then, eventually,

∫
B(ηNj

)C
e

−Nj lNj
(v)
π̃(v|hNj , θNj ) ≤ exp

(
−Nj inf

‖v∗−v‖>ϵ
lNj (v)

)

≤ exp
(
−Nj(lNj (vNj ) + 3

8
ϵ′η2

Nj
)
)

≤ exp
(
−NjlNj (vNj )− 3

8
ϵ′Nj

1/4
)
.

(B.13)

whereB(ηNj )C denotes the complement ofB(ηNj ). On the other hand, by equi-continuity of the
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prior density, since ηNj/hNj becomes small, for someC > 0

∫
B(ηNj

)
e

−Nj lNj
(v)
π̃(v|hNj , θNj ) ≲ exp

(
−NjlNj (vNj ) + log π̃(v∗|hNj , θNj )

+ dim ∆̃L(p∗) log(ηNj )
)

≤ exp
(
−NjlNj (vNj )− CNj

β +O(logNj))
)

(B.14)

for someC > 0. By remark B.4.2, this completes the proof.

We have so far explored what happens to the marginal likelihood when hN does not converge

quickly to 0, showing that it satisfies a Laplace-like approximation in this case. Next we show that

hN will in fact converge to zero quickly only if the estimated autoregressive model f(θN ) converges

to the optimal parameter value v∗.

For a sequence (θN )N define, for k ∈ accL(p∗), σN,k =
∑

b∈suppL(p∗)|k fk,b(θN ) and λN,k =

1− σN,k.

Proposition B.4.4. Say (hN )N and (θN )N are sequences maximizing logm({Xn}Nn=1|hN , θN ).

Then a.s., lim suphNjN
β
j <∞ for some β > 0 along a subsequence (Nj)j only if fk,b(θNj )→ v∗

k,b

for all k, b ∈ suppL(p∗).

Proof. Take a subsequence such that: hNj → 0; hNjN
β
j and hNjNj both converge, the latter

possibly to∞; fk,b(θNj ) converges for all k, b; and fk,b(θNj )/hNj converges, possibly to∞, for

all k, b. Note since [0,∞] is compact, every subsequence with lim suphNjN
β
j < ∞ has a further

subsequence with these properties. Thus it will be sufficient to show that fk,b(θNj ) → v∗
k,b for all
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k ∈ accL(p∗), b ∈ B̃. Now define λk = limλNj ,k and σk similarly for all k ∈ accL(p∗).

The proof will proceed in two parts. First we will show that if λk 6= 0 for some k ∈ acc(p∗),

then log rNj (hNj , θNj ) ≲ −Nβ′

j for some β′ > 0. This is a contradiction by remark B.4.2 so that

λk = 0 and σk = 1 for all k. Then we will show that if fk,b(θNj ) 6→ v∗
k,b for any k, b ∈ suppL(p∗),

eventually supv∈B(η) log π̃(v|hNj , θNj ) ≲ −Nβ′′

j

(
‖f(θNj )− v∗‖ − η

)2
. for some β′′ > 0

for small η. Assume this is the case for now. By similar logic to that in equation B.13 of proposition

B.4.3, for small fixed η, it can be seen that for some β′′′, C, C ′ > 0,

log
∫

B(η)C
e

−Nj lNj
(v)
π̃(v|hNj , θNj ) ≤ −NjlNj (vNj )− CNβ′′′

.

As well,

log
∫

B(η)
e

−Nj lNj
(v)
π̃(v|hNj , θNj ) ≤−NjlNj (vNj ) + sup

‖v∗−v‖<η

log π̃(v | hNj , θNj )

≤ −NjlNj (vNj )− C ′Nj
β′′
.

using the fact that log π̃(v|hNj , θNj ) ≲ −Nj
β′′ . This is also a contradiction by remark B.4.2 and

the statement of the theorem follows.

Part one: Assume that for some k′, λk′ > 0. Performing the Stirling approximation on the terms

of log rNj depends on the behavior of σNj ,k/hNj . Based on the properties of the subsequence we

chose, this quantity converges. If it converges to a number greater than or equal to 1we can perform

the usual Stirling approximation withO(1) error. On the other hand, if σNj ,k/hNj has limit less
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than 1, using the properties of the Gamma function we write

logΓ
(
σNj ,k

hNj

)
=− log

(
σNj ,k

hNj

)
+ logΓ

(
1 +

σNj ,k

hNj

)

=
(
σNj ,k

hNj

− 1
)
log
(
σNj ,k

hNj

)
−
σNj ,k

hNj

+O(1)
(B.15)

where additionalO(1) terms were added explicitly in the second line so that the approximation is

similar in form to the usual Stirling approximation with the exception of a 1 in the first term instead

of 1/2. Define γk = 1/2 if the limit of
σNj ,k

hNj
is greater than or equal to 1 and 1 otherwise. Finally
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recall that hNj → 0 and write

log rNj (hNj , θNj ) =
∑

k∈accL(p∗)

log Γ
(

1
hNj

)
Γ
(

1
hNj

+ #k
) − log Γ

(
σNj ,k

hNj

)
Γ
(

σNj ,k

hNj
+ #k

)


=
∑

k∈accL(p∗)

[(
1
hNj

− 1
2

)
log
(

1
hNj

)

−
(

1
hNj

+ #k − 1
2

)
log
(

1
hNj

+ #k
)

−
(
σNj ,k

hNj

− γk

)
log
(
σNj ,k

hNj

)

+
(
σNj ,k

hNj

+ #k − 1
2

)
log
(
σNj ,k

hNj

+ #k
)]

+O(1)

=
∑

k∈accL(p∗)

[
−
λNj ,k

hNj

log(1 + hNj #k)

−
(
σNj ,k

hNj

− 1
2

)
log
(
σNj ,k

)

+
(
σNj ,k

hNj

+ #k − 1
2

)
log
(
σNj ,k + #khNj

1 + #khNj

)]

+
∑

k∈accL(p∗)
(γk − 1/2) log

(
σNj ,k

hNj

)
+O(1)

=
∑

k∈accL(p∗)

1
hNj

[
− λNj ,k log(1 + #khNj )− σNj ,k log(σNj ,k)

+
(
σNj ,k + #khNj

)
log
(
σNj ,k + #khNj

1 + #khNj

)]

+
∑

σNj ,k/hNj
→0

(γk − 1/2) log
(
σNj ,k

hNj

)
+O(1)

≤
∑

k∈accL(p∗)

1
hNj

[
− λNj ,k log(1 + #khNj )− σNj ,k log(σNj ,k)

+
(
σNj ,k + #khNj

)
log
(
σNj ,k + #khNj

1 + #khNj

)]
+O(1)

(B.16)
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Figure B.2: Graph of the function evaluated athNj
Nj in black whenσNj ,k < 1. The red line shows the tangent

at 0with slope log(σNj ,k) < 0. The blue line shows that in this case, whereσNj ,k < 1, the functionmay be
dominated by some line for all values less thanM . The green line shows that ashNjNj → ∞, the function is

−λNj ,k log(hNjNj) +O(1).

The function

x 7→ −λNj ,k log(1 + x)− σNj ,k log(σNj ,k) +
(
σNj ,k + x

)
log
(
σNj ,k + x

1 + x

)

has intercept 0, and derivative log
(σNj ,k+x

1+x

)
, and is thus convex since the derivative is increasing

(Fig B.2).

As x → ∞, the function is−λNj ,k logx + O(1)while the function has tangent x 7→

x logσNj ,k at x = 0. In our case, we evaluate at x = hNjNj , which, based on the chosen subse-

quence, is either bounded or goes to infinity. First assume hNjNj is bounded, say byM , and recall

that we assumed λk′ > 0 for some k′, so σk′ < 1. Then, because the function is decreasing and

eventually has negative derivative at 0, we can eventually bound it on [0,M ] by a line with negative
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slope and intercept 0 (Fig B.2), so eventually, for someC,C ′ > 0,

log rNl
(hNj , θnl

) ≤ −C 1
hNj

NjhNj + C ′ ≲ −Nj .

Otherwise hNjNj →∞ so, by the above remark about the limits of the function as x→∞,

log rNl
(hNj , θnl

) ≤ − 1
2hNj

log(hNjNj)
∑

k∈accL(p∗)
λNj ,k + C

for someC > 0 eventually. Recalling that hNjN
β
j is eventually bounded above, and by assumption

log(hNjNj)→∞,

log rNl
(hNj , θNl

) ≲ −Nβ
j

log(hNjNj)
hNjN

β
j

max
k
λk ≲ −Nβ

j max
k
λk.

This completes part one of the proof.

Part two: Assume ‖fk,b(θNj )− ṽk‖ 6→ 0. We will perform the same technique to allow a Stirling

approximation of the prior: define γk,b = 1/2 if the limit of fk,b(θNj )/hNj is greater than or equal

to 1 and 1 otherwise. Then, for all v ∈ ∆̃L(p∗) away from the boundary, recalling that we showed
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in part 1 σNj ,k → 1 for all k, if
fk(θNj

)
σNj ,k

6= vk for some k,

log π̃(v|hNj , θNj ) =
∑

k

logΓ
(
σNj ,k

hNj

)

−
∑

b∈suppL(p∗)|k

[
logΓ

(
1
hNj

fk,b(θNj )
)
− 1
hNj

fk,b(θNj ) log vk,b

]
+O(1)

=
∑

k

(
σNj ,k

hNj

− 1/2
)
log
(
σNj ,k

hNj

)

−
∑

b∈suppL(p∗)|k

[( 1
hNj

fk,b(θNj )− γk,b

)
log
(

1
hNj

fk,b(θNj )
)

− 1
hNj

fk,b(θNj ) log vk,b

]
+O(1)

=1
2
dim ∆̃L(p∗) log

(
1
hNj

)
− 1
hNj

∑
k

σNj ,kkl
(
fk(θNj )
σNj ,k

∥∥∥∥∥vk

)

+
∑

k,b s.t. γk,b=1

(
γk,b −

1
2

)
log
(

1
hNj

fk,b(θNj )
)

+O(1)

≲− 1
hNj

∑
k

kl
(
fk(θNj )
σNj ,k

∥∥∥∥∥vk

)
.

(B.17)

Now note hNj ≲ N−β and for any norm | · |, by Pinsker’s inequality,

∑
k

kl
(
fk(θNj )
σNj ,k

∥∥∥∥∥vk

)
≳
∑

k

∥∥∥∥∥fk(θNj )
σNj ,k

− vk

∥∥∥∥∥
2

.

One may check that
(∑

k ‖ · ‖2
)1/2 is also a norm and σNj ,k → 1 for all k, so

∑
k

kl
(
fk(θNj )
σNj ,k

∥∥∥∥∥vk

)
≳
∥∥∥f(θNj )− v

∥∥∥2
+ o(1)
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for any norm ‖ · ‖. Now note if η < ‖f(θNj )− v∗‖,

sup
v∈B(η)

log π̃(v|hNj , θNj ) ≲ −Nβ
j

(
‖f(θNj )− v∗‖ − η

)2
.

This concludes part two.

We now have the tools to determine the behavior of hN and f(θN ) in the well and misspecified

cases.

B.4.1 The well-specified case

We now examine the asymptotic behavior of empirical Bayes inference for the BEARmodel in the

well-specified case, or, more precisely, when the model is well-specified “at resolutionL”, in the

sense that there are θ̃N such that for all k, b ∈ suppL(p∗), fk,b(θ̃N ) → v∗
k,b (we say the model is

misspecified at resolutionL otherwise). We first show that the misspecification diagnostic is guaran-

teed to converge to zero (hN → 0), correctly indicating that the model is well-specified, and that

the embedded ARmodel converges to the true transition probabilities (f(θN ) → v∗). We also

give a bound on the rate for the convergence of hN , a power of the dataset size. We then establish

additional weak conditions under which θN also converges to the true value θ∗.

Proposition B.4.5. Say the model is well-specified and (hN )N and (θN )N are sequences maximiz-

ing logm({Xn}Nn=1|hN , θN ). Then hNN
1/4−ϵ → 0 for every ϵ > 0 and fk,b(θN ) → v∗

k,b for all

k, b ∈ suppL(p∗) with both sequences converging in probability.
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Proof. IfU is a neighborhood of v∗ and β > 0, proposition B.4.4 shows that

p∗(hN < N−β, f(θN ) /∈ U)→ 0

(otherwise p∗(hN < N−β, f(θN ) /∈ U for infinitely manyN) > 0). We show below that

p∗(hN ≥ N−1/4+ϵ) → 0 for any ϵ > 0 and it will thus follow that we also get f(θ) → v∗ in

probability.

Proposition B.4.3 shows that

p∗(hN ≥ N−1/4+ϵ, log π̃(v∗|hN , θN ) < −
√
N)→ 0

as hN ≤ N−1/4+ϵ if and only if hNN
1/4−ϵ/2 ≥ N ϵ/2. Thus it is sufficient to show that

p∗(hN ≥ N−1/4+ϵ, log π̃(v∗|hN , θN ) ≥ −
√
N)→ 0.

On this set, we may apply theorem B.4.1, but we will need to control log π̃(v∗|h, θ).

For any h, θ, defining γk,b = 1 if 1
hfk,b(θ) < 1 and 1/2 otherwise, and γ̂k = 1 if σk

h < 1 (where
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recall σk =
∑

b∈suppL(p∗)|k fk,b(θ)) and 1/2 otherwise, by the same derivation as equation B.17,

log π̃(v∗|h, θ) =1
2
dim ∆̃L(p∗) log

(1
h

)
− 1
h

∑
k

σkkl
(
fk(θ)
σNj ,k

∥∥∥∥∥v∗
k

)

+
∑

k,b s.t. γk,b=1

(
γk,b −

1
2

)
log
(1
h
fk,b(θ)

)

−
∑

k, s.t. γ̂k=1

(
γ̂k −

1
2

)
log
(
σk

h

)
+O(1)

(B.18)

whereO(1) is uniform over h or θ. Since γ̂k = 1 only if γk,b = 1 for all b ∈ suppL(p∗)|k, by the

concavity of the log function, the sum of these last two terms is negative. Thus,

log π̃(v∗|h, θ) ≤ 1
2
dim ∆̃L(p∗) log

(1
h

)
+ C (B.19)

for all h, θ for someC > 0.

Now we derive a lower bound for m̃((Xn)N
n=1|hN , θN ). Pick θ̃j such that

for all k, b ∈ suppL(p∗), fk,b(θ̃j) → v∗
k,b. Thus, π̃(·|h, θ̃j) →

∏
k∈accL(p∗) Dirichlet( 1

hv
∗
k,b)b∈suppL(p∗)|k for any h > 0 in distribution. And as h → 0, we

also have
∏

k∈accL(p∗) Dirichlet( 1
hv

∗
k,b)b∈suppL(p∗)|k → δv∗ . So, pick a sequence θ̃′

j , h̃j such

that π̃(·|h̃j , θ̃
′
j) → δv∗ in distribution.‡ Then logm((Xn)N

n=1|h̃j , θ̃
′
j) → −NlN (v∗). Thus,

logm((Xn)N
n=1|hN , θN ) ≥ −NlN (v∗). Also recall that from the proof of theorem B.3.2 that,

‡Since ∆̃L(p∗) is compact, the set of polynomials with rational coefficients, (gi)∞
i=1 is

dense in the space of continuous functions under the infinite norm. Pick h̃j to have |gi(v∗) −∫
gid
∏

k∈accL(p∗) Dirichlet(
1
hv

∗
k,b)b∈suppL(p∗)|k

| < 1/j for all i ≤ j and then θ̃′
j to have

|
∫
gid
∏

k∈accL(p∗) Dirichlet(
1
hv

∗
k,b)b∈suppL(p∗)|k

−
∫
gidπ̃(·|hj , θ̃

′
j)| < 1/j for all i ≤ j.
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definingZN = NlN (vn)−NlN (v∗),ZN converges in distribution (to a chi-squared distribution).

Since log rN ≤ 0we can write

log m̃((Xn)N
n=1|hN , θN ) ≥ −NlN (vN ) + ZN . (B.20)

Now, when both hN ≥ N−1/4+ϵ, log π̃(v∗|hN , θN ) ≥ −
√
N , applying theorem B.4.1, we’ve

shown that with probability going to 1, for some fixedC > 0,

log m̃((Xn)N
n=1|hN , θN ) ≤ −NlN (vN )− 1

2
dim ∆̂L(p∗) logN + 1

2
dim ∆̃L(p∗) log

(1
h

)
+C.

Thus, as hN ≥ N−1/4+ϵ,

−1
4
dim ∆̂L(p∗) logN + C ≥− 1

2
dim ∆̂L(p∗) logN + (1/4− ϵ)1

2
dim ∆̃L(p∗) logN + C

≥ log m̃((Xn)N
n=1|hN , θN ) +NlN (vN )

≥ZN .

(B.21)

SinceZN converges in distribution, this occurs with vanishing probability.

We have thus far discussed the asymptotic behavior of hN and f(θN ). To draw conclusions

about θN itself, we need to place some assumptions on the autoregressive function f . Here we pro-

vide an example of such assumptions, drawn from the theory of M-estimators, which say in essence

that f must have an isolated peak at θ∗. These assumptions are enough to guarantee that the empiri-

cal Bayes estimate of the ARmodel parameter θ converges to the true value θ∗.
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Corollary B.4.6. Say θ∗ ∈ Θ and d is a metric on Θ such that fk,b(θ∗) = v∗
k,b for all k, b ∈

suppL(p∗) and for all δ > 0,

0 < inf
d(θ,θ∗)>δ

‖f(θ)− v∗‖.

Then θN → θ∗ in probability.

Proof. Since by proposition B.4.5 we have ‖f(θN ) − v∗‖ = oP (1), we may apply theorem 5.7 of

van der Vaart 268 to get the result.

Taking a step back, a perhaps surprising aspect of these results is the weak conditions on f . Were

we, instead of trying to diagnose misspecification in the ARmodel, simply trying to analyze un-

certainty in the ARmodel’s parameter estimate, we might proceed by putting a prior on θ and

performing Bayesian inference for the ARmodel. In this case, to guarantee asymptotic normality

and well-calibrated frequentist coverage, we would in general need strong conditions on f , such as

bounded third derivatives176. Intuitively, the task of diagnosing misspecification might seem to be

harder than describing parameter uncertainty, but our conditions on f in this section and the next

are in fact much weaker, involving no restrictions on the derivatives of f whatsoever.

B.4.2 The misspecified case

We now consider the case where the ARmodel is misspecified at resolutionL. In this case, we can

rewrite the marginal likelihood of the BEARmodel (using propositions B.4.3 and B.4.4 to apply
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theorem B.4.1) as

logm((Xn)N
n=1|hN , θN ) = −NlN (vN )− 1

2
dim ∆̃L(p∗) logN + Cv∗ − LN (hN , θN ) + o(1)

where we defineLN (hN , θN ) = − log π̃(v∗|h, θ) − rN (h, θ).§ This expression for the marginal

likelihood takes the form of a modified Laplace approximation where, instead of the original prior

π evaluated at the true parameter value, we have the prior over the support of the data, π̃(v∗|h, θ),

as well as the additional term rN , which isO(logN) rather thanO(1) and depends on the concen-

tration of the prior outside the support of the data. Instead of the standard empirical Bayes behavior

described by Petrone et al. 196 , wherein the prior probability of the true parameters is maximized, we

instead heuristically expect that the objective functionLN (h, θ) is minimized. The following result

makes this intuition formal, showing that hN and θN indeed behavior similarly to the minimizers of

LN .

Corollary B.4.7. If the model is misspecified at resolutionL, a.s. LN (hN , θN ) = suph,θ LN (h, θ)−

o(1).

Proof. Say ĥN , θ̂N are sequences such thatLN (ĥN , θ̂N ) = suph,θ LN (h, θ)− o(1). For fixed h, θ,

we haveLN (h, θ) = O(logN). Thus, for any β > 0we clearly have

lim inf(log π̃(v∗ | ĥN , θ̂N ))/Nβ ≥ 0 and since we are in the misspecified case, following the

logic of proposition B.4.4, equation B.16 may be used to see that we also have ĥNN
β → ∞.

§LN is stochastic due to rN , but since hNN
β →∞ for any β > 0, using the expansion in equation B.16,

one may show that the#k in rN can be replaced withNE#k incurring only a penalty ofOP (N−1/2+ϵ).
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Thus theorem B.4.1 may be applied to ĥ, θ̂ and a comparison of the Laplace approximations of

m((Xn)N
n=1|ĥN , θ̂N ) andm((Xn)N

n=1|hN , θN ) gives the result.

We next examine in greater detail the behavior of the misspecification diagnostic hN , along with

the AR parameter estimate θN . There are two cases to consider. First, if the support of the AR

model matches the support of the data-generating distribution (that is, supp(f(θ)) = suppL(p∗)

for all θ), then rN = 0 andLN = − log π̃(v∗|h, θ); we thus recover the standard empirical Bayes

behavior of Petrone et al. 196 , with hN and θN asymptotically maximizing the prior probability

of the true parameter value. In this case we find that hN converges to a finite positive value. The

second case to consider is when suppL(p∗) ( supp(f(θ)). Here, we have rN 6= 0, and in particular

rN (h, θ) ≈ − 1
h log(N)

∑
k λk(θ). In this case we find that hN → ∞. Thus, in either case,

hN 6→ 0, and so hN will correctly diagnose misspecification in the ARmodel.

Corollary B.4.8. If the model is misspecified at resolutionL but supp(f(θ)) = suppL(p∗) for all θ,

hN is eventually bounded above and below.

Proof. Recall from proposition B.4.4 that if h → 0, log π̃(v∗|h, θ) ≤ −C 1
h infθ ‖f(θ) − v∗‖ for

someC > 0. This expression diverges to−∞ as h → 0. We also showed in proposition B.4.5 that

log π̃(v∗|h, θ) ≤ 1
2 dim ∆̃L(p∗) log(1/h) + C for someC > 0. This expression also diverges as

h→∞. Combining these two observations along with corollary B.4.7 we get the result.

To say something about θN , due to corollary B.4.7, we may use the theory of extremum estima-

tors we can apply theorem 5.7 of van der Vaart 268 , replacing limits in probability with a.s. limits to

get

313



Corollary B.4.9. Say the model is misspecified at resolutionL but supp(f(θ)) = suppL(p∗) for all

θ. Say also that θ∗ ∈ Θ, h∗ > 0 and d is a metric on Θ such that for every δ > 0,

log π̃(v∗|h∗, θ∗) > sup
|h−h∗|∨d(θ,θ∗)>δ

log π̃(v∗|h, θ).

Then θN → θ∗ and hN → h∗ a.s..

Nowwe consider the case where the support do not match, i.e. infθ maxk λk(θ) > 0, where

λk(θ) =
∑

b/∈suppL(p∗)|k fk,b(θ).

Proposition B.4.10. If the model is misspecified at resolutionL, suppL(p∗) ( supp(f(θ)) for all θ,

and infθ maxk λk(θ) > 0, then hN →∞.

Proof. We first show hN is a.s. bounded below. Since hNN
β → ∞ for all β > 0, if hNj → 0 for

some subsequence, we showed in proposition B.4.4 that a.s.

log rNj (hNj , θNj ) ≤ −C
log(hNj

Nj)
2hNj

infθ maxk λk,θ + C ′ ≤ −C ′′ log(Nj)
2hNj

infθ maxk λk,θ + C ′

for someC,C ′, C ′′ > 0. In particular, log rNj ≲ −O(log(N)) but log rNj 6∼ −O(log(N)) if

hNj → 0. Thus, since log rN (h, θ) ≥ −C log(N) for fixed h, θ, for someC > 0 dependent on

h, θ and π̃ also diverges as h → 0, the assumption that hN maximizes the marginal likelihood is

contradicted. Thus, hN 6→ 0. In particular, we showed in proposition B.4.5 (equation B.19) that

log π̃(v∗|h, θ) ≤ 1
2 dim ∆̃L(p∗) log(1/h) + C for someC > 0 so we get that log π̃(v∗|hN , θN ) is

bounded above a.s..

Assume hN is bounded above; we will show that this leads to a contradiction. Define γN,k =
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1/2 if σk(θN )/hN ≥ 1 and γN,k = 1 otherwise. Define γ̂N,k similarly for 1/hN alone. We next

perform the same trick as in proposition B.4.4, expanding Γ( 1
hN

) in the form of a Stirling approxi-

mation, to analyze rN further. Noting that log(hNN)→∞, we have a.s.,

log rN (hN , θN ) =
∑

k∈accL(p∗)

1
hN

[
− λk(θN ) log(1 + #khN )− σN,k log(σk(θN ))

+ (σk(θN ) + #khN ) log
(
σk(θN ) + #khN

1 + #khN

)]

+
∑

k∈accL(p∗)
(γN,k − 1/2) log

(
σk(θN )
hN

)

−
∑

k∈accL(p∗)
(γ̂N,k − 1/2) log

( 1
hN

)
+O(1)

=− log(hNN)
hN

∑
k∈accL(p∗)

[
λk(θN ) + o(1)

]

+
∑

k∈accL(p∗)
(γN,k − 1/2) log

(
σk(θN )
hN

)

−
∑

k∈accL(p∗)
(γ̂N,k − 1/2) log

( 1
hN

)
+O(1).

(B.22)

Note γ̂N,k = 1 only if γN,k = 1 so that the the sum of these last two terms is negative. So, since hN

is bounded above, log rN (hN , θN ) ≤ −C log(N) infθ maxk λk(θ) for someC > 0. Thus, since

we also have that log π̃(v∗|hN , θN ) is bounded above a.s., we get thatLN (hN , θN ) ≳ log(N) a.s..

On the other hand, with fixed θ, if ĥN →∞ (so we still have log(hNN)→∞), then

log rN (ĥN , θ) = − log(N)
ĥN

∑
k∈accL(p∗)

[
λk(θ) + o(1)

]
+ 1

2
∑

k∈accL(p∗)
log (σk(θ)) +O(1)
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which is−o(logN), where we wrote log(ĥN )/ĥN = o(1). Now pick ĥN increasing slowly so

thatLN (ĥN , θ) = o(log(N)). This is eventually less thanLN (hN , θN ), a contradiction. Thus,

hN →∞.

We can also study the behavior of θN in this mismatched supports case, using again the theory

extremum estimators. We briefly outline the strategy, omitting details. Further analysis of equations

B.18 and B.22 gives an objective, as h→∞, ¶

L(h, θ) =− log(N)
h

(∑
k

λk + o(1)
)

− dim ∆̃L(p∗) logh+ (1 + o(1))
∑

k,b∈suppL(p∗)
log(fk,b(θ)) + C + o(1)

for some fixedC > 0. Careful analysis of the o(1) terms shows that h approaches log(N)
∑

k
λk

dim ∆̃L(p∗) .

Plugging this value of h in, the objective becomes

L(h, θ) = − dim ∆̃L(p∗) log
∑

k

λk +
∑

k,b∈suppL(p∗)
log(fk,b(θ)) + CN + o(1)

for some constantCN dependent only onN and p∗. One can then see that θN is anM-estimator of

dim ∆̃L(p∗) log
∑

k λk +
∑

k,b∈suppL(p∗) log(fk,b(θ)) and apply a similar analysis as in corollary

B.4.9.

So far we have seen that hN 6→ 0when the ARmodel is misspecified at resolutionL, but exactly

what value will hN take and what can it tell us about the amount of misspecification? Here we ana-

¶Note that the KL term in π̃ can be dominated by
∑

k,b∈suppL(p∗) log(fk,b(θ)).
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lyze the objectiveLN heuristically to address these questions. From the expansions in proposition

B.4.4, we can write, for reasonable values of h, θ, assuming not too much misspecification,

log π̃(v∗|h, θ) ≈ 1
2
dim ∆̃L(p∗) log

(1
h

)
− 1
h

∑
k∈accL(p∗)

kl(fk(θ)‖v∗
k)

log rN (h, θ) ≈ − log(N)
h

∑
k∈accL(p∗)

λk(θ).

We see, then, that θN and hN depend on an unconventional but valid divergence between the AR

model and p∗(L): the sum of the KL divergence between the ARmodel transition probabilities

(from kmers that occur with non-zero probability) and the true transition probabilities, plus a

penalty proportional to log(N)when the support of the ARmodel does not match the support

of p∗. We can thus interpret hN not only as a diagnostic of misspecification, but also as a measure-

ment of the amount of misspecification, and make comparisons between different ARmodels on

the basis of their hN values.

B.5 Hypothesis testing

In this section we use the results of the above sections to develop goodness-of-fit and two sample

tests.

B.5.1 Goodness-of-fit test

Say p∗ is a distribution on S with E|X|2 < ∞ and sayX1, X2, · · · ∼ p∗ iid. Say p̃ is another

distribution on S with E log2 p̃(X) < ∞where the expectation is with respect to p∗. We are
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interested in testing whether or not p∗ = p̃, so we will consider the Bayes factor

BFL = p̃(Xn)N
n=1

p((Xn)N
n=1 |ML)

.

This test asks whether or not p̃ approximates p∗ at least as well as the optimal model inML. We

can use it in particular to test whether p̃matches the data-generating distribution p∗ at resolutionL,

that is, whether p̃matches p∗(L).

Proposition B.5.1. GivenL, consider aDirichlet(αk,b)b∈B̃ prior on the simplex in ∆Bo
L

B̃ correspond-

ing to theL-mer k. For allL, assume αk,b > 0 for (k, b) ∈ suppL(p∗) (otherwise p((Xn)N
n=1|ML)

is eventually 0 a.s.). Then if p̃ 6= p∗(L),

logBFL = N(kl(p∗||p∗(L))− kl(p∗||p̃)) +OP (
√
N),

which goes to∞ in probability if kl(p∗||p∗(L)) > kl(p∗||p̃) and to−∞ in probability if kl(p∗||p∗(L)) <

kl(p∗||p̃). If p̃ = p∗(L)

logBFL = 1
2
dimeff

L (p∗) logN +OP (1),

which goes to∞ in probability.
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Proof. Note that as shown in the proof of theorem B.3.2, kl(p∗||ML) = kl(p∗||p∗(L)), and

log p((Xn)N
n=1|ML) = log p∗(L)((Xn)N

n=1)− 1
2
dimeff

L (p∗) logN +OP (1). (B.23)

As well, p̃(Xn)N
n=1 = NE log p̃(X) + OP (

√
N) and a similar expression can be written for p∗(L).

These two facts prove the result.

Remark B.5.2. One may also consider a Bayes factor that integrates over manyL:

BF = p̃(Xn)N
n=1∑L̃

L=1 π(L)p((Xn)N
n=1 |ML)

=

 L̃∑
L=1

π(L)BF−1
L

−1

for a prior π with π(L̃) > 0. By proposition B.5.1, this Bayes factor goes to 0 if kl(p∗‖p∗(L̃)) <

kl(p∗‖p̃) and goes to∞ if kl(p∗‖p∗(L̃)) > kl(p∗‖p̃) or p̃ = p∗(L̃) (this later condition is implied

by p̃ = p∗(L) for someL ≤ L̃ and kl(p∗‖p∗(L)) = kl(p∗‖p̃)). Thus this Bayes factor has the same

asymptotics as BFL̃.

B.5.2 Two-sample test

To set up the two-sample testing problem, consider two distributions p1 and p2 on S such that

Epj |X|2 < ∞ for j ∈ {1, 2}. We will assume that the two groups of datapoints are sampled

together according to a mixture model with observed labels. That is, let j1, j2, . . . be observed

Bernoulli iid random variables indicating the group, with jn = 1with probability β and jn = 2

with probability 1 − β for a 0 < β < 1. Then, letXn ∼ pjn independently. The pooled dataset
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thus follows the generative processX1, X2, · · · ∼ p∗ = βp1 + (1 − β)p2 iid. We are interested

in whether or not p1 6= p2. To make this question theoretically tractable, we will fix the lagL, and

attempt only to discern whether p(L)
1 6= p

(L)
2 where p(L)

j is the best approximation to pj inML (as

defined in section B.3). In other words, we attempt to distinguish between p1 and p2 only up to a

”resolution”, in analogy to Holmes et al. 106 . We thus consider the Bayes factor

BFL = p((Xn)N
n=1|(jn)N

n=1, p1 = p2 and p1, p2 ∈ML)
p((Xn)N

n=1|(jn)N
n=1, p1 6= p2 and p1, p2 ∈ML)

= p((Xn)N
n=1|ML)

p((Xn)n≤N,jn=1|ML)p((Xn)n≤N,jn=2|ML)
.

(B.24)

In the subsequent remark, we also extend the theory to Bayes factors that integrate over allL up to

some fixed maximum.

Consider independent Dirichlet(αk,b)b∈B̃ priors on the simplexes in∆Bo
L

|B̃| corresponding to the

L-mers k. Assume αk,b > 0 for (k, b) ∈ suppL(p∗) = suppL(p1) ∪ suppL(p2).

Proposition B.5.3. If p(L)
1 6= p

(L)
2 ,

logBFL = N

[
βEp1 log

p∗(L)(X)
p

(L)
1 (X)

+ (1− β)Ep2 log
p∗(L)(X)
p

(L)
2 (X)

]
+OP (

√
N)

→ −∞ asN →∞.

(B.25)

Otherwise p(L)
1 = p

(L)
2 and

logBFL = 1
2
dimeff

L (p∗) logN +OP (1)

→∞ asN →∞.
(B.26)
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Proof. First note that as shown in the proof of theorem B.3.2, noting |{n|jn = j}| /N = OP (1),

log p((Xn)N
n=1|ML) = log p∗(L)((Xn)N

n=1)− 1
2
dimeff

L (p∗) logN +OP (1)

log p((Xn)n≤N,jn=j |ML) = log p(L)
j ((Xn)n≤N,jn=j)− 1

2
dimeff

L (pj) logN +OP (1)
(B.27)

for j ∈ {1, 2}. As well, log p∗(L)((Xn)N
n=1) = NE log p∗(L)(X) + OP (

√
N) by our assumption

on the moments Epj |X|2 <∞ and similar expressions exist for p1 and p2. Finally note that

argmin
v∈∆

Bo
L

B̃

kl(p∗||pv) = argmaxEp∗ log pv(X)

= argmaxβEp1 log pv(X) + (1− β)Ep2 log pv(X).

(B.28)

Thus, if p(L)
1 = p

(L)
2 then p(L)

1 = p
(L)
2 = p∗(L).

First assume p(L)
1 6= p

(L)
2 . So, we have

log BFL = NEp∗ log p∗(L) − βNEp1 log p
(L)
1 (X)− (1− β)NEp2 log p

(L)
2 (X) +OP (

√
N)

= N

[
βEp1 log

p∗(L)

p
(L)
1

+ (1− β)Ep2 log
p∗(L)

p
(L)
2

]
+OP (

√
N).

(B.29)

Note Ep1 log
p∗(L)

p
(L)
1

= kl(p1||p(L)
1 ) − kl(p1||p∗(L)) ≤ 0 by the definition of p(L)

1 . Since p(L)
1 6=

p
(L)
2 , at least one of Ep1 log

p∗(L)

p
(L)
1

,Ep2 log
p∗(L)

p
(L)
2

must be negative and so log BFL → −∞.

Now say p(L)
0 = p∗(L) = p

(L)
1 . In this case,

log BFL = 1
2
dimeff

L (p∗) logN +OP (1).
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Clearly log BFL →∞.

Remark B.5.4. One may also consider a Bayes factor that integrates over many lags:

BF =
∑L̃

L=1 π(L)p((Xn)N
n=1|ML)(∑L̃

L=1 π(L)p((Xn)n≤N,jn=1|ML)
) (∑L̃

L=1 π(L)p((Xn)n≤N,jn=2|ML)
) .

By theorem B.3.2, for all three sums, eventually either (a) assuming the condition for consistency in

corollary B.3.6 the term corresponding to the smallestL such that p∗ ∈ ML will dominate, if p∗ ∈

ML̃, or (b) the term corresponding to L̃ will dominate, if p∗ /∈ ML̃. Thus, by analysis similar to

that of proposition B.5.3, in any case, we have equation B.25 withL replaced by L̃, so that the Bayes

factor goes to 0 if p(L̃)
1 6= p

(L̃)
2 . If, on the other hand, we have p(L̃)

1 = p
(L̃)
2 , then there are two cases:

p1 = p2 ∈ ML∗ for someL∗ ≤ L̃ (andL∗ is picked to be the smallest such lag), or p1, p2 /∈ ML̃.

In the first case, p∗ ∈ ML∗ so the asymptotics of BF are identical to that ofBFL∗ and we can refer to

proposition B.5.3 to see that the Bayes factor goes to∞. In the second case, we may still have p∗ ∈ ML∗

for some minimalL∗ ≤ L̃; if p∗ is not aMarkov model with lag≤ L̃, callL∗ = L̃. In this case, by

the analysis of proposition B.5.3,

logBF =
(
dimeff

L̃
(p∗)− 1

2
dimeff

L∗(p∗)
)
logN +OP (1)→∞.

Thus the asymptotics of this integrated Bayes factor are identical to that of BFL̃.
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B.6 Consistency in the infinite L case

So far we have only studied consistency in the finite lagL case, that is, our results only show that

we can approximate p∗ up to some finite resolutionL (corresponding to the largest available lag).

In this section, we develop frequentist and Bayesian consistency results for the fully nonparametric

model, that is, we allow for priors with support over all lagsL up to infinity, and show that we can

approximate p∗ itself even if p∗ /∈ M. The Bayesian consistency result is our main result, and the

most practically useful, but the frequentist result is a natural first step toward the Bayesian result,

and an opportunity to develop novel constructions (such as the projection algorithm in section

B.6.2) useful in proving the Bayesian result.

B.6.1 Frequentist consistency

We first show that maximum likelihood estimation is consistent, using the method of sieves de-

scribed in Geman &Hwang 86 . The idea is to increase the size of the model class with the amount

of dataN slowly enough to avoid over-fitting. We define the model class considered forN data

points first with the lagL, but also by restricting transition probabilities to be bounded below by a

ν: In particular, when there areN datapoints, the model class we consider, or theN -th ”sieve”, is

SN = {v ∈ ∆
Bo

LN

B̃ | ∀k, b, vk,b ≥ νN}where (νN )∞
N=1, (LN )∞

N=1 are sequences withLN → ∞,

νN → 0.

Theorem B.6.1. SayX1, X2, · · · ∼ p∗ iid where p∗ is a subexponential distribution on S. Say

pvN is a maximum likelihood distribution with vN ∈ SN given (Xn)N
n=1. pvN → p∗ and
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kl(p∗||pvN )→ 0 a.s. if for some ϵ > 0,

|suppLN
(p∗)|(log

(
ν−1

N

)
)1+ϵ

N
→ 0. (B.30)

Proof. The proof follows that of theorem 3 of Geman &Hwang 86 .

First note that SN is compact and the likelihood function is continuous so a maximum likeli-

hood vN always exists. This satisfies condition C1 of theorem 2 of Geman &Hwang 86 .

Next, to satisfy condition C2 (b) of theorem 2 of Geman &Hwang 86 we show that there are

ṽN ∈ SN such that kl(p∗||pṽN ) → 0. First, for eachL, pick a distribution pL on S such that

for all |X| ≤ L, pL(X) > 0 and kl(p∗||pL) → 0 asL → ∞ (for example, pick pL(|X| >

L) = p∗(|X| > L), pL(·||X| > L) = p∗(·||X| > L) and pL(·||X| ≤ L) positive with

kl(p∗(·||X| ≤ L)||pL(·||X| ≤ L)) < 1/L). pL
L as defined in proposition B.2.3 is a lagLMarkov

model with positive transition probabilities. Thus, for largeN , its transition probabilities are in SN .
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Now notice,

kl(p∗||pL
L) =E

[
log
(
p∗(X)
pL

L(X)

)
; |X| ≤ L

]
+ E

[
log
(
p∗(X)
pL

L(X)

)
; |X| > L

]

=E
[
log
(
p∗(X)
pL(X)

)
; |X| ≤ L

]

+ E

[
log
(

p∗(X)
pL(X1:L . . . )|B̃|−(|X|−L)

)
; |X| > L

]

≤E
[
log
(
p∗(X)
pL(X)

)
; |X| ≤ L

]

+ E

[
log
(

p∗(X)
pL(X)|B̃|−(|X|−L)

)
; |X| > L

]

=kl(p∗||pL) +
(
log |B̃|

)
E [|X| − L; |X| > L]

→0 asL→∞ as E|X| <∞.

(B.31)

Now we can pick ṽN ∈ Sn such that kl(p∗||pṽN )→ 0.

That kl(p∗||pN ) → 0 implies pN → p for distributions pN on S follows from Pinsker’s

inequality. This satisfies condition C2 (a) of theorem 2 of Geman &Hwang 86 . However, note

that the proof of theorem 2 of Geman &Hwang 86 also shows that if vN is anMLE in SN and the

conditions of the theorem hold, then kl(p∗||pvN )→ 0 a.s..

Finally, we define a partition of each SN that satisfies conditions i-iii of theorem 2 of Geman &

Hwang 86 to get the result. Pick a sequence ρN → 0with log
(
ν−1

N

)
> (log(1+ρN ))−1 eventually.

CallN the set of positive integers and for a ζ ∈ NsuppLN
(p∗), define

ÔN (ζ) := {v ∈ SN | ∀(k, b) ∈ suppLN
(p∗), (1 + ρn)ζk,bνN > vk,b ≥ (1 + ρN )ζk,b−1νN}
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Figure B.3: SievesSN are broken up into subsets ÔN (ζ), each a Cartesian product of subsets of∆B̃ , and these subsets

in turn are indexed by ζk for eachk. Here we illustrate one such subset of∆B̃ , when |B̃| = 3 and suppLN
(p∗)|k = B̃.

The region included in ÔN (ζ)when ζk = (2, 3, 3) is shown in solid gray, while all other possible subsets for different
values of ζk are shown in white. The region adjacent to the border of the simplex (hatched lines) corresponds to those

transition vectors that have components less than νN and are therefore not part of the sieveSN .

so that∪
ζ∈N

suppLN
(p∗)ÔN (ζ) = SN (Fig. B.3).

Call γN =
(

log(ν−1
N )

log(1+ρN ) + 1
)
and note (1 + ρN )γN −1νN = 1. Thus the number of choices of ζ

that give non-empty sets, call this#ÔN , is bounded above by γ
|suppLN

(p∗)|
N . Now notice eventually

γN =
log
(
ν−1

N

)
log(1 + ρN )

+ 1 ≥
(
log
(
ν−1

N

))2
+ 1 ≥

(
log
(
ν−1

N

))4

so that#ÔN ≤ exp
(
4
(
log log

(
ν−1

n

))
|suppLn

(p∗)|
)
.
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Say η > 0 and, picking a ζ ∈ NsuppLN
(p∗), define

ON (ζ) = {v ∈ ÔN (ζ)| kl(p∗||pṽN )− kl(p∗||pv) = E log
(
pv(X)
pṽN (X)

)
≤ −η}

ϕζ(t) = E exp
(
t log

(
supv∈ON (ζ) pv(X)

pṽN (X)

))
.

Note ϕζ(t) ≤ E exp(t|X|(log
(
ν−1

N

)
))which is finite for small enough t by assumption. ϕζ

and the bound E exp(t|X|(log
(
ν∗−1

n

)
)) are partition functions for exponential families so, since

they are finite for small t, they areC∞ with derivatives obtained by exchanging differentiation and

integration for small t by theorem 4.5 of van der Vaart 268 . In particular, for t < Cp∗/(log
(
ν−1

N

)
)

for someCp∗ that depends on p∗, defining another constant that depends on p∗,C ′
p∗ <∞,

ϕ′′
ζ (t) =E

(log( supv∈ON (ζ) pv(X)
pṽN (X)

))2

exp
(
t log

(
supv∈ON (ζ) pv(X)

pṽN (X)

))
≤(log

(
ν−1

N

)
)2E

[
|X|2 exp

(
t|X|(log

(
ν−1

N

)
)
)]

≤C ′
p∗(log

(
ν−1

N

)
)2.

(B.32)

As well, for any v1, v2 ∈ ÔN (ζ), for all (k, b) ∈ suppLN
(p∗), | log (v1,k,b/v2,k,b) | < log(1 +

ρN ) < ρN . Thus, for all v ∈ ON (ζ), since if p∗(X) > 0 then allLN -mer-base transitions inX are

in suppLN
(p∗), E log

(
supv∈ON (ζ) pv(X)

pv(X)

)
< ρNE|X|. So, definingC ′′

p∗ = E|X|,

ϕ′
ζ(0) = E log

(
supv∈ON (ζ) pv(X)

pv(X)

)
+ E log

(
pv(X)
pṽN (X)

)
< ρNC

′′
p∗ − η. (B.33)
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Putting things together we get, for small t,

ϕζ(t) ≤ 1 + t(ρNC
′′
p∗ − η) + 1

2
t2C ′

p∗(log
(
ν−1

N

)
)2. (B.34)

Picking t = 2(log
(
ν−1

N

)
)−(1+ϵ) for some ϵ > 0 gives, for large enoughN , for any ζ , ϕζ(t) ≤

1− η/(log
(
ν−1

N

)
)1+ϵ ≤ exp(−η/(log

(
ν−1

n

)
)1+ϵ). Finally note that

(log
(
ν−1

N

)
)1+ϵ

N1−ϵ′ =

(log
(
ν−1

N

)
)(1+ϵ)/(1−ϵ′)

N

1−ϵ′

→ 0

by equation B.30 if ϵ, ϵ′ are small enough. Now write, for largeN ′ and positive constants
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ϵ′′, C, C ′, C ′′,

∞∑
N>N ′

(
#ÔN

)(
sup

ζ

inf
t>0

ϕζ(t)
)N

≤

∑
N

exp

4
(
log log

(
ν−1

N

))
|suppLN

(p∗)| − Nη(
log
(
ν−1

N

))1+ϵ



≤
∑
N

exp
(
− Nη(

log
(
ν−1

N

))1+ϵ

1− C
|suppLN

(p∗)|
(
log
(
ν−1

N

))1+ϵ′′

N

)

≤
∑
N

exp
(
−N ϵ′

C ′
)

≤
∫ ∞

0
dx exp

(
−C ′′xϵ′)

=ϵ′−1C ′′−1/ϵ′
∫ ∞

0
dxx1/ϵ′−1 exp (−x)

=ϵ′−1C ′′−1/ϵ′Γ(1/ϵ′)

<∞

(B.35)

using the assumptions of the theorem and replacing ϵ by ϵ′′ to absorb log log
(
v−1

n

)
(note one can

make ϵ, ϵ′, ϵ′′ as close to 1 as desired). This shows that all conditions of theorem 2 of Geman &

Hwang 86 are satisfied.

Remark B.6.2. To pick viable (LN )N , (νN )N , note |suppLN
(p∗)| ≤ |B̃||Bo

LN
|, so, since

|Bo
N | =

Ln∑
l=0
|B|l = |B|

LN +1 − 1
|B| − 1

≤ |B|LN +1,

we have |suppLN
(p)| ≲ |B|LN . Thus, as an example, for c1, c2 > 0 such that 1 > c1 + c2,
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LN = dc1 logN/ log |B|e and νN = e−Nc2 satisfy condition B.30. We can see that without any

a priori knowledge of |suppLN
(p∗)| we are forced to pick a very slow growing sequence (LN )N , and

thus it is likely that are model class is too conservative for p∗ whose support have cardinality far from

the upper bound. By adaptingLN to the content of the data in addition to its cardinality, the Bayesian

approach described in section B.6.3 does not suffer from this conceptual issue.

B.6.2 The projection algorithm

FixL and ν for this section and define S = {v ∈ ∆Bo
L

B̃ | vk,b ≥ ν ∀ k, b}. Given dataX1, . . . , XN ,

any maximum likelihood estimate (MLE) inML, v, has, for everyL-mer k that is seen in the data,

vk,b = #(k, b)/
(∑

b′∈B̃ #(k, b′)
)
where#(k, b) is the number of times k is seen in the data im-

mediately preceding b. If v̄ is a MLE in S , it will be shown that for eachL-mer k that is seen in the

data, (v̄k,b)b∈B̃ is equal to a ”projection” of (vk,b)b∈B̃ onto the smaller simplex {vk ∈ ∆|B̃| | vk,b ≥

ν ∀b}. This projection is defined in algorithm 4, and the rest of this section will be devoted to its

properties, including continuity, bounds, and proof of the above statement in proposition B.6.8.

Some of these bounds will be used to prove the consistency of nonparametric Bayesian inference

in section B.6.3. For ease of exposition, we will first present a conceptually simpler version of the

projection algorithm, algorithm 3.
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Algorithm 3 Projection algorithm I
Input : Non-negative numbers (ub)b∈B̃, with

∑
b∈B̃ ub > 0, and a positive number ν ≤

1/|B̃|.

Output: (ūb)b∈B̃ such that
∑

b∈B̃ ūb = 1 and ūb ≥ ν for all b.

1: ū
(0)
b ← ub/(∑b′∈B̃ ub′)

2: B(0) ← |{b | ū(0)
b ≤ ν}|

3: i← 1

4: while there exists a bwith ū
(i−1)
b < ν do

5: for b ∈ B̃ do

6: if ū
(i−1)
b ≤ ν then

7: ū
(i−1)
b ← ν

8: else

9: ū
(i−1)
b ←

(
1−B(i−1)ν

)
ub/(∑

b′ | ū
(i−1)
b′ >ν

ub′).

10: B(i) ← |{b′ | ū(i)
b′ ≤ ν}|

11: i← i + 1

12: for b ∈ B̃ do

13: ūb ← ū
(i−1)
b

Proposition B.6.3. Say algorithm 3 is applied to non-negative numbers (ub)b∈B̃ with
∑

b ub > 0.

Define (ūb)b, ((ū
(i)
b )b)i and (B(i))i as in the algorithm. Say the algorithm terminates at step I .
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1) For all i,
∑|B̃|

b=1 ū
(i)
b = 1.

2) If (ub)b are scaled by a positive constant, the output (ūb)b remains the same.

3) Say (v̄(i)
b )b is the i-th iteration of algorithm 3 with input (ū(j)

b )b. (v̄(i)
b )b = (ū(j+i)

b )b.

4) I < |B̃|. The algorithm remains unchanged if the while loop were replaced by ”for i =

1, . . . , |B̃| − 1 do”.

5) ūb ≥ (1− (|B̃| − 1)ν)ū(0)
b .

Proof. Results 1 and 2 are clear. For 3, note that if both ū(j)
b and ū(j)

b′ are greater than ν, then

ū
(j)
b /ū

(j)
b′ = ub/ub′ . Thus, if ū(j)

b > ν,

ū
(j+1)
b =

(
1−B(j)ν

)
ū

(j)
b /

 ∑
b′ | ū

(j)
b′ >ν

ū
(j)
b′

 = v̄
(1)
b .

Similar logic may be used to show (v̄(2)
b )b = (ū(j+2)

b )b and so on.

To see 4, notice that for every i ≤ I , at least one b has ū(i)
b = ν while ū(i−1)

b < ν. Thus,

(B̂(i))I
i=0 := (|{b′ | ū(i)

b′ ≤ ν}|)I
i=0 is a strictly increasing sequence. B̂(i) ≤ |B̃| as ν ≤ 1/|B̃|.

If B̂(I) = |B̃| then ν = 1/|B̃| and, by property 1, B̂(i) 6= |B̃| − 1 for every i. In any case, the

sequence (B̂(i))I
i=0 may take on at most |B̃| values (including 0) and thus I < |B̃|. The second

statement of 4 follows from the fact that for all b, ūb ≥ ν and thus would remain unaltered by the

procedure in the while statement.

Finally, for 5, first say ūb > ν and note thatB(I−1) < |B̃| (otherwise the algorithm is terminated
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or property 1 is violated).

ūb = (1−B(I−1)ν) ub(∑
b′ | ū

(I−1)
b′ >ν

ub′

) ≥ (1−B(I−1)ν) ub

(
∑

b′ ub′)
≥ (1− (|B̃| − 1)ν)ū(0)

b .

Now say ūb = ν. Call i′ the first step such that ū(i′)
b = ν. If i′ = 0 or i′ = 1 then ūb = ν ≥

(1− (|B̃| − 1)ν)ν ≥ (1− (|B̃| − 1)ν)ū(0)
b . Finally, if i′ > 1 then

ūb = ν ≥ ū(i′−1)
b =

(
1−B(i′−2)ν

)
ub/

 ∑
b′ | ū

(i′−2)
b′ >ν

ub′

 ≥ (1− (|B̃| − 1)ν
)
ū

(0)
b .

Thus in all cases ūb ≥ (1− (|B̃| − 1)ν)ū(0)
b .

We now turn to the main projection algorithm.
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Algorithm 4 Projection algorithm II

Input : Non-negative numbers (ub)|B̃|
b=1, with

∑|B̃|
b=1 ub > 0, and a positive number ν ≤

1/|B̃|.

Output: (ūb)|B̃|
b=1 such that

∑|B̃|
b=1 ūb = 1 and ūb ≥ ν for all b.

1: ū
(0)
b ← ub/(∑|B̃|

b′=1 ub′)

2: C(0) ← ∅

3: i← 1

4: while there is a b /∈ C(i−1) with ū
(i−1)
b ≤ ν do

5: Pick b(i−1) ∈ {b | ū(i−1)
b ≤ ν} \ C(i−1)

6: C(i) ← C(i−1) ∪ {b(i−1)}

7: for b = 1, . . . , |B̃| do

8: if b ∈ C(i) then

9: ū
(i)
b ← ν

10: else

11: ū
(i)
b ← (1− iν) ub/ (∑b′ /∈C(i) ub′)

12: i← i + 1

13: for b = 1, . . . , |B̃| do

14: ūb ← ū
(i−1)
b

An example run of algorithm 4 is visualized in figure B.4 (top row). Clearly this algorithm re-
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turns ūb = ν if ν = 1/|B̃| and all the following results are trivial. Thus below we will assume

ν < 1/|B̃|.

Remark B.6.4. Wewill first consider an alternative representation of the algorithm.

Given a C ⊂ B̃, call

uC = ν

∑
b/∈C ub

1− |C|ν

and if uC > 0, define

ūC
b := (1− |C|ν)ub/

∑
b′ /∈C

ub′

 = νub/u
C

for b /∈ C and ūC
b = ν for b ∈ C; so one gets ū(̃i)

b = ūC(̃i)
b at each iteration ĩ. If b /∈ C, ūC

b ≤ ν if and

only if ub ≤ uC .

Say b /∈ C and call C′ := {b} ∪ C.

uC′ − uC = ν
ν (
∑

b′ /∈C ub′)− ub (1− |C|ν)
(1− |C′|ν) (1− |C|ν)

= ν

1− |C′|ν

(
uC − ub

)
.

Thus uC′ ≥ uC if and only if ub ≤ uC with equality if and only if ub = uC .

We can see that at iteration i the next b(i−1) is chosen from {b | ū(i−1)
b ≤ ν} \ C(i−1) = {b |ub ≤

uC(i−1)} \ C(i−1), i.e. from those b with ub below the threshold uC(i−1) . Thus, uC(0) ≤ uC(1) ≤ . . . .

This is reflected in figure B.4 (bottom row).

By induction (or from inspection of figure B.4), one may show that all the elements b of C(i) must

have ub below the threshold uC(i−1) and the algorithm is complete only when all b with ub below the

threshold uC(i) are inside C(i). In other words, for i < I (where I is the final iteration) we have C(i) (
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Figure B.4: Example application of algorithm 4. (ū(i)
b )b at the end of each step of the algorithm is shown on the top row

with ν in green and those elements inC(i) in grey. (ub)|B̃|
b=1 is shown as black bars in the plots in the bottom rowwith

uC(i)
shown as a red line. uC(j)

for previous steps j < i are also shown on the bottom row as grey lines. The scale of the

inputs (ub)|B̃|
b=1 is of no consequence for the algorithm.

{b | ub ≤ uC(i)}, and C(I) = {b | ub ≤ uC(I)}.

The important points from the above remark are summarized as:

Lemma B.6.5. 1) Given a C ⊂ B̃, say b /∈ C and call C′ := {b} ∪ C. uC′ ≥ uC if and only if

ub ≤ uC with equality if and only if ub = uC .

2) uC(0) ≤ uC(1) ≤ . . . .

3) If the algorithm ends on step I , C(i) ⊆ {b | ub ≤ uC(i−1)} for all i ≤ I , C(i) ( {b | ub ≤

uC(i)} for i < I , and C(I) = {b | ub ≤ uC(I)}.

Proposition B.6.6. Say algorithm 4 is applied to non-negative numbers (ub)b∈B̃ with
∑

b ub > 0.

Define (ūb)b, ((ū
(i)
b )b)i and (C(i))i as in the algorithm. Say the algorithm terminates at step I .

1) The output of the algorithm is the same regardless of the choice of (b0, b1, . . . ).

2) The output of the algorithm is the same as that of algorithm 3.
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3) we can replace lines 4 and 5 of algorithm 4 with

4: while there is a b /∈ C(i−1) with ū(i−1)
b < ν do

5: Pick b(i−1) ∈ {b | ū(i−1)
b < ν} \ C(i−1)

and receive the same output. With this adjustment, I < |B̃|.

4) Say b /∈ C(i). ū(i−1)
b − ū(i)

b ≤ |B̃|(ν − ū
(i−1)
b(i−1)) so that ū

(i−1)
b is close to ū(i)

b if ū(i−1)
b(i−1) is close to

ν.

Proof. 1) Say the choices (b(0), . . . , b(I))were made when running the algorithm. Consider a dif-

ferent sequence of choices (b′(0), . . . , b′(I′)) to produce C′(I′). Note that by lemma B.6.5, C :=

C(I) = {b |ub ≤ uC(I)} and C′ := C′(I′) = {b | ub ≤ uC′(I′)}. Without loss of generality assume

C ) C′ so uC > uC′ . We will show that this leads to a contradiction. Pick the smallest i ≤ I such

that uC(i)
> uC′ . Then uC(i−1) ≤ uC′ , so by lemma B.6.5, C(i) ⊆ C′.

Pick an enumeration (b̃1, . . . , b̃J) = (C′ \ C(i)). ub̃1
≤ uC′ ≤ uC(i) so uC(i)∪{b̃1} ≥ uC(i) . By

induction, one may show that uC′ = uC(i)∪(C′\C(i)) ≥ uC(i)∪{b̃1,...,b̃J−1} ≥ · · · ≥ uC(i)∪{b̃1} ≥

uC(i) . This contradicts the choice of i above. Thus, C = C′ and I = |C| = |C′| = I ′. Moreover,

since the final output (ūb)
|B̃|
b=1 of the algorithm can be defined purely in terms of the final set C(i),

the output must be identical among runs of the algorithm.

2) Consider choosing (b(0), . . . , b(i)) as such: first pick {b(0), . . . , b(i1−1)} = {b | ū(0)
b ≤

ν}, which we know can be done since by lemma B.6.5, ū(0)
b ≤ ν if and only if ub ≤ uC(i1) and

uC(i1) ≤ uC(i1+1) ≤ . . . . This is equivalent to one step of the while loop of algorithm 3. Then

choose {b(i1), . . . , b(i2−1)} = {b | ū(i1)
b ≤ ν} \ C(i1), which we can do by similar logic. This is
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equivalent to the second step of the while loop of algorithm 3. Continuing the construction in the

same way, by conclusion (1) above, we get that the outputs of algorithms 3 and 4 are identical.

3) Note, by lemma B.6.5, picking a b(i−1) with ū(i−1)
b(i−1) = ν gives uC(i) = uC(i−1) and ū(i)

b =

ū
(i−1)
b for all b. Say (b0, . . . , bi), i < I are selected in the algorithm such that ū(j)

bj
< ν for each

j ≤ i and all b ∈ {b | ū(i)
b ≤ ν} \ C(i) have ū(i)

b = ν, then (ū(i+1)
b′ )b′ = (ū(i)

b′ )b′ and all

b ∈ {b | ū(i+1)
b ≤ ν} \ C(i+1) have ū(i)

b = ν. Continuing by induction demonstrates property (3).

That I < |B̃| follows by the same logic as conclusion (4) in proposition B.6.3 on algorithm 3.

4) Say b /∈ C(i),

ū
(i−1)
b − ū(i)

b =νub

(
1/uC(i−1) − 1/uC(i))

= ub∑
b′ /∈C(i) ub′

ν(
∑

b′ /∈C(i−1) ub′)− ub(i−1)(1− (i− 1)ν)∑
b′ /∈C(i−1) ub′

=ū(i)
b (1− iν)−1(ν − ū(i−1)

b(i−1))

≤|B̃|(ν − ū(i−1)
b(i−1))

(B.36)

with the last inequality since i ≤ |B̃| − 1 and ν ≤ 1/|B̃|.

Next we show that the projection defined by algorithm B.6.6 is continuous.

Lemma B.6.7. Say 0 < ν ≤ 1/|B̃| and ((uj,b)
|B̃|
b=1)∞

j=1 is a sequence of sets of non-negative num-

bers, each with at least one positive element, with uj,b → ub for each b as j → ∞, where (ub)
|B̃|
b=1

is set of non-negative numbers with at least one positive element. Apply algorithm 3 or 4 to each set
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((uj,b)
|B̃|
b=1)∞

j=1 to get ((ūj,b)
|B̃|
b=1)∞

j=1 and to (ub)
|B̃|
b=1 to get (ūb)

|B̃|
b=1. Then ūj,b → ūb for all b.

Proof. Define ū(i)
j,b as in the steps of algorithm 4, with b(0), b(1), . . . to be defined below. Say ū(0)

b(0) <

ν. Eventually, ū(0)
j,b(0) < ν and thus it becomes possible to pick b(0) in the first step of the algorithm

for all large enough j. Then, we get ū(1)
j,b(0) = ν = ū

(1)
b(0) . For b 6= b(0), ū(1)

j,b = νuj,b/u
C(1)
j as

defined as part of lemma B.6.5. uC(1) is a continuous function of (ub)
|B̃|
b=1 so that ū

(1)
j,b → ū

(1)
b for all

b. Using the same logic, for large enough j, we may pick an b(1) with ū(1)
b(1) < ν and see ū(2)

j,b → ū
(2)
b

for all b. We may continue as such until the algorithm terminates for (ub)
|B̃|
b=1 by property (3) in

proposition B.6.6. Thus, for some i, we have that ū(i)
j,b → ūb for all b.

Note each (u(i)
j,b)

|B̃|
b=1 may require another |B̃| − i − 1 steps for the algorithm to complete. For

large enough j, we have the implication ūb > ν =⇒ ū
(i)
j,b > ν for all b so that if for a b, ū(i)

j,b < ν,

then ū(i)
j,b → ūb = ν. Applying property (4) in proposition B.6.6 to each of the remaining steps

of the algorithm applied to (uj,b)
|B̃|
b=1 for high enough j, considering ū

(i)
j,b → ūb for all b, we can see

that ūj,b → ūb for all b.

Finally, we can show that the projection algorithms 3 and 4 indeed return the MLE on the sieve

S , given observed kmer transition counts.

Proposition B.6.8. Given dataX1, . . . , XN , a lagL, and a positive number ν < 1/|B̃|, say v̄

is anMLE in S := {v ∈ ∆Bo
L

|B̃| | ∀k, b, vk,b ≥ ν}. For everyL-mer k that has been seen in the

data, (v̄k,b)b∈B̃ is equal to the output of algorithm 3 or 4 applied to (#(k, b))b∈B̃ where #(k, b) is the

number of times k is seen in the data immediately preceding b.
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Proof. The likelihood of the data under a pv ∈ML is

∑
k

∑
b

#(k, b) log(vk,b).

Thus, the MLE in S can be found by finding, for each k with#k > 0,

argmaxvk∈∆(0)

∑
b

#(k, b) log(vk,b)

where∆(0) := {vk ∈ ∆B̃ | for all b, vk,b ≥ ν}.

Say k has been seen in the data, so the MLE on∆B̃, v
(0)
k , is unique and satisfies v(0)

k,b ∝ #(k, b).

Call v̂k anMLE on∆(0). Say v(0)
k /∈ ∆(0) so that for some b, v(0)

k,b < νn. By the uniqueness of

the MLE, the likelihood of the data under v(0)
k must be strictly greater than under v̂k. Connecting

v̂k and v
(0)
k by a line, considering the concavity of the log likelihood function, the likelihood must

be decreasing from v
(0)
k to v̂k. As the likelihood function is analytic and not constant on the line, it

must be strictly decreasing. Thus the line cannot intersect∆(0) except at v̂k. For every b, λv̂k,b +

(1 − λ)v(0)
k,b ≥ ν for all λ ∈ [0, 1] if v(0)

k,b ≥ ν; for all λ ∈ [c, 1] for a c < 1 if v(0)
k,b < νn and

v̂k,b > ν; and only for λ = 1 if v(0)
k,b < νn and v̂k,b = ν. Therefore, for some b(0) such that

v
(0)
k,b(0) < ν we have v̂k,b(0) = ν.

Call v(1)
k the MLE on {vk ∈ ∆B̃ | vk,b(0) = ν}. Using Lagrange multipliers again, one may see

that

v
(1)
k,b = (1− ν) (k, b)∑

b 6=b(1) #(k, b)
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for b 6= b(0). Note that v(1)
k is the result of one step of applying algorithm 4 to v(0)

k using b(0). Call

∆(1) := {vk ∈ ∆B̃ | for all b, vk,b ≥ ν and vk,b(1) = ν} so v̂k ∈ ∆(1). One may perform the

same analysis as above to see that if for some b, v(1)
k,b < ν, then there is a b(1) such that v(1)

k,b(1) < ν

and v̂k,b(1) = ν.

We may then construct v(2)
k , v

(3)
k , . . . by applying algorithm 4, picking b(i). Defining∆(i) in

analogy to∆(0) and∆(1), the algorithm stops at step iwhen v(i)
k ∈ ∆(i) and v̂k = v

(i)
k = v̄k. That

v̄k is unique follows from property (2) in remark B.6.6.

B.6.3 Bayesian consistency

In this section we take a Bayesian approach to inferring a subexponential p∗ from dataX1, X2, · · · ∼

p∗ iid. We put a prior onL, with support over allL > 0, to construct a nonparametric Bayesian

model and then study the consistency and concentration rate of its posterior. Recall that the Bern-

stein von-Mises theorem states that given some regularity conditions, for a Bayesian parametric

model, the posterior concentrates in a neighborhood centered at the data-generating distribution,

with radius proportional to 1/
√
N . For nonparametric models in general, and (as we shall see)

the BEARmodel in particular, the concentration rate of the posterior can be strictly slower than

√
N 87,221.

In order to guarantee consistency and derive a concentration rate, we will, instead of placing a

prior directly onL, place a prior on sieves constructed similarly to those in section B.6.1. In particu-
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lar, define for allL, ν ′ > 0 and ν > 0 the sieve

S(ν ′, ν, L) = {v ∈ ∆Bo
L

B̃ | ∀k, vk,$ ≥ ν and vk,b ≥ ν ′ ∀b ∈ B}

where ν is a lower bound on the stop transition probability and ν ′ is a lower bound on all other tran-

sitions. In particular, we will define a prior over the sieves that depends on how well a distribution

from each sieve can match p∗. Define the sieve approximation mismatch

ξ(ν ′, ν, L) = min
v∈S(ν′,ν,L)

E log2
(
p∗(X)
pv(X)

)
.

In the next section, we will show that we can guarantee ξ is sufficiently small by using the fact that

p∗ is subexponential. Here, we define the prior.

We may now define our prior:

Condition B.6.9. Assume, for monotonic sequences (νm)m, (Lm)m, and a distribution on the natu-

ral numbers π,

log
(
ν−1

m

)
∼ mc1

|B|Lm ∼ mc2

ξ(νm, νm, Lm) ≲ m−c3

logπ(m) ∼ −mω
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with c1, c2, c3 > 0 and 1 > c1 +c2. c3 must obey the following condition: calling δ = 1− 1−(c1+c2)
c3/2 ,

δ > 0 and (1− δ)−1(c1 + c2) ≥ ω > c1 + c2. Consider positive numbers (αk,b)L≥1,k∈Bo
L,b∈B̃ such

that supαk,b < ∞ and infαk,b > 0. Consider a prior Π on the disjoint uniont∞
m=1S(0, νm, Lm)

that factorizes as such:

Π(pv) = π(m)
∏

k∈Bo
Lm

Πk(vk) if pv ∈ Sm.

where for a k ∈ Bo
Lm

, Πk is a restricted and renormalized Dirichlet(αk,b)b∈B̃ prior on the simplex in

S(0, νm, Lm) corresponding to transition coefficients out of k.

Note as well the difference between the sieve we approximate p∗ with (S(νm, νm, Lm)) and the

one our prior is defined over (S(0, νm, Lm)). It is best to consider the constraints on c1, c2, ω with

the fact that c3 is limited in the values it may take on by how well p∗ can be approximated by finite

lag Markov models. Our main result will be the consistency of the posterior under this prior and the

calculation of its concentration rate.

Remark B.6.10. Using the techniques in section B.6.2, we can see that the maximum a posteriori

estimate on each sieve S(0, νm, Lm) has, for every k that has been seen in the data,

vk,b ∝ #(k, b) + αk,b

if #(k,$)+αk,$∑
b′ 6=$(#(k,b′)+αk,b′) ≥ νm; otherwise, vk,$ = νm but we still have vk,b ∝ #(k, b) + αk,b for

b ∈ B. One may then compare the densities of the maximum a posteriori estimators in each sieve across
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L to get the maximum a posteriori estimator of the entire posterior.

We now discuss two interpretations of this prior. On the one hand,

Π =
∞∑

L=1

∑
m | Lm=L

πlag(m)Π(· | S(0, νm, Lm))

and thus, since S(0, νm, Lm) ⊂ MLm , and the fact that multiplem correspond to the sameLm,

the prior can be interpreted as similar to putting a prior on the lag, with the standard Dirichlet pri-

ors on eachML, but with the prior having a ”staircase” shape for very small stopping probabilities.

On the other hand, we have carefully chosen the values of νm andLm in order to balance the size of

Sm against the amount of information about p∗ received fromm datapoints. How this works will

become clear in the proof of theorem B.6.16.

In section B.6.3 we will show that there exists a c3 such that ξ(νm, νm, Lm) ≲ m−c3 , i.e., p∗

may be efficiently approximated by the sieves. Then we will derive our main result with the con-

centration rate in section B.6.3. Finally we describe how to use this result in practice on real data in

section B.6.3. Throughout we will consider a data generating distribution p∗ and all expectations

will be with respect to the data generating distribution unless otherwise stated.

Approximating subexponential sequence distributions

In this section we will be interested in finding an asymptotic upper bound for ξ(νm, νm, Lm) of

the formm−c3 , thus showing that a prior as in Condition B.6.9 exists (proposition B.6.13). The

result relies on the assumption that p∗ is subexponential; our main consistency result (theorem
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B.6.16) would only require E|X|2 < ∞ if Condition B.6.9 were somehow otherwise satisfied. In

its essence, this section is about constructing approximations to subexponential sequence distribu-

tions, with control not only over the expected log ratio of p∗ and the approximating distribution

p – the KL divergence, E log(p∗(X)/p(X)) – but also over the variance of this log ratio – i.e. con-

trol of E log2 (p∗(X)/p(X)). We will make use of lemma B.2.3 but need another construction and

technical lemma.

Note that if p∗ is a distribution on S andX ∈ S,

p∗(X) = p∗(X1 . . . )p∗(X1:2 . . . |X1 . . . ) . . . p∗(X1:|X||X1:|X|−1 . . . )

where, recall, for a sequence Y , possibly not terminated by $, p∗(Y . . . ) = p∗({X ∈ S |Xi =

Yi ∀i ≤ |Y |}). Thus a probability distribution on S may be described by its infinite-lag transition

probabilities p∗((Y, b) . . . |Y . . . ) for sequences Y not terminated by $ and b ∈ B̃, ignoring those

Y with p∗(Y . . . ) = 0. Infinite-lag transition probabilities were considered in the construction of

p∗
L in proposition B.2.3. Below we will be interested in constructing another distribution from p by

projecting, for someL, the transition probabilities at each Y with |Y | < L onto {v ∈ ∆|B̃| | vb ≥

ν∗ ∀ b}. This first lemma will be used to guarantee the existence of this distribution.

Lemma B.6.11. Say p∗ is a probability distribution on S. Given a lagL and positive numbers

((vX,b)b∈B̃)l∈{0,...,L−1},X∈Bl with
∑

b vX,b = 1 for allX , there is a p∗L such that for all sequences
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Y not terminated by $,

p∗L((Y, b) . . . |Y . . . ) =


vY,b if |Y | < L

p∗(Y b . . . |Y . . . ) if |Y | ≥ L and p∗(Y . . . ) > 0.

(B.37)

Proof. ForX ∈ S, |X| ≤ L define

p∗L(X) =
|X|∏
i=1

vX1:i−1,Xi .

For Y ∈ BL with p(Y . . . ) = 0, define

p∗L((Y, $)) =
L∏

i=1
vY1:i−1,Yi

and p∗L(X) = 0 forX ∈ S withX1:L = Y andXL+1 6= $. Finally, if p∗(Y . . . ) > 0 define, for

allX ∈ S withX1 · · ·XL = Y ,

p∗L(X) =
(

L∏
i=1

vY1:i−1,Yi

)
p∗(X|Y . . . ).

It is not difficult to check that p∗L is well defined and satisfies the requirements in the statement

(Fig. B.5).
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Figure B.5: Example application of this construction to the distribution p∗ on the left, with the v represented in the
center. Transition probabilities for kmers smaller thanL = 2 are those defined by v while those after are those of the
original distribution. Thickness of lines denote probability of particular transition.

Finally, we write a technical lemma:

Lemma B.6.12. There exists a positive constantC such that for any p∗ and p that are distributions

over S,

Ep∗ log2
(
p∗(X)
p(X)

)
≤ Ep∗

[
log2

(
p∗(X)
p(X)

)
; p∗(X) > p(X)

]
+ Ckl(p∗||p)1/2.

Proof. x 7→ (logx)2 is differentiable with derivative 2x−1 logx. The derivative is bounded above
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on [1,∞), say byC . Thus, for all x ≥ 1, (logx)2 ≤ (log 1)2 + C(x− 1) = C(x− 1). Now,

Ep∗

[
log2

(
p(X)
p∗(X)

)
; p∗(X) ≤ p(X)

]
≤CEp∗

[(
p(X)
p∗(X)

− 1
)

; p∗(X) ≤ p(X)
]

=C (p(p(X) > p∗(X))− p∗(p(X) > p∗(X)))

≤C‖p∗ − p‖TV

≲kl(p∗||p)1/2.

(B.38)

Proposition B.6.13. If E exp(t|X|) <∞ for some t > 0 then ξ(νm, νm, Lm) ≲ m
− c2

log |B̃| t.

Proof. To approximate p∗ with a distribution in S(νm, νm, Lm)we will use the construction in

lemma B.2.3, however we must make sure that the transition probabilities are not less than νm.

To do so, for sequencesX without $, with |X| < Lm, define (vX,b)b∈B̃ to be the output of the

application of algorithm 3 or 4 to (p∗((X, b) . . . |X . . . ))b∈B̃ if p
∗(X . . . ) > 0. ForX with

p∗(X . . . ) = 0, make any choice of (vX,b)b with vX,b ≥ νm for all b. Thus, for allX, b, vX,b ≥

νm. Now, by lemma B.6.11, there is a distribution p∗Lm with the same infinite-lag transition prob-

abilities as p∗ for |X| ≥ Lm and infinite-lag transition probabilities (vX,b)b∈B̃ for |X| < Lm.

Finally perform the construction in lemma B.2.3 to p∗Lm to produce a p∗Lm
Lm
∈ S(νm, νm, Lm).

By lemma B.6.12

E log2
(

p∗(X)
p∗Lm

Lm
(X)

)
≲ E

[
log2

(
p∗(X)
p∗Lm

Lm
(X)

)
; p∗(X) > p∗Lm

Lm
(X)

]
+
[
E log

(
p∗(X)
p∗Lm

Lm
(X)

)]1/2

.
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To achieve our result, we will show the first of these terms is≲ m
− c2

log |B̃| t and one may use a similar

proof to make the same deduction about the second term.

First we will split the term into two that represent the ”distance” from p∗ to p∗Lm and that from

p∗Lm to p∗Lm
Lm

:

E

[
log2

(
p∗(X)
pLm

Lm
(X)

)
; pLm

Lm
(X) < p∗(X)

]

=E
[
log2

(
p∗(X)
pLm(X)

)
; |X| ≤ Lm, p

Lm
Lm

(X) < p∗(X)
]

+ E

[
log2

(
p∗(X)

pLm((X1, . . . , XLm) . . . )|B̃|−(|X|−Lm)

)
; |X| > Lm, p

Lm
Lm

(X) < p∗(X)
]

≤E
[
log2

(
p∗(X)
pLm(X)

)
; |X| ≤ Lm, p

Lm
Lm

(X) < p∗(X)
]

+ E

[
log2

(
p∗(X)

pLm(X)|B̃|−(|X|−Lm)

)
; |X| > Lm, p

Lm
Lm

(X) < p∗(X)
]

≤E
[
log2

(
p∗(X)
pLm(X)

)
; |X| ≤ Lm, p

Lm
Lm

(X) < p∗(X)
]

+ 4E
[
log2

(
p∗(X)
pLm(X)

)
; |X| > Lm, p

Lm
Lm

(X) < p∗(X)
]

+ 4 log2
(
|B̃|
)

E [(|X| − Lm); |X| > Lm]

≲E
[
log2

(
p∗(X)
pLm(X)

)]
+ E

[
(|X| − Lm)2; |X| > Lm

]
.

(B.39)

Now we will show each of these two terms≲ m
− c2

log |B̃| t in turn.
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Wewill first consider E
[
(|X| − Lm)2; |X| > Lm

]
.

p∗((|X| − Lm)2 > l) =p∗(et|X| > et(
√

l+Lm))

≤e−tLmE
[
et|X|

]
e−t

√
l

(B.40)

byMarkov’s inequality, so

E
[
(|X| − Lm)2; |X| > Lm

]
=
∫ ∞

Lm

p∗((|X| − Lm)2 > l)dl

≤e−tLmE
[
et|X|

] ∫ ∞

Lm

e−t
√

ldl

≤e−tLmE
[
et|X|

]
2t−2(t

√
Lm + 1)e−t

√
Lm

= exp
(
− tLm − t

√
Lm − 2 log t

+ log
(
t
√
Lm + 1

)
+ const.

)

≲ exp (−tLm)

∼m− c2
log |B̃| t

(B.41)

as desired.

For the other term in equation B.39, again by lemma B.6.12,

E log2
(

p∗(X)
p∗Lm(X)

)
≲ E

[
log2

(
p∗(X)
p∗Lm(X)

)
; p∗(X) > p∗Lm(X)

]
+
[
E log

(
p∗(X)
p∗Lm(X)

)]1/2
.

In this case, we will show that the first of these terms is≲ e−Cmc1 for some positive constantC , and

by a similar proof one may show the same for the second. This will complete the proof of part 2.
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If p∗(X) > pLm(X) ≥ 0, by the definition of p∗Lm ,

p∗(X)
p∗Lm(X)

=
Lm∨|X|∏

i=1

p∗(X1:i . . . |X1:i−1 . . . )
vX1:i−1,Xi

≤
(
1− (|B̃| − 1)νm

)Lm

with the inequality by property (5) in proposition B.6.3. Thus,

E
[
log2

(
p∗(X)
p∗Lm(X)

)
; p∗(X) > p∗Lm(X)

]
≲ L2

mν
2
m ≲ log2(m)e−2Cmc1 ≲ e−C′mc1

for two positive constantsC,C ′.

Consistency and rate

The proof of theorem B.6.16 relies on a consequence of theorem 2.1 of Ghosal et al. 87 , which is

stated in a simplified form herein as theorem B.6.14. Intuitively, the key challenge in establishing

nonparametric consistency is that the size of the space of probability measuresP (infinite dimen-

sional) may overwhelm the evidence provided by the data, leading to a posterior that is too spread

out. To establish consistency, theorem 2.1 of Ghosal et al. 87 requires that the prior over probability

measures is sufficiently large on a neighborhood of p∗ (denotedBη), and sufficiently small on the

complement of an effectively parametric (finite dimensional) subset ofP (denotedPN ).

Theorem B.6.14. SayP is a set of probability measures, p∗ ∈ P . X1, . . . , XN ∼ p∗ iid, d is

the Hellinger distance, Π is a distribution onP , (ηN )∞
N=1 is a sequence of positive numbers such that

351



ηN → 0 andNη2
N →∞, and (PN )∞

N=1 are a sequence of subsets ofP . Define, for positive η,

Bη = {p ∈P | kl(p∗||p) < η2,Var[log(p∗(X)/p(X))] < η2}.

Then if

i) logN (ηN/2,PN , d) ≲ Nη2
N

ii) logΠ(BηN ) ≳ −Nη2
N

iii) For an ϵ > 0, Π(P \PN )Π(BηN )−1e(1+ϵ)Nη2
N → 0

Then for large enoughM ,

Π(B(p∗,Mηn)|X1, . . . , XN )→ 1

in probability, whereB(p∗, δ) is a Hellinger ball of radius δ centered at p∗

Proof. For someC ,

CNη2
N ≥ logN (ηN/2,SN , d) ≥ logD(ηN ,SN , d).

Defining η′
N =

√
CηN , condition 2.2 in theorem 2.1 of Ghosal et al. 87 is satisfied for the sequence

(η′
N )∞

N=1. Note condition 2.4 is also satisfied by the above condition ii.
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Note by lemma 8.1 in Ghosal et al. 87

DN =
∫ N∏

n=1

p(Xn)
p∗(Xn)

dΠ(p)

≥Π(Bη′
N

)

 1
Π(Bη′

N
)

∫
Bη′

N

N∏
n=1

p(Xn)
p∗(Xn)

dΠ(p)


≥Π(Bη′

N
)e−(1+ϵ)Nη′2

N

(B.42)

with probability 1−
(
ϵ2Nη′2

N

)−1 → 1. Call the set where this occursA. As in the proof of theorem

2.1 of Ghosal et al. 87 , for large enoughM,C ′, we may then use condition i to write

1− Ep∗
[
Π(B(p∗,Mη′

N )|X1, . . . , XN )
]
≤2e−C′Nϵ′

N + (1− p∗(A))

+ Ep∗

[
D−1

N

(
Π(P \PN ) + e−C′NM2ϵ′2

N

)
;A
]
.

(B.43)

By conditions ii and iii, this last term→ 0 for large enoughM . Finally, writeMη′
N =

(
M
√
C
)
ηN

to get the result in terms of ηN .

To work with sieves without restrictions on transition probabilities to b ∈ B we need the follow-

ing technical lemma.

Lemma B.6.15. Assume for positive numbers (αk,b)L>0,k∈Bo
L,b∈B̃ , supL>0,k∈Bo

L,b∈B̃ αk,b < ∞

and infL>0,k∈Bo
L,b∈B̃ αk,b > 0. Consider independentDirichlet(αk,b)b∈B̃ priors on each simplex of

∆Bo
L

B̃ indexed by k ∈ Bo
L. Call the joint distribution Π. Then, for someC, ϵ > 0, for all ν > ν ′ small,
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L,

log
Π(S(ν ′, ν, L))
Π(S(0, ν, L))

≥ −C|B|Lν ′ϵ

.

Proof. Define α∧ ≤ infL,k,b αk,b. LetZk ∼ Dirichlet(αk,b)b for some k. As a property of the

Dirichlet distribution,

(
Zk,$,

∑
b′∈B Zk,b′∑
b′∈B̃ Zk,b′

)
⊥⊥
(

Zk,b′∑
b′∈B Zk,b′

)
b′∈B

Call this later variable Yk, and note Yk ∼ Dirichlet(αk,b)b∈B. Now for any b ∈ B, v < ν, since

(Yk,b,
∑

b′ 6=b Yb′) ∼ Beta(αk,b,
∑

b′ 6=b αk,b′),

P (Yk,b < ν ′/(1− v)) =
Γ(
∑

b′∈B̃ αk,b′)
Γ(αk,b)Γ(

∑
b′ 6=b αk,b′)

∫ ν′/(1−v)

0
x

αk,b−1
b (1− xb)

(
∑

b′ 6=b
αk,b′ )−1

=O(1)
∫ ν′/(1−v)

0
x

αk,b−1
b

=O((ν ′/(1− v))αk,b′ ).
(B.44)

Thus, using a union bound, for someC , regardless of the choice of k,

P (Yk,b < ν ′/(1− v) for some b ∈ B) ≤ C(ν ′/(1− v))α∧
.
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Thus, for someC ′ > 0, calling Fk,$ the density ofZk,b, noting P (Zk,$ > ν) = O(1) for small ν,

P (Zk,b < ν ′ for some b ∈ B |Zk,$ > ν) ≲
∫ 1

ν
P (Yk,b < ν ′/(1− v) for some b ∈ B)dFk,$(v)

≲ν ′α∧
∫ 1

ν
dvvαk,$−1(1− v)

∑
b∈B αk,b−1−α∧

.

(B.45)

The integral is equal to the probability of a (Beta)(αk,$,
∑

b∈B αk,b − α∧) distribution being

greater than ν and is thusO(1). For small enough ν, ν ′, for someC ′ > 0,

log
Π(S(ν ′, ν, L))
Π(S(0, ν, L))

=
∏

k∈Bo
L

logP (Zk,b ≥ ν ′ for all b ∈ B |Zk,$ > ν)

≥ log
(
(1− Cν ′α∧)|Bo

L|
)

≥− C ′|Bo
L|ν ′α∧

≥− C ′′|B|Lν ′α∧
.

(B.46)

We can now prove the main result, establishing posterior consistency and the posterior conver-

gence rate. We show that the prior in condition B.6.9 satisfies the conditions of B.6.14. In particular,

we use sieves S to define the effectively parametric subsetPN of the infinite dimensional space of

probability measuresP , and then condition B.6.9 controls the prior probability over theBηN and

PN .

Theorem B.6.16. Assume p∗ is sub-exponential and thus we can choose a prior as in condition B.6.9.
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For any large enoughM ,

Π(B(p∗,MN− 1
2 (1−(c1+c2)))|X1, . . . , XN )→ 1

in probability whereB(p∗, δ) is a Hellinger ball of radius δ centered at p∗.

Proof. The proof will proceed by checking the conditions of theorem B.6.14. First define a mono-

tonic sequence (ν ′
m)∞

m=1 with log ν
′−1
N ∼ Nω , ξN = ξ(νN , νN , LN ),P the set of distributions

on S, and

PN = {pv | v ∈ ∪N
n=1S(ν ′

n, νn, Ln)} = {pv | v ∈ S(ν ′
N , νN , LN )}.

Throughout we will use ηN = N− 1
2 (1−(c1+c2)) and so checking the conditions of theorem B.6.14

will demonstrate a posterior concentration rate of 1
2(1− (c1 + c2)).

First we will check condition i. Define, for ζ ∈ NBo
LN

×B̃, ρN > 0,

ÔN (ζ) = {v ∈ S(ν ′
N , νN , LN )| ∀(k, b), (1 + ρN )ζk,bνb

N > vk,b ≥ (1 + ρN )ζk,b−1νb
N}

(where νb
N = ν ′

N if b 6= $ and equal to νN otherwise) so that ∪ζÔN (ζ) = S(ν ′
N , νN , LN ) (Fig.

B.3).

Note that for v1, v2 ∈ ÔN (ζ), kl(pv1 ||pv2) ≤ log(1+ρN )Ev1 |X| ≤ ρNν
−1
N the last inequality

as p(|X| > L||X| ≥ L) ≥ νN where the last inequality comes from p(|X| = L||X| ≥ L) ≥ νN

and a geometric sum (this is where a distinction between νN and ν ′
N is necessary). Defining d as the
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Hellinger metric,

d(pv1 , pv2) ≤ 1√
2
‖pv1 − pv2‖

1/2
1 ≤ kl(pv1 ||pv2)1/4 ≤ (ρNν

−1
N )1/4

so picking ρN = νN (ηN/2)4, for v1, v2 ∈ ÔN (ζ), d(pv1 , pv2) ≤ ηN/2. Call γb =

 log
(
(νb

N)−1
)

log(1+ρN ) + 1


and note (1 + ρN )γb−1νb

N = 1. Thus the number of choices of ζ ∈ NBo
LN

×B̃ that give non-empty

ÔN (ζ), is bounded above by
∏

b∈B̃

(
γb
)|Bo

LN
|
. Note also that since ρN → 0, γb ≲

log
(
(νb

N)−1
)

ρN
.

Now we can establish condition i of theorem B.6.14:

logN (ηN/2,SN , d) ≤ log#{ζ | ÔN (ζ) 6= ∅}

≤|Bo
LN
|
∑

b

log
(
γb
)

≲|B|LN
∑

b

(
log log

((
νb

N

)−1
)
− log(νN (ηN/2)4)

)

≲|B|LN

(
log(ν−1

N ) + log(N)
)

≲N c1+c2

≲Nη2
N .

(B.47)

Now we will demonstrate condition ii. Define, as in theorem B.6.14,

Bη ={p ∈M | kl(p∗||p) < η2,Var[log(p∗(X)/p(X))] < η2}

⊇{p ∈M | E log2(p∗(X)/p(X)) < η4 ∧ 1}
(B.48)
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since Var[log(p∗(X)/p(X))] ∨ kl(p∗||p)2 ≤ E log2(p∗(X)/p(X)).

FixN . First we will delineate a volume in S(νm, νm, Lm) for anym > 0 that is withinBηN . Us-

ing the definition of ξ, we can label a v∗
m ∈ S(νm, νm, Lm) such that E[log(p∗(X)/pv∗

m
(X))2] ≤

2ξm. Note that if there exists a v ∈ S(νm, νm, Lm) such that for some ρm > 0 and all k, b,

(1 + ρm) ≥ vk,b

v∗
m,k,b

≥ (1 + ρm)−1 then

E[log(p∗(X)/pv(X))2] ≤8ξm + 4E log2(pv∗
m

(X)/pv(X))

≤8ξm + 4 log2(1 + ρm)E|X|2.
(B.49)

Now pick, for large enoughm,

ρm =
√
η4

N − 8ξm

4E|X|2
≤ exp

√η4
N − 8ξm

4E|X|2

− 1

so that if (1 + ρm) ≥ vk,b

v∗
m,k,b

≥ (1 + ρm)−1 for all k, b, then pv ∈ Bηm .

Fixing k, the probability under a Dirichlet(αk,b)b distribution ofWm,k = {vk | (1 + ρm) ≥

vk,b

v∗
m,k,b

≥ (1 + ρm)−1 ∀ b} (depicted in Fig. B.6(A)) is, considering the case where v∗
m is on one of

the corners of the simplex {vk | vk,b ≥ νm}, at least

Vm,k =
(
C1ν

(
∑

b
(αb∧1−1))

m

)(
C2(νmρm)|B̃|−1

)

where the first term is a lower bound on the density and the second on the volume ofWm,k and

C1, C2 are constants depending on |B̃|. C1 > 0 as infk,b αk,b > 0. As well, one may check that
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the volume is minimized should v∗
m,k,b = νm for all but one b; in this case, the volume forms a

particular diamond-like shape with side-lengths scaled as νmρm and dimensionality |B̃| − 1 (Fig.

B.6(B)), (if v∗
m,k,b = 1 − (|B̃| − 1)νm, then the condition vk,b ≥ (1 + ρm)−1v∗

m,k,b ≳ ρm does

not affect theWm,k for largem as νm → 0) (Fig. B.6).

Now we will lower bound the probability ofBηN by the probability of the above defined volume

for a particularm,mN . Call δ = 1− 1−(c1+c2)
c3/2 > 0 and define

mN =


(
η4

N

16C

)−1/c3
 ≲ N1−δ

so that 8ξmN ≤ 1
2η

4
N for allm ≥ mN , andmN →∞. Now,

log(Π(BηN )) ≥ log

π(mN )
∏

k∈Bo
LmN

VmN ,k


≳ log(π(mN )) +

|Bo
LmN
| −

∑
k,b

αk,b ∧ 1

 log(ν−1
mN

)

− |Bo
LmN
|(|B̃| − 1) log(ρ−1

mN
)

≳ log(π(mN ))− |B|LmN log(ν−1
mN

)− |B|LmN log(ρ−1
mN

).

(B.50)

For the first term, due to condition B.6.9, (c1 + c2) > (1− δ)ω > (1− δ)(c1 + c2), so,

logπ(mN ) ∼ −mω
N ≳ −N (1−δ)ω ≳ −N c1+c2 .
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A

B

Figure B.6: (A) Example of a setWm,k (solid gray) where (1 + ρm) ≥ vk,b

v∗
m,k,b

≥ (1 + ρm)−1 ∀ b on∆B̃ for

a particulark andmwhen |B| = 3. (B) Depiction of minimum volume possible. The dashed region represents those

transition probabilities that have components less than νm.
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The second term has

|B|LmN log(ν−1
mN

) ≲ mN
(c1+c2) ≲ N (1−δ)(c1+c2).

Finally, for the third, note that since 8ξmN ≤ 1
2η

4
N ,

log(ρ−1
mN

) ≲ − log(η4
N − 8ξmN ) ≲ − log(η4

N ) ≲ − log(N).

Thus,

log(Π(BηN )) ≳ −N (1−δ)(1+ω)c2 ≳ −N (c1+c2) = −Nη2
N .

Finally, for condition iii, note

Π(P \PN ) = π(m > N) +
N∑

m=1
π(m)(1−Π(S(ν ′

N , νm, Lm) | S(0, νm, Lm))).

From lemma B.6.15, we have, forC,C ′, ϵ > 0, the second term is dominated by

N∑
m=1

π(m) log Π(S(0, νm, Lm))
Π(S(ν ′

N , νm, Lm))
≲

N∑
m=1
|B|Lmν ′ϵ

N

≲ν ′ϵ
NLN |B|LN

≲ exp(−2ϵCNω)

(B.51)

for someC > 0. On the other hand, since one may check that π(m + 1)/π(m) < 1/2 for allL,
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we have π(m > N) ≤ π(N).Thus,

logΠ(P \PN ) ≲ −Nω.

Nowwe may write, for any ϵ > 0, since ω > c1 + c2

log(logΠ(P \PN )e(1+ϵ)Nη2
N Π(BηN )−1) ≲ −Nω +N c1+c2 +N (1−δ)ω → −∞.

Use in practice

Theorem B.6.16 reveals that the choice of prior controls a kind of bias-variance tradeoff in the

model’s posterior. In particular, from condition B.6.9 we have

c3 > 2(1− (c1 + c2)) (B.52)

Decreasing the prior hyperparameters c1 and c2 decreases the width of the posterior distribution

(which plays the role of variance). However, reducing c1 and c2 forces down c3 (by the definition

of ξ), and this reduces the weight that the prior places on larger sieves that can match the data dis-

tribution better (i.e. sieves with lower ξ(ν, ν, L) values), consequently increasing the model’s bias.

When c1 and c2 become low enough, the bias becomes overwhelming, equation B.52 is violated,

and consistency is no longer guaranteed.
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In practice it is often sensible heuristically to set νm = 0. In the case, for instance, of short-read

sequencing data, there’s relatively little correlation between the letters of the read and where it termi-

nates. The probability of stopping is thus often similar across different kmers, even when compar-

ing among kmers of different length. As the posterior concentrates at a roughly constant stopping

probability, even a low one, νm quickly becomes irrelevant as it decays to zero exponentially. When

νm = 0, the prior simplifies: it can be written as a distribution over lags π(L) times independent

Dirichlet priors on eachML forL ∈ {1, 2, . . .}. The prior over lags takes the form

logπ({m |Lm = L}) ∼ −|B|
ω
c2

L
.

Since ω > c2, we may write ω
c2
as 1 + c for a small c > 0.

B.7 Toy models

In this section we describe in depth our simulation experiments.

B.7.1 Finite lag models

This subsection describes experiments conducted to study in practice the finite lag consistency re-

sults described in Sections B.3 and B.4, and includes details on the results presented in Section 2.2

and Figure 2.2.
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Setup

To simulate data, we used an ARmodel with parameters θ = (A,B) defined by the function,

fk(A,B) = softmax

(1− β∗)
L∑

l=1

∑
b′∈Bo

Ab,l,b′kl,b′ + β∗
L∑

l,l′=1

∑
b′,b′′∈Bo

Bb,l,l′,b′,b′′kl,b′kl′,b′′


b∈B̃

(B.53)

where Bo = B ∪ {∅} and kl,b is 1 if kl = b and 0 otherwise. The ARmodel thus takes the form of

a multi-output logistic regression, with β∗ controlling the contribution of the pairwise interaction

terms. In each independent simulation, rows of the matrixAwere sampled following,

(Ab,l,b′)b6=$ ∼ (5/L)(Categorical), A$,l,b′ = −1.5/L.

for each l, b′, where (Categorical) denotes a one-hot encoded sample from a Categorical distribu-

tion with uniform probabilities. The matrixB was generated similarly,

(Bb,l,l′,b′,b′′)b 6=$ ∼ (5/L2)(Categorical), B$,l,l′,b′,b′′ = −1.5/L2.

for each l, l′, b′, b′′. Simulations were repeated five times for each β∗ value. We setL = 5.

We then fit AR and BEARmodels that lack the pairwise terms. In particular, we optimizedA

alone, settingB = 0, i.e. θ = (A, 0). For the ARmodels, we trained θ using maximum likelihood,

and for the BEARmodels, we trained the h, θ hyperparameters using empirical Bayes. In both cases,

we trained without mini-batching, using 1000 steps of the Adam optimizer with a training rate of
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0.05138.

To approximate the KL divergence and total variation distance between the models and the data,

2,000 independent sequences were sampled from the data-generating distribution p∗ and used to

calculate averages of log (p∗(X)/p(X)) and 1
2 |1− p(X)/p∗(X)| respectively, where p is either

the maximum likelihood estimator (for the ARmodels) or the posterior predictive (for the BEAR

models, estimated using the maximum a posteriori value). (Note that the total variation distance is

equal to half theL1 distance since the set of sequences is countable.)

The parameterA is not identifiable, so to compare between the value ofA inferred by the mod-

els and the true data-generating value, we transformedA to a canonical representation. Define

Ãb,l,b′ = Ab,l,b′ −A$,l,b′ and define the canonical representation

Acan
b,l,b′ = Ãb,l,b′ − 1

|Bo|

∑
b′′

Ãb,l,b′′ − 1
L

∑
l′,b′′

Ãb,l′,b′′

 .

Proposition B.7.1. Two linear ARmatricesA,A′ define the same linear ARmodel of lagL if and

only ifAcan = A′can.

Proof. Define the vector space

V = {v ∈ RL×Bo | ∀i, j,
∑
b′

vi,b′ =
∑
b′

vj,b′}.

One hot encodings of sequences of lengthL are contained in V . As well, it can be seen that V is

spanned by the vectors (ei,b − ei,b′)1≤i≤L,b 6=b′∈Bo (where ei,b is the indicator of position i, b) and

365



the vector consisting of ones in each entry. This basis of V is made up of linear combinations of

one hot encodings of sequences of lengthL and thus the span of one hot encodings of sequences

of lengthL is V . The orthogonal complement of V is spanned by (ei − e1)1<i≤L where ei is 1 at

position j, b if j = i and 0 otherwise. The transformation

v 7→

vi,b −
1
|Bo|

∑
b′′

vi,b′′ − 1
L

∑
i′,b′′

vi′,b′′


1≤i≤L,b 6=b′∈Bo

preserves V and annihilates the orthogonal complement of V and is thus the orthogonal projection

onto V , PV .

Thanks to the softmax in Equation B.53, two linear ARmatricesA andA′ define the same linear

ARmodel if there is a constantC such that for all sequences k of lengthL and b ∈ B̃,

L∑
l=1

∑
b′∈Bo

Ab,l,b′kl,b′ =
L∑

l=1

∑
b′∈Bo

A′
b,l,b′kl,b′ + C.

This is equivalent to the condition

L∑
l=1

∑
b′∈Bo

Ãb,l,b′kl,b′ =
L∑

l=1

∑
b′∈Bo

Ã′
b,l,b′kl,b′

for all k, b and thus to the condition

PV Ãb = PV Ã
′
b

for all b.
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Figure B.7: Frobenius norm between the canonical representation (Section B.7.1) of the ARmodel parameters θ inferred
by fitting an ARmodel withmaximum likelihood and those inferred by fitting the BEARmodel with empirical Bayes, in the

well-specified (β∗ = 0) case. Thick lines show the average across five independent simulations (small lines). Note that

the differences between the twomodels are indistinguishable relative to the variation across datasets and the variation

as dataset size increases.

Results

We first fixedL at the same value as the simulation data, to study the effect of the structured prior

in the BEARmodel. Figure 2.2A shows the convergence in KL of each model as the dataset size

increases, and Figure B.8 the convergence in total variation distance. Figure 2.2B shows the con-

vergence of the hyperparameter h in the BEARmodel. In Figure B.7, we compare the parameter

A inferred with the ARmodel to the true data-generating value using the Frobenius norm of the

canonical representation of each; likewise for the parameterA inferred with the BEARmodel. In

this well-specified case, we see that the BEARmodel parameter estimate converges just as quickly as

the ARmodel.
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Well-specified Low misspecification High misspecification

A. Density estimation B. Parameter estimation

Figure B.8: As in Figure 2.2A, except using the total variation distance in place of the KL norm.

Figure B.9:Mean of the BEARmodel posterior over lags, as a function of dataset size. Thick lines show the average across

five independent simulations (thin lines).
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Next we considered inference ofL. We simulated data frommodels with differentL values

(L ∈ {3, 4, 5}) and β∗ = 0. We computed the expected value ofL under the posterior with a

uniform prior on lags from 1 to 8. Figure B.9 shows that the inferred lag converges to the true data-

generating value.

B.7.2 Infinite lag models

This subsection describes experiments conducted to study the infinite lag (nonparametric) consis-

tency results of Section B.6 in practice.

Setup

To generate from a distribution that was not a finite lag ARmodel, we chose the first letter in each

sequenceX uniformly from the alphabet B, then sampled the rest of the sequence following,

p(Xi = b|X1, . . . , Xi−1) ∝
i−1∑
l=1

l−2 ∑
b′∈Bo

Ab,l,b′Xi−l,b′ .

In each independent simulation, the parameterAwas sampled asAb,l,b′ ∼ Bernoulli(0.2) for each

l, b and b′ 6= $, and asAb,l,b′ ∼ (0.2)(Bernoulli(0.2)) for each l, b and b′ = $.

Following Section B.6.3, we set νm = 0 and used the prior on lags π(L) ∝ exp(−4(1+c)L).

We used a Jeffreys prior (αk,b = 1/2 for all k, b) and took the maximum a posteriori value ofL

and v. We also considered the maximum likelihood estimator ofL (i.e. with the prior dropped).

To approximate the KL divergence and the total variation distance, we used 30,000 samples; the
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A B C

Figure B.10: Convergence in total variation (A) and KL (B) between data-generating distribution andmodel. Thick lines

indicate averages across five individual simulations (thin lines). (C)Maximum a posteriori estimator of the lagL in an

individual example simulation.

training procedure was otherwise the same as in Section B.7.1.

Results

We examined the convergence of the posterior predictive distribution of the BEARmodel for differ-

ent values of the prior hyperparameter c. In all cases we see convergence to p∗ in both total variation

and KL (Figure B.10AB). Decreasing c produces a longer-tailed prior, making the maximum a pos-

teriori value ofL diverge more quickly with dataset size (Figure B.10C). In this example, decreasing

c yields faster convergence to p∗. Using the maximum likelihood value ofL (equivalent to an im-

proper uniform prior) yields even faster convergence to p∗. As discussed in Section B.6.3, lower c

corresponds to larger c2, and so is expected to yield lower posterior variance but larger bias; in this

simulation, the reduction in bias clearly contributes more to accurate density estimation. This may

be because the data-generating distribution is close enough to a finite-lag Markov model that the

asymptotics of the BEARmodel behave similarly to the finite-lag case.
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B.7.3 Hypothesis testing

This subsection describes experiments conducted to study the hypothesis testing consistency results

of Section B.5 in practice.

Setup

We used the same setup as in Section B.7.1, including the same training and divergence estimation

procedures, and sampled datasets from a linear ARmodel with different values of β∗.

In the goodness-of-fit test, we set p̃ (the model we aimed to test) to a linear ARmodel with the

true, data-generating value of the parameterA but β∗ = 0. We embedded the same linear model,

with the same value ofA and β∗, in the BEARmodel to compute a Bayes factor. Here we set h =

10−3, and fixedL at the data-generating value,L = 5.

In the two-sample test, instead of comparing to p̃ directly, we compared to samples drawn from

p̃. Here we used a Jeffreys prior rather than embed a more complex ARmodel. We explored both

fixingL = 5 and using a truncated uniform prior π(L) = 1/8 forL from 1 to 8 (to evaluate both

forms of the consistency results in Section B.5).

Results

We first examined the consistency of the goodness-of-fit test, using the Bayes factor

BF = p((Xn)N
n=1)/p̃((Xn)N

n=1)
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Figure B.11: (A) Log Bayes factor for the BEAR goodness-of-fit test. (B) Log Bayes factor as a function of the hyperpa-

rameterh, with peaks identified by red points. In both subfigures, thick lines are averages across five simulations (thin
lines).
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Figure B.12: (A) Log Bayes factor for the BEAR two-sample test, using fixedL. (B) Log Bayes factor for the BEAR two-
sample test, marginalizing over a truncated prior onL. In both subfigures, thick lines are averages across five simulations
(thin lines). Dataset size is the size of each individual dataset that the two-sample test compares, not their pooled size.
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which compares the probability of the data under the BEARmodel to the probability under the

model of interest p̃. Figure B.11A shows the Bayes factor diverge to+∞when the data does not

match the model (β∗ > 0), but diverge to−∞when the data does match the model (β∗ = 0).

We also explored the Bayes factor as function of h, holding the amount of data fixed atN = 2500

(Figure B.11B). In the limit h → 0, the BEARmodel reduces to its embedded ARmodel p̃, and so

the Bayes factor converges to 0. On the other hand, in the limit h → ∞, the BEARmodel becomes

diffuse and the Bayes factor diverges to negative infinity (accepting the null hypothesis). Intermedi-

ate values of h in effect “center” the test at the model p̃we aim to evaluate, increasing its power to

detect differences between the data and the model21.

We next examined the consistency of the two-sample test, using the Bayes factor

bf = p((Xn)N
n=1)p((X ′

n)N ′
n=1)/p((Xn)N

n=1, (X ′
n)N ′

n=1),

which compares the probability of the two samples being drawn from separate distributions to the

probability of their being drawn from the same distribution. Both when using the Bayes factor com-

puted with fixed lagL = 5, and when using the Bayes factor computed by marginalizing over a

truncated uniform prior onL, we find consistency, with the Bayes factor diverging to+∞when

β∗ > 0 and to−∞when β∗ = 0 (Figure B.12).

B.8 Scalable inference

In this section we describe how BEARmodels were trained at large scale on real data.
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B.8.1 Stochastic gradient estimates

Let S be a set of lengthL kmers k in B̂L chosen uniformly at random (a minibatch). Then, we can

form an unbiased stochastic gradient estimate of the marginal likelihood as

∇h,θ log p(X1:n|L, h, θ) ≈
|B̂L|
|S|

∑
k∈S
∇h,θ log

[Γ(
∑

b
1
hfkb(θ))∏

b Γ( 1
hfkb(θ))

∏
b Γ( 1

hfkb(θ) + #(k, b))
Γ(
∑

b
1
hfkb(θ) + #(k, b))

]
.

Note also that it is straightforward to parallelize the training algorithm by sending individual mini-

batches to individual processors at each step, then compiling the results.

B.8.2 Extracting summary statistics

KMC counts kmers in large sequence datasets, outputting a list of kmers k and counts#k that is

typically too large to fit in memory. However, our inference procedure requires full count vectors

#(k, ·). We take advantage of the lexicographical ordering of KMC’s output to merge kmer counts

into count vectors in a (single pass) streaming algorithm. We also take advantage of the lexicographi-

cal ordering to construct count vectors#(k, ·) for all lagsL given just KMC’s output for the largest

lagL, thus reducing the number of times KMC needs to be run; this too is done using a single pass

streaming algorithm. In order to quickly evaluate models by heldout marginal likelihood, it is con-

venient to store together the counts#(k, ·) associated with both the training and testing datasets.

We accomplish this by merging the KMC output for different datasets as part of the same single pass

streaming algorithm. This dataset merging is also useful in training the reference-based models pro-
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posed in Section B.10.1, and we merge reference genome counts with sequencing dataset counts in

the same way.

B.8.3 Code availability

Code for implementing BEARmodels and documentation (including a tutorial for getting started

and reproducing basic results) are available at https://github.com/debbiemarkslab/BEAR.

B.9 Datasets

Here we briefly describe each data type and dataset used in evaluating BEARmodels, along with

some motivation for each. NCBI accession numbers and links for each dataset can be found in

the supplementary table, available with the published paper12. Dataset sizes are listed in Table B.1.

All data is publicly available for research use. Patient data was anonymized by the creators of each

dataset, and further details on ethical oversight and patient consent can be found in the cited links

and papers.

B.9.1 Whole genome sequencing

Whole genome sequencing is a standard technique for measuring genome sequences. It is often the

starting point for running a genome assembly algorithm or variant caller, which aims to infer (non-

probabilistically) the underlying genome from the read data. Directly modeling sequencing reads

can be interesting, however, since (a) there are typically portions of the genome that are difficult

to reliably assemble, such as centromeres and telomeres, (b) there may not be enough data to reli-
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Table B.1: Dataset sizes In nucleotides (nt). Dataset abbreviations as in Table 2.1.

Dataset Total nt Max. sequence length (nt)

YSD1 151,691,700 150
A. th. 1 3,238,613,507 100
A. th. 2 2,485,960,312 100
A. th. 3 6,831,756,793 100

PBMC 34,935,800,234 91
HL 24,185,778,348 91
GBM 21,506,001,361 65

HC 2,283,930,547 202
CD 1,052,405,190 202
UC 956,179,237 202

Bact. 1,388,421,381 6,358,077

ably detect variants via standard variant callers or assembly, and (c) although the experiment may be

directed towards a particular organism’s genome other DNAmay still be present.

• YSD1This is a bacteriophage found in the waterways of the United Kingdom which infects

Salmonella. It was chosen as an example of a relatively small genome sequencing experiment

(phage genomes are short). The sequencing experiment was reported in Dunstan et al. 66 .

• A. th. Arabidopsis thaliana is a small flowering plant, used as a model organism in plant

research. Structural variants are extremely complicated in plants, making traditional variant-

calling methods challenging, and kmer-based analysis approaches are of considerable ongo-

ing interest in the literature (see e.g. Voichek &Weigel 277). The datasets are from the 1001

Genomes Consortium, https://1001genomes.org/2.
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B.9.2 Single cell RNA sequencing

Single cell RNA sequencing is an increasingly ubiquitous technique for characterizing the tran-

scriptional state of cells. It is used to discover new cell types, track development and disease, as a

readout in cellular engineering efforts, and more. Most analysis techniques coarse-grain the data by

just counting transcripts or isoforms. Statistical modeling of reads at the nucleotide level may lead to

new insight into the joint distribution of sequences and their expression levels, accounting for such

phenomena as somatic variation and RNA editing. Single cell RNA sequencing is increasingly used

as a method for understanding tumors and their microenvironment; cancer involves both genome

mutations as well as transcriptional changes.

• PBMC Samples of peripheral blood mononuclear cells are easy to collect from humans, mak-

ing this a standard type of single cell RNA sequencing dataset. These cells were taken from a

healthy donor. The dataset is from 10x Genomics, using its v3 technology.

• HLThese cells come from a human dissociated lymph node tumor, from a 19-year-old male

Hodgkin’s lymphoma patient. The dataset is from 10x Genomics, using its v3 technology.

• GBMThese cells were taken from a patient with glioblastoma, the most common primary

brain cancer in adults, and include both tumor and peripheral cells. The dataset was reported

in47 and uses a distinct technology from 10x Genomics methods.
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B.9.3 Metagenomics

Metagenomics is an increasingly ubiquitous technique for characterizing microbiomes, including

human and environmental microbiomes. Analysis often proceeds by local assembly, annotation of

genes or taxa, etc. Statistical modeling of reads at the nucleotide level avoids this coarse graining and

can enable detection and analysis of changes in the microbiome outside known genomic elements.

All three of the metagenomics datasets analyzed in the prediction experiments are from161, a

study of inflammatory bowel disease (IBD) as part of the Integrative HumanMicrobiome Project,

and were taken from stool samples. IBD affects more than 3.5 million people worldwide.

• HCThis dataset was collected from a control patient without IBD.

• CDThis dataset was collected from a patient with Crohn’s disease, a form of IBD involving

relapsing and remitting inflammation of the gastrointestinal tract.

• UCThis dataset was collected from a patient with ulcerative colitis, a form of IBD involving

relapsing and remitting inflammation of the colon.

We also examined metagenomics datasets from a study of kidney transplants229. Viral transmis-

sion from donor to recipient has been associated with complications and increases the risk of allo-

graft failure. Schreiber et al. 229 performed metagenomic sequencing on patient urine samples be-

fore and after transplant to assess viral transmission. Further description of this dataset can be found

in Section B.13.
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B.9.4 Full assembled genomes

Comparisons between distant species are challenging due to complex and large scale genomic changes

over evolutionary time. However, generative probabilistic models of protein sequences separated by

billions of years of evolution has yielded direct insight into their functional constraints, as well as

improved understanding of the large scale evolution of life on earth110,215. As a first step towards

extending these ideas to whole genomes, we analyzed diverse bacterial genomes from across the tree

of life.

• Bact.We examined reference bacterial genomes available in RefSeq190. Genomes were se-

lected to be taxonomically diverse, representing different genera and families from across the

kingdom of Bacteria; the NCBI accessions are listed in supplementary table in the publica-

tion.

B.10 Prediction experiments details

Here we provide details on the results reported in the Predicting sequences andMeasuring mis-

specification subsections of the results (Section 2.6).

B.10.1 Model architectures

• LinearThe linear model is the same as that used in the toy experiments,

fk(A) = softmax

 L∑
l=1

∑
b′∈Bo

Ab,l,b′kl,b′


b∈B̃

. (B.54)
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• CNNWe use a four layer convolutional neural network with the architecture: input 7→

convolution 7→ elu 7→ elu 7→ softmax 7→ output, where the convolution is one-

dimensional and the elu layers are exponential linear units. Layer normalization was used

before each of the elu nonlinearities14. Exact details on the model architecture can be found

in the supplementary code (Section B.8.3, function make_ar_func_cnn in ar_funcs.py).

• Reference-based Biologists often make use of a reference genome – a canonical example

sequence that is intended to be representative of a species – in analyzing genome sequencing

data; reference transcriptomes are used similarly in RNA sequencing analysis, etc.. Reads are

aligned to the reference in order to infer the portion of the underlying genome or transcrip-

tome that the read originated from. We built on this basic idea to design an ARmodel that

uses a reference sequence to make predictions. In particular, let#ref(k, b) denote the num-

ber of times the lengthL + 1 kmer (k, b) occurs in the reference sequence(s). One way to

form a prediction is by normalizing these counts for each lag, i.e.

fk,b = #ref(k, b)/
∑

b′ #ref(k, b′). We go a step further by (1) accounting for possible

mutational or sequencing noise using a Jukes-Cantor mutation model, and (2) accounting

for short reads by learning the stop symbol probability. Our complete model is

fk,b(ν, τ) = (1− ν)
[
e−τ #ref(k, b)∑

b′ 6=$ #ref(k, b′)
+ (1− e−τ ) 1

|B|

]
+ νI(b = $) (B.55)

where τ ∈ [0,∞) is the (scalar) Jukes-Cantor time parameter, ν ∈ [0, 1], and I(·) is the

indicator function that takes value 1 when the expression is true and 0 otherwise.
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The reference sequences for each dataset are listed in the supplementary table available with

the publication. In analyzing human single cell RNAseq data we pooled multiple reference

transcriptomes. We included the reverse complement of each sequence as well as the original

sequence when constructing the reference kmer transition counts.

B.10.2 Training

The maximummarginal likelihood lagLwas chosen for the vanilla BEARmodel (with prior con-

centration parameter αk,b = 0.5 for all k, b). We found in general that the posterior under a

uniform prior on lags was strongly peaked at a particular lag (Figure B.15). All other models (both

BEAR and AR) were run with this same lag (that is, we did not integrate over all lags in the BEAR

model). Using a fixed lagL as a comparison point provides a controlled study of the effects of

switching from an ARmodel of transition probabilities to the BEARmodel’s AR-structured prior,

and choosingL based on the vanilla BEARmodel ensures that the comparison to the vanilla BEAR

model is conservative.

The kmer count summary statistics were shuffled once before training (in chunks, due to the

large size dataset size), and visited in the same order across epochs. Training was initialized only

once; preliminary experiments suggested that training was robust to changes in the random seed.

Gradient updates were computed in parallel across two GPUs, at double precision. The minibatch

size was 250,000. Gradients were accumulated across minibatches to reduce variance (that is, the

gradients frommultiple minibatches were added together), and optimization was performed using

Adam138. Models were trained to convergence. Detailed training hyperparameters are displayed in
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Table B.2. The CNNmodels used 30 filters of width 8, except in the case of YSD1 where the filter

width was reduced to 5 (for both BEAR and ARmodels); other neural network architecture hyper-

parameters are given in the supplementary code (function make_ar_func_cnn in ar_funcs.py).

Experiments were run on an internal cluster (Tesla K80, Tesla M40 and Tesla V100 GPUs).

B.10.3 Evaluation

Accuracy was evaluated based on the maximum likelihood prediction (in the case of ARmodels)

and the maximum a posteriori prediction (in the case of BEARmodels). Ties in prediction probabil-

ities were resolved uniformly at random.

The perplexity was calculated based on the heldout test dataset as

exp
[
− log p((Xn)Ntest

n=1)∑Ntest
n=1 |Xn|

]
(B.56)

where p((Xn)Ntest
n=1) is the probability of the heldout data conditional on the maximum likelihood

parameter value (in the case of ARmodels) or the marginal probability of the heldout data under

the posterior predictive distribution (in the case of BEARmodels).

B.10.4 Further performance results

The maximummarginal likelihood lagL (under the vanilla BEARmodel) for each dataset is re-

ported in B.4. Interestingly, the optimal lags are intermediate between the large kmer lengths (e.g.

more than 30) often used for non-probabilistic assembly algorithms (e.g.238) and the small kmer
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Table B.2: Training parameters Train-test splits and Adam optimization parameters. Dataset abbreviations as in Table 2.1.

Accum. steps stands for accumulation steps, the number of steps gradients were accumulated over. Paired end reads

were treated as separate and split into train and test sets independently.

Dataset Train/test split Epochs Learning rate Accum. steps

YSD1 3:1 on reads 500 0.01 10
A. th. 1 3:1 on reads 15 0.02 100
A. th. 2 3:1 on reads 15 0.02 100
A. th. 3 3:1 on reads 3 0.02 100

PBMC 3:1 on reads 3 0.02 100
HL 3:1 on reads 5 0.02 100
GBM 55:23 on cells 4 0.02 100

HC 3:1 on reads 10 0.02 100
CD 3:1 on reads 10 0.02 100
UC 3:1 on reads 10 0.02 100

Bact. 500:166 on genomes 2000 0.01 1

lengths (e.g. less than 10) often used as features in clustering or classification algorithms (e.g.11).

The marginal likelihood was in general strongly peaked at a particular value (Figure B.15). Increas-

ing the lag generally led to slightly better performance in terms of both perplexity and accuracy for

the non-vanilla BEARmodels and the ARmodels, but (unsurprisingly) worse performance for the

vanilla BEARmodel; the increases in ARmodel performance were far from enough to make up the

difference with BEARmodels (Table B.5).

Plots of training loss versus wall clock time for an ARmodel and the corresponding BEAR

model (with the same fixed lagL) are shown in Figure B.13; the loss for each is normalized by the

minimum and maximum values to be comparable (the BEARmodel substantially outperforms the

ARmodel). The BEARmodel converges at least as fast as the ARmodel.
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Table B.3: Predictive accuracy.Whole genome sequencing data YSD1: A Salmonella phage. A. th.: Arabidopsis thaliana, a

plant (datasets represent different individuals). Single cell RNA sequencing data PBMC: peripheral bloodmononuclear

cells, taken from a healthy donor. HL: Hodgkin’s lymphoma tumor cells. GBM: glioblastoma tumor cells. Metagenomic

sequencing dataHC: healthy (non-CD and non-UC) controls. CD: Crohn’s disease. UC: ulcerative colitis. Full assembled

genomesBact.: Bacteria. ModelsVan: Vanilla (constant). Lin: Linear. CNN: convolutional neural network. Ref: reference

genome/transcriptomemodel (only applicable to datasets with a reference).

Dataset AR Lin. AR CNN ARRef. BEAR Van. BEAR Lin. BEARCNN BEARRef.

YSD1 33.73% 35.86% 90.8% 94.69% 94.75% 94.75% 94.71%
A. th. 1 35.47% 35.59% 53.81% 86.03% 86.32% 86.34% 86.50%
A. th. 2 35.32% 35.61% 70.41% 85.36% 85.71% 85.77% 85.66%
A. th. 3 34.94% 35.41% 60.94% 76.46% 78.51% 78.52% 77.13%

PBMC 34.36% 34.76% 67.39% 87.83% 88.16% 88.16% 87.99%
HL 34.67% 35.59% 67.17% 87.68% 87.96% 87.96% 87.82%
GBM 30.71% 30.9% 61.3% 78.99% 80.44% 80.42% 81.43%

HC 32.98% 33.54% – 83.86% 85.03% 85.06% –
CD 32.13% 32.32% – 81.72% 83.30% 83.32% –
UC 32.27% 32.23% – 82.71% 84.26% 84.27% –

Bact. 33.89% 34.78% - 35.27% 35.28% 35.28% -

To evaluate performance as a function of dataset size, we subsampled reads uniformly at random

without replacement from the YSD1 dataset, and retrained the models on the smaller datasets (Fig-

ure B.14). The original dataset had∼ 1000× coverage of the bacteriophage genome, meaning that

on average 1000 reads were observed overlapping each position in the genome. Note that the vanilla

BEARmodel performance falls off substantially relative to the BEARmodel below∼ 3× coverage

(in the case of the reference model) (Figure B.14BD)
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Table B.4: Maximummarginal likelihood lagL.Maximummarginal likelihood lagL for the vanilla BEARmodel. Dataset

abbreviations as in Table 2.1.

Dataset L

YSD1 13
A. th. 1 17
A. th. 2 17
A. th. 3 18

PBMC 18
HL 17
GBM 17

HC 16
CD 16
UC 16

Bact. 9

Table B.5: Performancewith increasing lagL. The symbol † indicates themaximummarginal likelihood lagL for the

vanilla BEARmodel. Dataset abbreviations as in Table 2.1.

Perplexity
Dataset Lag AR Lin. AR CNN ARRef. BEAR Van. BEAR Lin. BEARCNN BEARRef.

YSD1 13† 3.953 3.873 1.266 1.165 1.144 1.144 1.145
YSD1 20 3.937 3.855 1.352 1.177 1.138 1.138 1.138

Bact. 9† 3.831 3.794 - 3.774 3.774 3.774 -
Bact. 12 3.807 3.772 - 3.776 3.741 3.738 -

Accuracy
Dataset Lag AR Lin. AR CNN ARRef. BEAR Van. BEAR Lin. BEARCNN BEARRef.

YSD1 13† 33.73% 35.86% 90.8% 94.69% 94.75% 94.75% 94.71%
YSD1 20 34.19% 36.3% 87.21% 94.88% 94.97% 94.98% 94.91%

Bact. 9† 33.89% 34.78% - 35.27% 35.28% 35.28% –
Bact. 12 34.42% 35.13% – 35.54% 35.86% 35.93% –
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Figure B.13: Relative loss (normalized to be between 0 and 1 based onminimum andmaximum values) as a function of

wall time for a CNNARmodel versus the corresponding BEARmodel on the YSD1 dataset (L = 20).

B.11 Generation details

Here we provide details on the results reported in theGenerating samples subsection of the results

(Section 2.6).

The CNN BEARmodel was trained on the full (combined train/test data) Arabidopsis thaliana

1 dataset, withL = 17, using identical training parameters as in the performance experiments

(Table B.2). 50 bases were generated on the end of reads using the maximum a posteriori value of v,

and conditional on a stop symbol not occurring, i.e. following the distribution

pextr(Xi = b|k = (Xi−L, ..., Xi−1)) = fk,b(θ)/h+ #(k, b)∑
b′ 6=$ fk,b′(θ)/h+ #(k, b′)

(B.57)

for b 6= $ and p(Xi = $|k) = 0, where recall#(k, b) is the number of times b is seen succeeding

k in the data, and θ and h are the learned hyperparameters. The values of#(k, b) are retrieved from
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Figure B.14: Perplexity (AB) and accuracy (CD) of AR and BEARmodels as a function of total dataset size, measured in

terms of coverage (coverage is the expected number of reads from each position in the genome; it is linearly proportional

to the total number of reads). Subfigures A and C show results for the the linear ARmodel (and its BEAR embedding), and

B andD for the reference-based ARmodel (and its BEAR embedding). The lag was held fixed in all cases.
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A B

C D

Figure B.15:Marginal log likelihood under the vanilla BEARmodel as a function of lagL for the bacteriophage YSD1 (A),

glioblastomaGBM (B), control metagenomic HC (C) and bacteria Bact. (D) datasets. Note the large scale (upper left) of

each plot.
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the dataset efficiently using the Jellyfish kmer indexing package166. 50 extrapolations each of length

50 were sampled without replacement using the stochastic beam search method proposed by Kool

et al. 144 .

We performed local assembly using SPAdes, starting from the last 17 bases of the read, and recorded

the portion of each scaffold returned by SPAdes that extended in the direction of extrapolation. We

used the ----careful flag in SPAdes, following Voichek &Weigel 277 .

The colors in Figure 2.3A correspond to unique paths through the 17-mer de Bruijn graph. Fig-

ure 2.3B plots the per nucleotide perplexity of the sampled extrapolations, i.e.

exp
(
−
∑

b

pextr(b|k = (Xn,i−L, ..., Xn,i−1)) log pextr(b|k = (Xn,i−L, ..., Xn,i−1))
)

where n indexes the sampled extrapolation and i the position in the sample.

B.12 Visualization details

Here we provide details on the results reported in theVisualizing data subsection of the results

(Section 2.6).

B.12.1 Latent representation model

As a local latent representation model, we used a categorical probabilistic principal component anal-

ysis (pPCA) model, with automatic relevance determination259,147. We trained on kmers (kt, bt) of
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lengthL+ 1 = 18 and usedD = 20 latent dimensions. The complete model was,

κd ∼ Exponential for d ∈ {1, . . . , D}

Wd ∼ Normal(0L+1,|B|, 1/κd) for d ∈ {1, . . . , D}

W0 ∼ Normal(0L+1,|B|, 1)

zt ∼ Normal(0D, 1)

(kt, bt) ∼ Categorical (softmax(W · zt +W0))

(B.58)

where t ∈ {1, . . . , T} runs over all lengthL + 1 kmers in the dataset, 0L+1,|B| is anL + 1 × |B|

matrix of zeros, and 0D is a lengthD vector of zeros. Here the local variable zt provides a representa-

tion associated with the kmer (kt, bt), the global parameterW controls the factors of variation, and

κ determines the relevance of each factor through the variance of the prior onW . We trained this

latent representation model, and embedded it into a BEARmodel, in three stages.

Stage 1 First, we performed stochastic variational inference to learn the parameters of the

model139,213,147. In particular, we used normally distributed mean field posterior approximations

q(W ), q(z|k, b), and a deterministic approximation to κ, and optimized the evidence lower bound

(ELBO)

EW ∼q(W )

[∑
k,b

#(k, b)
(
Ez∼q(z|k,b) log p (k, b|W, z)− kl(q(z|k, b)||p(z))

)

+ log p (W |κ)− kl(q(W )||p(W ))
]

+ log p(κ)

(B.59)
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where#(k, b) denotes the number of kmers (k, b) seen in the data and the sum runs over all k ∈

Bo
L, b ∈ B̃. For the local latent variable z, we use a guide (recognition network) q(z|k, b) =

Normal(µ(k, b), σ(k, b))where µ(k, b) and σ(k, b) are each small CNNs. Gradients with respect

to the variational approximation parameters were taken using automatic differentiation and the

reparameterization trick (elliptical standardization), with one sample for the Monte Carlo approxi-

mation at each step.

Stage 2Once the pPCAmodel was trained, we approximated its conditional distribution. In

particular, we obtained a variational approximation to p(z|k, (kt, bt)T
t=1), namely q(z|k), by opti-

mizing the evidence lower bound

EW ∼q(W )

[∑
k

#k
(
Ez∼q(z|k) log p (k|W, z)− kl(q(z|k)||p(z))

)]
. (B.60)

Note that q(W )was held fixed, at the value learned in stage 1. q(z|k)was parameterized analo-

gously to q(z|k, b). Now we can approximate the conditional distribution of the pPCAmodel as

p(b|k) ≈ EW ∼q(W )Ez∼q(z|k)p(b|W, z).

This defines an ARmodel.

Stage 3 Finally, we embedded the conditional pPCAARmodel into a BEARmodel and op-

timized h via empirical Bayes (note that here we are not using empirical Bayes to train the BEAR

model’s embedded AR parameters θ, but instead embedding a pretrained ARmodel). Since the
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variational distribution q(W )was highly concentrated at a single point, we used a computationally

convenient approximation to the marginal likelihood of the BEARmodel, moving the expectation

over the global parameters outside the log marginal likelihood:

EW ∼q(W )

[∑
k

logDirichletCategorical
(

#(k, ·)|1
h

Ez∼q(z|k)p(b|W, z)
)]

where DirichletCategorical (#(k, ·)|αk) denotes the probability of the count vector#(k, ·) under

a Dirichlet-Categorical distribution with concentration vector αk.

Training protocol and hyperparametersThe entire variational inference and embedding pro-

cedure was implemented using the Edward2263 probabilistic programming language with a Tensor-

Flow4 back-end. We applied the method to the Hodgkin’s lymphoma single cell RNAseq described

in section B.9, using the same train/test split as for the performance results in Section B.10. Opti-

mization was performed with Adam with a batch size of 125, 000. Gradients were accumulated over

200 steps. The three stages of training described above were repeated iteratively four times until each

converged. In each iteration, the first two stages were trained for 5 epochs, and we used a decaying

learning rate across iterations {0.02, 0.02, 0.01, 0.005}; the third stage was trained for 100 batches

with a constant learning rate of 0.1 across all iterations.

Inference resultsAt the end of training, the conditional pPCAARmodel had a perplexity of

4.28 on heldout data, while the BEARmodel had a perplexity of 1.39.
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B.12.2 Visualization and annotation

We next sought to understand in greater depth what the BEARmodel had learned in the lymphoma

dataset.

Reference modelWe first aimed to understand how the model’s predictions differed from pre-

dictions based on the reference transcriptome. On the full dataset (combined train/test) we com-

pared the log probability of each read under the pPCA BEARmodel to the log probability of each

read under a vanilla BEARmodel trained on the reference transcriptome (Figure 2.3C; see the sup-

plementary table available with the publication for details on the reference transcriptome). We

found a substantial disparity between the two model’s predictions, with a number of reads having

high probability under the BEARmodel but low probability according to the reference model.

Alignments Single cell RNAseq analysis often begins by aligning reads to the reference transcrip-

tome; reads that do not align are typically discarded from further analysis. We performed alignments

on the read dataset with hisat2137 using parameters --reorder --no-hd --n-ceil L,0,0.001

--no-sq -k 1 -p 4 and with the default hisat2Homo sapiensGRCh38 genome index with tran-

scripts and SNPs, available at https://genome-idx.s3.amazonaws.com/hisat/grch38_

snptran.tar.gz. Whether or not each read was successfully aligned is indicated in Figure 2.3C.

We observe that many of the reads with low probability under both the pPCA BEARmodel and the

reference model are unaligned. We also observed a cluster with a large number of unaligned reads,

with high probability under the pPCA BEARmodel and relatively low probability under the ref-

erence model. We focused on a subset of this cluster with particularly high probabilities under the
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Figure B.16: tSNE visualization of a cluster of single cell RNAseq reads colored by (A) latent embedding distance to the

mitochondrial reference genome and (B) latent embedding distance from the sequencing adapter.

pPCA BEARmodel for follow-up visualization (black box in Figure 2.3C).

VisualizationThe pPCAmodel provides a latent embedding of kmers in aD = 20 dimen-

sional continuous space. We sought to visualize the representation of each sequence’s kmers in a low

dimensional space. To compare two sequencesX,X ′, we defined a measure of dissimilarity,

inf
i,i′
kl(q(z|Xi−L:i)||q(z|X ′

i′−L:i′)) + kl(q(z|X ′
i′−L:i′)||q(z|Xi−L:i)).

where i > L and i′ > L index positions inX andX ′ respectively. This dissimilarity measure was

used to define a distance matrix over reads in the Hodgkin’s lymphoma dataset, which was passed to

tSNE267 to obtain a low-dimensional visualization (Figure 2.3D).

AnnotationObserving the clusters in Figure 2.3D, we sought to determine where the reads in

each cluster likely originated from, and, by implication, what the reference transcriptome model

had trouble explaining in the data. We started by using NCBI’s BLAST tool28 to search for likely

sources, and found hits against the mitochondrial genome and the transcript of the gene JUND,
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part of the AP-1 early response transcription factor. We found that the mitochondrial reads are

from a nonreference haplotype, which explains why the reference model gave them low probability.

The low likelihood of the JUND reads under the reference was due to a TG repeat region in the

3’ UTR; similar repeats are present in many variations in different transcripts, thus the particular

kmer-base transitions in this case become less likely. We also observed that many reads were chimeric,

consisting of fusions of sequences from various parts of the transcriptome with some portion of

the sequence CTGTCTCTTATACACATCTCTGAACGGGCTGGCAAGGCAGACCG. The

prefix CTGTCTCTTATACACATCT is a standard Illumina Nextera adapter sequence https:

//support-docs.illumina.com/SHARE/AdapterSeq/illumina-adapter-sequences.pdf,

and the remainder of the sequence is presumably part of the primer. The adapter is an experimental

artifact (presumably left in the read data due to inaccurate read trimming and quality control), and

so is not part of the reference human transcriptome.

We used the same dissimilarity measure as above to compare reads to the mitochondria refer-

ence genome and to the adapter sequence CTGTCTCTTATACACATCTCTGAACGGGCTG-

GCAAGGCAGACCG (Figure B.16). (The distance to each of these sequences was taken to be

the minimum of the distance to the forward and reverse complements.) Figure B.16, along with the

BLAST results for JUND, were the basis for the annotations in Figure 2.3D.
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B.13 Hypothesis tests details

Here we provide details on the results reported in theTesting hypotheses subsection of the results

(Section 2.6).

B.13.1 Kidney transplant metagenomics

The Schreiber et al. 229 data is available for public download, as detailed in the supplementary ta-

ble available with the publication. The read data was pre-sorted into viral and non-viral reads, but

we pooled each of these to reconstruct the full sequencing experiment. We compared the day zero

timepoint, i.e. before transplant, to the 4-6 week timepoint, i.e. after transplant, for each patient

for which samples from both were available (note this did not include all patients in the study). We

used the BEAR two-sample test, with the Jeffreys prior on v, and a truncated uniform prior over

lags 1 ≤ L ≤ 20. We cross referenced our two-sample test results with whether Schreiber et al. 229

determined there to be likely JC polyomavirus (JCPyV) transmission.

The results are shown in Table B.6, and suggest that JCPyV transmission is associated with an

overall shift in the patient microbiome at the sequence level. Patients indicated with an asterisk were

diagnosed as having JCPyV before receiving the transplant, and thus the determination of whether

the transplant transmitted JCPyV is less certain; for patient wdk036, phylogenetic analysis suggested

that the transplant did transmit JCPyV, while for jns976 phylogenetic analysis suggested that it

did not. Although the two-sample test results show close correlation with whether or not there

was transmission, we caveat them by noting that for very small lags the Bayes factor rejects the null
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Table B.6: BEAR two-sample test results, performed on patient metagenome samples from before and after kidney trans-

plant. Bayes factors that reject the null hypothesis are colored red, for easy comparison with whether or not JC poly-

omavirus (JCPyV) transmission was detected. Asterisks * indicate patients that were already infected with JCPyV before

the transplant occurred.

Patient id JCPyV transmission log Bayes factor

ume111 True 110407
vpi912 False 234361
iwv346 False -955252
pqg516 False -504784
tvy653 True 70223
bgk952 False -357457
wdk036* True 3152401
jns976* False -199006
aag951 True 242877
qfv506 False -155391
qnx429 True 369129
poo581 False -290382
xph346 False -254856
mek642 False -348120

hypothesis for all patients; the question of the most ”biologically relevant” prior on the lagL is an

open question.

B.13.2 A. thaliana hypothesis tests

Goodness-of-fit testWe trained reference-based ARmodels (described in Section B.10.1) via max-

imum likelihood on each A. thaliana sequencing dataset (the full dataset, with train/test subsets

combined). We usedL = 17 in the ARmodel for all three datasets (corresponding the vanilla

BEARmaximummarginal likelihood lag for two datasets, see Table B.4). We embedded each trained

ARmodel into a BEARmodel to construct a goodness-of-fit test (i.e. we used the learned f(θ)).
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We fixedL = 17 in the BEARmodel (i.e. a deterministic prior overL) to determine if there was

misspecification at the same resolution as the ARmodel. Figure 2.3E plots the Bayes factor as a func-

tion of h.

Two-sample testsWe simulated sequencing reads based on the A. thaliana reference genome

using the ART Illumina111 simulator with parameters -ss HS20 -p -l 100 -m 200 -s 10

-f 30. We simulated roughly the same number of reads as was in each real dataset. We examined

the Bayes factor BF(L) = p((Xn)N
n=1|L)p((X ′

n)N ′
n=1|L)/p((Xn)N

n=1, (X ′
n)N ′

n=1|L), computed

using vanilla BEARmodels for each term (Figure 2.3F). As control experiments, we cut each dataset

(and the simulated data) in half, and compared each of these halves to each other using the same two-

sample test; as shown by the dotted lines in Figure 2.3F, the two-sample test correctly accepts the

null hypothesis in these cases.

Individual log likelihood ratioTo understand in detail the differences between the real and

simulated data, we computed the conditional individual Bayes factor

log p(Xn|(Xn)N
n=1) − log p(Xn|(X ′

n)N ′
n=1)where (Xn)N

n=1 is the real data and (X ′
n)N ′

n=1 the

simulated data. We approximated the log likelihood using the maximum a posteriori value of the

transition parameter v under the vanilla BEARmodel, and fixedL = 17. Computing this likeli-

hood efficiently for each read requires retrieving counts#(k, ·) for each kmer k in the read, which

we accomplished using the Jellyfish kmer indexing package166. Histograms of the log likelihood

ratio of each readXn in two of the A. thaliana datasets are shown in Figure 2.3G (gray).

AnnotationObserving the distinct peaks in Figure 2.3G, we sought to determine where the

reads in each originated from. We discovered that many reads in the outlier peak from A. thaliana 1
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matched Bacillus cereus, using NCBI’s BLAST tool28. To annotate the clusters further, we aligned

the reads to reference sequences for centromeres, chloroplasts, and B. cereus, as well as (if the read

did not align to one of these) the reference A. thaliana genome (reference sequences are listed in the

supplementary table available with the publication). Alignments were performed using hisat2 on

paired end read data using parameters --reorder --no-hd --n-ceil L,0,0.001 --no-sq -k

1 -p 4 to facilitate subsequent analysis and remove reads with ambiguous bases. The alignment to

the centromere included the parameter --mp 1,1 to allow lower quality alignments. Histograms of

the set of reads that align to each reference are shown (stacked on top of one another, not overlayed)

in Figure 2.3G.
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Table C.1: Synthesis model notation.
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C.1 Model details and limitations

In this section we explain further the synthesis models proposed in Section 3.2.1, as well some of the

limitations of our mathematical idealization.

Physically, for the finite codon or nucleotide mixture models, codon diversification happens dur-

ing chemical synthesis of oligos (DNA segments). DNA in each well (or isolated reaction volume)

is synthesized position by position, with mixtures of nucleotides or codons (trinucleotides) added

in defined ratios one at a time, such that a large number of different molecules is eventually con-

structed. Twist Bioscience’s combinatorial variant libraries, which can achieve arbitrary codon mix-
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tures, rely on proprietary technology; however, it produces analogous results264. For all of these

technologies, what we refer to as a “template” corresponds physically to a very large number of

molecules in an individual well, with independent nucleotide or codon probabilities at each site.

We assume that the number of molecules is effectively infinite in comparison toN1, such that we do

not need to account for sampling noise at this stage. We ignore the possibility of skipped positions,

where nucleotides or codons randomly fail to add to the growing oligos, a type of error that is some-

times of particular concern for trimer-based synthesis. We enforce the constraint that the number of

mixturesA is finite and small, since to the best of our knowledge commercially available technolo-

gies have this requirement, but it is not necessarily a fundamental technological constraint194.

Physically, for the enzymatic mutagenesis model, template oligos are synthesized deterministi-

cally, such that there is a large population of identical molecules in each well. Codon diversification

occurs only after assembly (i.e. after oligos from different wells are combined) and may take place

either in vitro or in vivo. We assume that there is an error correction mechanism after each round

of mutagenesis, such that each strand of each DNAmolecule has effectively gone through the same

number of rounds of mutagenesis; in some ePCR protocols error correction is not used, and so al-

ternative models may be more appropriate182,204. We also assume that the mutation probability

depends only on individual nucleotides, and not their sequence context, although empirically de-

pendencies on sequence context (especially the adjacent two nucleotides) can be found8. Finally, we

require that each template undergoes the same number of rounds of mutagenesis τ , with the same

enzyme and thus the same S. For smallM , it can be experimentally tractable in many cases to use

different τ , and even different S, for each template, in which case the model should be adjusted to
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make τ and S depend on the template.

Physically, assembly requires joining oligos together using e.g. Gibson assembly89. For the fixed

assembly model, the oligos corresponding to the kth template in each pool must be joined in an iso-

lated reaction, for all k ∈ {1, . . . ,K}; in combinatorial assembly, the sets of oligos corresponding

to each template in each pool are first mixed, and then oligos from these combined pools are joined.

Assembly requires short overhangs, sequences that closely match one another, at the ends of each

oligo that are to be joined. Our synthesis model ignores any restrictions that come from overhangs

needing to match, as well as variation in assembly probability that depend on overhang mismatch.

Our model also assumes full control over the relative concentration of templates,w. While this is

tractable for lowM , it may be more challenging for largeM , particularly if technologies like Drop-

synth are used for fixed assembly200.

C.2 Optimization details

C.2.1 Exact Solutions

As an example of a target sequence model which we can exactly match, consider a RegressMuE284,

which has been used for forecasting the evolution of influenza. Let B be a covariate vector (e.g. a

future time), letA be the regression coefficients, and letW be the latent alignment. The predictive

distribution p(x|B,W,A) can be written as Categorical(U), whereU is a matrix of independent

amino acid probabilities overL positions. We can exactly match this distribution with a synthesis

model usingM = 1 templates, fixed assembly and arbitrary codon mixtures.

404



We can also approximate the posterior predictive distribution. Let p(A|D) be the posterior distri-

bution over regression parameters given the training data. The posterior predictive distribution can

be approximated as
∑M

m=1
1

M p(x|B,W,Am)whereA1, . . . ,AM ∼ p(A|D) are posterior samples.

This distribution can be exactly matched by a stochastic synthesis model using fixed assembly with

w = ( 1
M , . . . , 1

M ) and arbitrary codon mixtures.

C.2.2 Stochastic EM

We used the online EM algorithm proposed by Cappé &Moulines 33 , modified to update using

minibatches instead of individual datapoints. Here we derive the algorithm for the stochastic synthe-

sis model (Equation 3.1). Without loss of generality, we focus on combinatorial assembly models;

the fixed assembly case can be obtained by settingK = 1. The local variable of the synthesis model

isZi, which we represent here as a one-hot encoding, i.e. Zi ∈ {0, 1}K×M . At iteration t of the

optimization algorithm, given the current parameter estimate θ(t) = (w(t), u(t), v(t), τ (t)), the

conditional expectation ofZi can be written as

rikm := Eq
θ(t) [Zikm|Xi] =

wk,m exp
(∑Lk

j=1 log(ukmj · T ) ·Xi(j+L̄k)
)

∑M
m′=1wk,m′ exp

(∑Lk
j=1 log(ukm′j · T ) ·Xi(j+L̄k)

) , (C.1)
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where L̄k =
∑

k′<k Lk. Now we can compute the conditional expectation of the mean log likeli-

hood as

Qθ(t)(X1, . . . , XN ; θ) := 1
N

Eq
θ(t) [log qθ(X1, . . . , XN , Z1, . . . , ZN )]

= 1
N

N∑
i=1

K∑
k=1

M∑
m=1

[ Lk∑
j=1

log(ukmj · T ) ·Xi(j+L̄k)rikm + logwkmrikm

]
.

(C.2)

In standard EM, we would optimize this function with respect to θ. However, this requires sum-

ming over the whole dataset at each step. To derive the stochastic EM algorithm, we rewriteQθ(t)

in terms of summary statistics of the data that can be estimated fromminibatches. In particular, let

S ⊆ {1, . . . , N} be a subset of the data, and define the summary statistics

s̄(1)(XS ; θ(t))kmj := 1
|S|

∑
i∈S

Xijrikm,

s̄(2)(XS ; θ(t))km := 1
|S|

∑
i∈S

rikm.

(C.3)

Now we can estimateQθ(t) as

Q̂(s̄; θ) :=
K∑

k=1

M∑
m=1

[ Lk∑
j=1

log(ukmj · T ) · s̄(1)
km(j+L̄k) + logwkms̄

(2)
km

]
. (C.4)
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The complete algorithm alternates between estimating summary statistics fromminibatches of data

S(t) drawn at each step and maximizing the estimated expected log likelihood Q̂θ(t) ,

ŝ(t+1) = ŝ(t) + γ(t+1)(s̄(XS(t) ; θ(t))− ŝ(t))

θ(t+1) = argmax
θ

Q̂(ŝ(t+1); θ)
(C.5)

where γ(t) is the step size. As suggested by Cappé &Moulines 33 , we set γ(t) = t−0.6. We also use

Polyak-Ruppert averaging, as suggested by Cappé &Moulines 33 , taking the mean of the summary

statistics ŝ(t) for the last half of training, i.e. ŝ∗ = 2
tmax

∑tmax
t=(tmax/2+1) ŝ

(t), and producing the final

parameter estimate θ̂∗ = argmaxθQ̂(ŝ∗; θ).

The maximization step θ(t+1) = argmax Q̂(ŝ(t); θ) can vary depending on the codon diversifica-

tion technology used. For all technologies, we have

w(t+1) = ŝ
(t+1)(2)
km . (C.6)

For arbitrary codon mixtures and finite codon mixtures, we can without loss of generality pick one

codon for each amino acid and the stop symbol, and work with template probabilities ũ directly

over amino acids, i.e. where ũk,m,j,d is the probability of amino acid d at position j of templatem

in pool k. Then, for arbitrary codon mixtures,

ũ
(t+1)
kmjd =

s̄
(t+1)(1)
km(j+L̄k)d∑21

d′=1 s̄
(t+1)(1)
km(j+L̄k)d′

. (C.7)
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For finite codon mixtures, let χ̃kmj be a one-hot encoding of the codon mixture used at position j

of templatem in pool k, such that χ̃kmj ∈ {0, 1}A. We work directly with mixtures defined over

amino acids, with ṽad the probability of amino acid d in mixture a. Thus ũkmj = χ̃kmj · ṽ. Then

we can use the coordinate-wise update

χ̃
(t+1)
kmj = argmaxa

21∑
d=1

log(ṽad)ŝ(t+1)(1)
km(j+L̄k)d

ṽ
(t+1)
ad =

∑K
k=1

∑M
m=1

∑Lk
j=1 ŝ

(t+1)(1)
km(j+L̄k)dχ̃

(t+1)
kmja∑21

d′=1
∑K

k=1
∑M

m=1
∑Lk

j=1 ŝ
(t+1)(1)
km(j+L̄k)d′χ̃

(t+1)
kmja

(C.8)

For finite nucleotide mixtures, we use χkmj1 to denote a one-hot encoding of the mixture used at

the first position of the codon at position j in templatem in pool k, i.e. χkmj1 ∈ {0, 1}A, and

likewise for χkmj2 and χkmj3. We update χ by optimizing over all three positions of each codon

jointly, enumerating all combinations of a1, a2 and a3,

χ
(t+1)
kmj = argmax

(a1,a2,a3)

21∑
d=1

log(
∑

b1,b2,b3

va1b1va2b2va3b3T(b1,b2,b3)d)s̄(t+1)(1)
km(j+L̄k)d. (C.9)

Once χ has been updated, we update v. This is harder, as there is no closed form solution. We

directly optimize Q̂with respect to v by taking gradients and applying 5 steps of the Adam opti-

mizer138 with a learning rate of 0.01 (that is, we take 5 steps of Adam for every 1 EM update). For

enzymatic mutagenesis, we can also apply Equation C.9 to update χ, replacing v with Sτ . To up-

date τ , we directly enumerate all values of Q̂ for τ ∈ {1, . . . , τmax} and choose the maximum.

Code implementing the stochastic EM algorithm for all of the proposed stochastic synthesis
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models is available in the Supplementary Material.

C.2.3 Choosing Ñ

Recall that our proposed black-box optimization procedure is to drawX1, . . . , XÑ ∼ p computa-

tionally and then maximize the synthesis model parameters,

θ̂Ñ := argmaxθ

Ñ∑
i=1

log qθ(Xi). (C.10)

In this section, we argue that Ñ should be chosen to be either equal toN1, or, ifN1 is too large to

be tractable computationally, Ñ should be as large as is tractable. In particular, we do not suggest

choosing Ñ to be larger thanN1, nor do we suggest regularizing θ as one would in a standard infer-

ence problem. The reason is that “overfitting” the synthesis model to the samplesX1, . . . , XÑ can

help rather than hurt.

To be more precise, consider the extreme case where qθ can exactly match the empirical distribu-

tion ofX1, . . . , XN1 ∼ p but cannot exactly match p itself. For example, this situation can occur

when using fixed assembly andM = N1, allowing each mixture component be a point mass. If we

use Ñ = N1, we find

qθ̂Ñ
(x) = 1

Ñ

Ñ∑
i=1

δXi(x) (C.11)

where δx′(x) is the Kronecker delta function at x′. In this case, variational synthesis is equivalent

to large-scale MC synthesis, and will produceN1 samples from p.* On the other hand, if we let

*Technically, variational synthesis in this case produces a sizeN1 bootstrap ofN1 samples from p, rather
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Ñ → ∞, we have θ̂Ñ → θ∗. In this case, variational synthesis will produceN1 samples from

qθ∗ 6= p. Thus, it can be preferable to use Ñ = N1 as compared to Ñ > N1, since using Ñ = N1

leads to synthesis ofN1 exact samples from p instead ofN1 samples from qθ∗ 6= p.

In practice, of course, qθ will rarely be able to exactly match the empirical distribution of samples

from p. Nonetheless, we expect using Ñ ≈ N1 to be useful, as in this case we avoid trying to match

qθ̂Ñ
to components of p that are too rare to occur in practice, and instead regularize qθ̂Ñ

towards the

empirical distribution of samples from p.

C.2.4 Variable length protein sequences

To handle variable length protein sequences, we treat everything past the stop codon as missing

data which does not contribute to the likelihood. That is, for a sequenceXi with a stop codon at

position j, we have qθ(Xi) = qθ(Xi,1:j).

C.3 Relatedwork details

C.3.1 DeCoDe

DeCoDe can be applied to datasets of fixed-length (or aligned) sequences,X ′
1, . . . , XN ′ , which

are assumed to be unique (i.e. X ′
i 6= X ′

i′ if i 6= i′). Consider the empirical distribution p(x) =

∑N ′
i=1 δX′

i
(x)where δx′(x) is the Kronecker delta. Take qθ to be a stochastic synthesis model using

finite nucleotide mixtures and fixed assembly, with θ = (w, u, v). Let supp(p) denote the support

than directly producingN1 samples from p. Although bootstrapping introduces some additional sampling
noise, we expect it is unlikely in practice to make using qθ̂Ñ

worse than using qθ∗ , since the bootstrap directly
approximates p. Section C.4.1 discusses this subtlety further.

410



of p, i.e. the set of all lengthL sequences with non-zero probability. Let ζ ∈ Z+ denote the maxi-

mum allowed support of qθ. Then, we can rewrite the DeCoDe objective (Section 2.2.2 in Shimko

et al. 234) in terms of the size of the intersection of supports of p and qθ,

θ∗ = argmax
θ:supp(qθ)≤ζ

|supp(p) ∩ supp(qθ)|. (C.12)

Note that the size of the intersection of supports does not correspond to a valid divergence between

p and qθ.

C.3.2 SCHEMA

RASPP73 is an algorithm for designing site-directed recombination or combinatorial assembly li-

braries based on a crystal structure and a dataset of homologous proteins from the same family. It

chooses a set of template lengthsL1, . . . , LK , whereLmin ≤ Lk ≤ Lmax for k ∈ {1, . . . ,K},

in order to minimize the SCHEMA score, roughly the number of structural contacts between po-

sitions of the protein generated by different template pools. In this section we give a heuristic argu-

ment connecting RASPP to variational synthesis, in the special case where RASPP finds a solution

with no structural contacts across regions covered by each pool.

Consider a target model p that consists of a Potts model learned from the same protein family

as the dataset of homologous proteins. In general, the Potts model will infer energetic interactions

only between positions of the alignment that are in structural contact168. Let L̃k denote the region

generated by template k, i.e. L̃1 = {1, . . . , L1}, L̃2 = {L1 + 1, . . . , L1 +L2}, etc. and let p(xL̃k
)
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denote the marginal of p over these positions. For the set ofL1, . . . , Lk chosen by RASPP, we

have no structural contacts across regions, and so no energetic interactions under the Potts model,

and thus p(xL̃k
, xL̃k′ ) = p(xL̃k

)p(xL̃k′ ) for k 6= k′. In other words, there is no correlation

between segments under the Potts model p. When using stochastic synthesis with combinatorial as-

sembly, there is also no correlation between segments under qθ. If we try to minimize the KL diver-

gence between a qθ with combinatorial assembly and the Potts model p, and optimize the template

lengthsL1, . . . , LK , we can expect in general to find a similar solution to RASPP, where both the

SCHEMA score and the correlation between templates under p is zero.

C.4 Theory details

Note that the proofs in this section rely on the definitions in Table C.1.

C.4.1 TheMC synthesis estimator

In our theoretical analysis we do not treat MC synthesis as variational synthesis with point mass

(deterministic) mixture components. In particular, we analyze the estimator

X1, . . . , XN0 ∼ p,

Î(a) := 1
N0

N0∑
i=1

f(Xi),
(C.13)
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which comes frommeasuring each synthesized sequence individually, and not the alternative estima-

tor

X ′
1, . . . , X

′
N0 ∼ p,

X1, . . . , XN1 ∼
1
N0

N0∑
i=1

δX′
i
(x),

Î ′(a) := 1
N1

N1∑
i=1

f(Xi).

(C.14)

which would come from pooling the synthesized sequences and then measuring a random sample

of sizeN1 (here δx′(x) is the Kronecker delta function at x′). Note this alternative estimator Î ′(a)

takes the form of a bootstrap estimator of sizeN1, taken from an initial sample of sizeN0 from

p, and thus in general introduces additional sampling noise as compared to Î(a). There are three

reasons for focusing our analysis on Î(a) instead of Î ′(a). First, sinceN0 is low, in practice it is of-

ten tractable for experimentalists to measure theN0 sequences individually (e.g. in 96 well plates),

rather than pooling them, making the estimate Î(a) possible. Second, in the limit whereN1 is much

greater thanN0, the estimators converge, making Î(a) a reasonable approximation for pooled ex-

periments in practice. Third, we want our analysis to be conservative in measuring the benefits of

variational synthesis vis-à-vis the alternative, MC synthesis, so we use the better estimator Î(a).
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C.4.2 Proof of Proposition 3.4.1

Proof. Using Jensen’s inequality,

1
fmax

sup
f∈F

E[|Î(a) − I|] ≤ 1
fmax

sup
f∈F

√√√√ 1
N2

0
Ep

[( N0∑
i=1

(f(Xi)− Ep[f(X)])
)2]

≤ 1
fmax

sup
f∈F

√
Vp[f(X)]

N0
≤ 1√

N0

(C.15)

where Vp[f(x)] is the variance with respect to p.

We can decompose the error in the Î(b) estimate into variance and bias terms, and then apply a

similar analysis.

1
fmax

sup
f∈F

E[|Î(b) − I|] ≤ 1
fmax

sup
f∈F

E[|Î(b) − Eqθ∗ [f(X)]|] + 1
fmax

sup
f∈F
|Eqθ∗ [f(X)]− Ep[f(X)]|

≤ 1√
N1

+ tv(p, qθ∗).

(C.16)

where we have used the integral probability metric representation of the total variation metric

tv(·, ·)242. The result follows from application of Pinsker’s inequality.

We can see from the proof that the bound in Equation 3.3 could be tighter if we use total vari-

ation in place of KL. It could also be tighter if we restrict the family of functionsF further. In

particular, consider the metric space defined over the set of fixed length discrete sequencesX with

the Hamming distance ‖x − x′‖H :=
∑L

j=1
∑21

d=1
1
2 |xjd − x′

jd| (where x is a one hot en-
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coding of a lengthL nucleotide sequence). Then, we can introduce the function familyFW :=

{f : ‖f‖L ≤ Dmax}, that is, the set of functions with bounded Lipschitz constant ‖f‖L :=

maxx,x′∈X ,x 6=x′ |f(x) − f(x′)|/‖x − x′‖H . Biologically, the Lipschitz constant is interpretable as

the sensitivity of a sequence’s biological function to single mutations. In particular, if a point muta-

tion can dramatically change the assayed property of the sequence, then the Lipschitz constant will

be large; otherwise it will be small. If we assume the Lipschitz constant of the experimental assay is

bounded by some constantDmax, we can find an alternative error bound on the stochastic synthesis

estimator:

1
fmax

sup
f∈F∩FW

E[|Î(b) − I|] ≤ 1√
N1

+ Dmax

fmax
W(p, qθ∗). (C.17)

where W(p, q) := infγ∈Γ(p,q)
∫
‖x−x′‖Hγ(x, x′) is the first Wasserstein distance, with Γ(p, q) the

set of couplings of p and q. This result follows from Equation C.16 by applying the Kantorovich-

Rubinstein duality theorem (e.g. Dudley 64 , Theorem 11.8.2), using the fact that the metric space

of finite sequences with the Hadamard distance is a finite discrete space and separable. We see from

Equation C.17 that the error bound on variational synthesis can be lower than that in Equation C.16,

so long asDmax is sufficiently small. In other words, we can get away with using synthesis models

that do not match p closely if the assay is not very sensitive to small changes in sequence.

C.4.3 Importance sampling estimates

In some cases we can get access to paired sequence and function data, and in particular the dataset

D0 := {(f(Xi), Xi) : f(Xi) 6= 0}. For instance, if we deep sequence the hits of a screen, with
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f : X 7→ {0, 1}, we will haveD0 := {(1, Xi) : f(Xi) = 1}. We can then construct an

importance-sampling estimate of I = Ep[f(X)] using samplesX1, . . . , XN1 ∼ qθ∗ ,

Î(c) := 1
N1

N1∑
i=1

f(Xi)
p(Xi)
qθ∗(Xi)

= 1
N1

∑
Xi∈D0

f(Xi)
p(Xi)
qθ∗(Xi)

.

Unlike Î(b), this estimator is unbiased: Eqθ∗ [f(X)p(X)/qθ∗(X)] = I . However, Î(c) still takes

advantage of a large number of samples, making possible lower variance than Î(a). In particular, we

have

1
fmax

sup
f∈F

Eqθ∗ [|Î(c) − I|] ≤ 1√
N1

√
chi(p||qθ∗) (C.18)

where chi is the chi divergence, which can be defined as chi(p||q) = Vq[p(X)
q(X) ]. We can derive this

result following the same analysis as in Equation C.15,

1
fmax

sup
f∈F

Eqθ∗ [|Î(c) − I|] ≤ 1
fmax

sup
f∈F

√√√√Vqθ∗ [f(X) p(X)
qθ∗ (X) ]

N1
≤ 1√

N1

√
chi(p||qθ∗). (C.19)

Note that our suggested black-box optimization procedure for variational synthesis (Section 3.2.2)

is intended to help ensure high discovery rates (maximizing
∑N1

i=1 f(Xi)) but not to ensure accurate

importance sampling estimates. In particular, the kl divergence does not provide a particularly tight

bound on the chi divergence (see e.g. Proposition 2 in Dragomir 60), so it is likely preferable to (if

possible) directly optimize the chi divergence53.
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C.4.4 Proof of Corollary 3.4.2

Proof. We have

E[N1Î
(b) −N0Î

(a)] ≥ (N1 −N0)I −N1 sup
f∈F

E[|Î(b) − I|]−N0 sup
f∈F

E[|Î(a) − I|] (C.20)

Applying Proposition 3.4.1 yields the result.

C.4.5 Proof of Proposition 3.4.3

Before proving Proposition 3.4.3, we first prove a lemma that shows – as long as we are not using

enzymatic mutagenesis – that we can construct templates that are arbitrarily close to a point mass

while still having full support. We use qθ(x|c) as shorthand for qθ(x|Ci = c), and δx′(x) to denote

the Kronecker delta function which takes value 1 if x = x′ and 0 otherwise.

Lemma C.4.1. Assume we are using arbitrary codon mixtures, finite codon mixtures (withA ≥

21), or finite nucleotide mixtures (withA ≥ 4). For any ϵ > 0 sufficiently small, there exists some v

such that:

for all x̄ ∈ X there exists a c̄(x̄) ∈ UL such that

q(x̄|c̄(x̄)) ≥ 1− ρLϵ (C.21)

where ρ is a positive constant, and supp(q(x|c̄(x̄))) = X . In particular, for arbitrary or finite codon

mixtures, ρ = 1, while for finite nucleotide mixtures, ρ = 3.
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Proof. We start with the finite codon mixtures case; note that this immediately implies the arbitrary

codon mixture case, since the space U for finite codon mixtures is a subset of the space U for arbi-

trary codon mixtures. We choose (arbitrarily) one codon for each amino acid and the stop symbol,

and work with mixtures v over these 21 codons (setting the probability of all others to zero). For all

d ∈ {1, . . . , 21}, let vd = 121
ϵ

21 + e
(21)
d (1 − ϵ)where 1D is the lengthD vector of all ones and

e
(D)
d is the lengthD vector of all zeros except a one at position d. Let ℓ(x̄) be the length of a protein

sequence x̄.† Given x̄we define theL×21matrix c̄(x̄) = concatenate(vx̄1 , . . . , vx̄ℓ(x̄) , v1, . . . , v1).

Now note that

q(x̄|c̄(x̄)) ≥ (1− ϵ)ℓ(x̄) ≥ 1− Lϵ. (C.22)

Next we consider the finite nucleotide mixtures case, which works similarly. For all b ∈ {1, . . . , 4},

let vb = 14
ϵ
4 + e

(4)
b (1 − ϵ). Given a protein sequence x̄, choose a particular codon for each amino

acid and the stop symbol. This defines a DNA sequence x̃, where x̃j1 is the nucleotide in the first

position of the codon for the amino acid at position j of x̄, and likewise for x̃j2 and x̃j3. We can

then choose nucleotide mixtures for each position of a template to match x̃, that is,

c̄(x̄) = concatenate(vx̃11⊗vx̃12⊗vx̃13 , . . . , vx̃ℓ(x̄)1⊗vx̃ℓ(x̄)2⊗vx̃ℓ(x̄)3 , v1⊗v1⊗v1, . . . , v1⊗v1⊗v1).

Nowwe have

q(x̄|c̄(x̄)) ≥ (1− ϵ)3ℓ(x̄) ≥ 1− 3Lϵ. (C.23)

†Length is measured up to (and including) the first stop codon orL, whichever comes first.
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We are now ready to prove Part 1 of Proposition 3.4.3. The basic idea is to construct a synthesis

distribution qθ∗ that closely approximates p by convolving with p templates that are approximate

point masses.

Part 1 of Proposition 3.4.3: When using either arbitrary codon mixtures, finite codon mix-

tures (withA ≥ 21), or finite nucleotide mixtures (withA ≥ 4): for any p ∈ P(X ) and

η > 0 there exists someM and θ such that (1) kl(p‖qθ) < η and (2) supp(qθ(x|z)) = X for

all z ∈ {1, . . . ,M}.

Proof. LetM = |X |, that is, set the number of templates equal to the total number of sequences

of length less than or equal toL. SinceX is finite, we can construct for any ϵ > 0 the synthesis

distribution qθ(x) = EX̄∼p[q(x|c̄(X̄))]. In this synthesis distribution, the weightsw of each

mixture component are set by p(x), and supp(qθ(x|z)) = X for all z by the construction of c̄. We

now have, applying Lemma C.4.1,

kl(p‖qθ) =
∑
x∈X

p(x) log p(x)−
∑
x∈X

p(x) log
[ ∑

x̄∈X
q(x|c̄(x̄))p(x̄)

]
≤
∑
x∈X

p(x) log p(x)−
∑
x∈X

p(x) log
[
q(x|c̄(x))p(x)

]
≤
∑
x∈X

p(x) log p(x)−
∑
x∈X

p(x) log
[
(1− ρLϵ)p(x)

]
≤ − log(1− ρLϵ)

(C.24)

Thus we can choose ϵ sufficiently small that kl(p‖qθ) < η.
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One concerning aspect of this proof, practically, is that it requires very largeM to form the ap-

proximation qθ. How well can we do with smallerM? Combining Theorem 4.2 of Zhang 297 with

the above result, we can say that for any η > 0 there exists an ϵ > 0 such that kl(p‖qθ∗) converges

to a value less than η at a 1/M rate. Note also that our setup differs from the more common case

where a mixture model is used for density estimation based on finite data, since we can sample as

much as we want from p. We therefore do not analyze the mismatch between a target p and model

qθ that may be caused by finite data.

Next, we prove the second part of Proposition 3.4.3, showing that enzymatic mutagenesis can

fail to approximate arbitrary targets p. The basic idea is that when using enzymatic mutagenesis,

the probability of a particular sequence cannot get arbitrarily close to 1, and so the KL divergence

between p and qθ cannot get arbitrarily close to 0.

Part 2 of Proposition 3.4.3: When using enzymatic mutagenesis: there exists some p ∈ P(X )

and η > 0 such that for allM and θ, we have kl(p‖qθ) > η.

Proof. Since τ > 0, and the entries of S are all positive, we can see that we are limited in howmuch

mass an enzymatic mutagenesis model can concentrate on just one sequence, i.e.

sup
τ>0,c∈UL

sup
x∈X

q(x|c, τ) < 1. (C.25)

Choose p(x) = δx′(x) for some sequence x′ ∈ X , and let qθ be an enzymatic mutagenesis synthesis
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model withM templates. Then,

inf
θ
kl(p‖qθ) ≥ − log sup

τ>0,c∈UL

sup
x∈X

q(x|c, τ) > 0. (C.26)

C.4.6 Proof of Proposition 3.4.4

Proof. Let L̃k denote the subset of positions generated by template k, i.e. L̃1 = {1, . . . , L1},

L̃2 = {L1 + 1, . . . , L1 + L2}, . . .. Let p(xL̃k
) denote the marginal of p over these positions. We

have, since templates are drawn independently from each pool, qθ(x) =
∏K

k=1 qθ(xL̃k
), and so

kl(p‖qθ) =
∑

x

p(x) log p(x)−
K∑

k=1

∑
xL̃k

p(xL̃k
) log qθ(xL̃k

)

=
∑

x

p(x) log p(x)−
K∑

k=1

∑
xL̃k

p(xL̃k
) log p(xL̃k

) +
K∑

k=1
kl(p(xL̃k

)‖qθ(xL̃k
))

≥ kl(p‖
K∏

k=1
p(xL̃k

)).

(C.27)

There exists p for which kl(p‖
∏K

k=1 p(xL̃k
)) > 0, in particular any p for which there is correlation

between templates, proving the result.
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C.5 Results details

C.5.1 Datasets and target models

DHFR

We used a dataset of 3,629 sequences in the DHFR family collected using jackhmmer69 from the

Uniref100 dataset252, and available as an example dataset from

https://github.com/debbiemarkslab/plmc/tree/master/example/protein/DHFR.a2m.

The multiple sequence alignment has a width ofL = 171 amino acids. We trained a Potts model

using pseuodolikelihood maximization as in Hopf et al. 110 , using the plmc package with the default

hyperparameters https://github.com/debbiemarkslab/plmc. Gaps in the alignment were

treated as missing data (not as separate symbols), following the default settings of plmc. The trained

Potts model was the target p. We sampled sequences from p using Gibbs sampling, drawing 100,000

samples using 10 parallel chains with a burn-in of 200 steps per chain.

For the analysis of unaligned sequences (Figures 3.3D and C.5), we used the training dataset of

3,629 evolutionary sequences, with gap symbols excluded and stop symbols appended. We refer to

this dataset as “DHFR raw”.

GFP

We constructed a dataset of 722 sequences in the GFP family using jackhmmer and UniprotKB

(07/2021)201, starting from the seed sequence GFP_AEQVIwith F64L (a stabilized variant used by
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Sarkisyan et al. 226), with a threshold of 0.3 bit score per residue. We trained an ICAmodel with a

MuE output284, which is available as an example in the Pyro probabilistic programming language23

at https://pyro.ai/examples/mue_factor.html. The ICAmodel is similar to a probabilistic

PCAmodel, but uses a Laplace prior on the latent variable instead of a Gaussian; the MuE output

uses the default profile HMM-based architecture described inWeinstein &Marks 284 . We used 2

latent dimensions in the ICAmodel, a latent sequence length of 237 in the MuE, and default priors.

The model was trained with stochastic variational inference, with a learning rate of 0.005 and batch

size of 5 over 70 epochs, annealing the prior KL divergence linearly over 35 epochs. Using 20% of

the data as heldout validation, the model achieves a per residue perplexity on the training set of 3.1

and on the test set of 4.6.

We used the ICA-MuEmodel to construct a target distribution p. In particular, let ψ be the

latent alignment variable of the MuE (the state variable of the Markov chain). We estimated the

maximum a posteriori value of ψ for the stabilized wild-type GFP (GFP_AEQVIwith F64L), and

then sampled new sequences conditional on this value ψ̂ref – note that this procedure is a very weak

form of supervision, since the stabilized wild-type is known to be functional and produce fluores-

cence. To limit the diversity of the library relative to the training data, we sampled from the poste-

rior predictive over the latent representation given the observed data, rather than the prior. Explic-

itly, let pMuE(x|ψ, κ) denote the distribution of the learned ICA-MuEmodel conditional on the

latent alignment ψ and latent representation κ. LetX ′
1, . . . , X

′
N ′ denote the training data, and let

p(κ|X ′) denote the posterior over the latent representation of a datapointX ′ (which can be approx-
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imated by the encoder/guide network). The complete generative process p is then defined as

κi ∼
1
N ′

N ′∑
i=1

p(κ|X ′
i)

Xi ∼ pMuE(x|ψ̂ref, κi).

(C.28)

An important feature of this model is that we are not sampling from the conditional distribution of

κ given ψ̂ref, that is, we are not sampling sequences with similar latent alignments. Unlike autore-

gressive models, for example, MuEmodels allow variation in sequence length and latent alignment

to be treated as independent of variation at conserved sites. Thus, although the sequences gener-

ated from p are all of the same length, the pattern of amino acids at conserved sites reflects the full

diversity of the dataset. Finally, note that in the jackhmmmer constructed-dataset, the first residue

(M) of the wild-type sequence GFP_AEQVIwas not included in the profile HMM envelope, but the

sequence-to-function predictor expects this position to be included; we therefore prepended anM

to each generated sequence, for a total length ofL = 238.

TCR

We examined a dataset of 22,004 TCRβ sequences measured in Ramien et al. 207 , taken from CD8+

T cells from a single healthy control patient (number HC12 in the study) in the 3rd trimester of

pregnancy. We trained a ICA-MuEmodel as described above (Section C.5.1), with 5 latent dimen-

sions and a latent sequence length of 170. We used stochastic variational inference, with a learn-

ing rate of 0.01 and batch size of 5 over 2 epochs, annealing the prior KL divergence linearly over
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1 epoch. Using 20% of the data as heldout validation, the model achieves a per residue perplexity

of 2.39 on both the training and test datasets. We sampled from the model using the same strat-

egy as in Section C.5.1. The reference sequence used to construct ψ̂ref was a randomly selected

sequence from the dataset described in Section C.5.6, which Tcellmatch predicted to bind the

influenza epitope; as with the GFP example, conditioning on ψ̂ref is a very weak form of super-

vision, learning from only a single functional example. In particular, the reference sequence was

MSNQV LCCV V LCLLGANTV DGGITQSPKY LFRKEGQNV TLSCEQNLN

HDAMYWY RQDPGQGLRLIY Y SQIV NDFQKGDIAEGY SV SREKKESFP

LTV TSAQKNPTAFY LCASSIRSAY EQY FGPGTRLTV TEDLKNV FPPE

V AV FEPSE. The generated sequences had lengthL = 149.

C.5.2 Synthesis model hyperparameters

In this section we describe the details of our stochastic synthesis models and optimization procedure.

We usedK = 5 pools, withLk of approximately the same length for each k ∈ {1, . . . ,K} (the

last template was shortened as necessary sinceL is not always a multiple of 5). This yields templates

of length 29 to 48 amino acids across all the datasets considered, which is consistent with typical

oligosynthesis lengths of∼ 150 nucleotides. We usedA = 8 for finite nucleotide mixtures; this

value is realistic, as the company IDT, for example, currently offers four custommixtures per oligo

plus preset mixtures and single nucleotides194. We usedA = 24 for finite codon mixtures, which

is similar to typical trimer-based synthesis projects, which use the 20 amino acids plus a few custom

mixtures172.
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We set the mutation matrix S based on the ePCR enzymeMutazyme II, available as part of

Agilent’s GeneMorph II RandomMutagenesis Kit https://www.chem-agilent.com/pdf/

strata/200550.pdf. In particular, we converted the reported mutational spectra (Table II) into a

substitution matrix, under the assumption that the test sequences are 50% A-T base pairs and 50%

G-C base pairs: for instance, the probability of a particular base pair mutating per round of mutage-

nesis is given as 1% overall (10 bases per kilobase), and 50.7% of mutations happen to A-T base pairs,

so the probability of a particular A-T base pair mutating is 0.01 · 0.507/0.5. Proceeding in this way,

we find

S =



0.990 0.006 0.005 0.003

0.006 0.990 0.003 0.005

0.003 0.001 0.991 0.001

0.001 0.003 0.001 0.991


(C.29)

where the columns and rows are each in the orderA, T ,G,C . We also computed a mutation matrix

S based on the Taq error prone polymerase (also in Table II of the GeneMorph II RandomMuta-

genesis Kit manual), but preliminary experiments suggested worse performance thanMutazyme II

at matching the DHFR Potts target distribution, so we did not pursue it further. We limit the total

number of rounds of mutagenesis τ to be less than 10, since large numbers of mutagenesis rounds

are rarely used in practice.

Note that since we have chosenA ≥ 4, the set of allowed values of U for enzymatic mutagenesis

(that is, for all τ ) is a strict subset of the set of allowed values of U for finite nucleotide mixtures

(that is, for all v); thus, synthesis models using enzymatic mutagenesis are strictly less expressive than
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those using finite nucleotide mixtures. Meanwhile, U for finite nucleotide or codon mixtures is a

strict subset of U for arbitrary codon mixtures, regardless of the choice of v; so synthesis models

using finite mixtures are strictly less expressive than those using arbitrary codon mixtures.

C.5.3 Baseline synthesis model

As a baseline stochastic synthesis approach, we considered a method motivated by a common heuris-

tic for producing diversified libraries, which is to simply perform error prone PCR on an initial set

of sequences. In particular, the baseline approach we consider is to doMC synthesis plus enzymatic

mutagenesis: sample initial protein sequencesX ′
1, . . . , X

′
M ∼ p, inverse-translate the protein se-

quences into DNA (sampling uniformly among all codons for the same amino acid), synthesize the

DNA individually, and then mutagenize in the laboratory using ePCR. The distribution of result-

ing sequences can be described using a stochastic synthesis model for which we do not optimize the

parameters. In particular, letK = 1, and form ∈ {1, . . . ,M} and j ∈ {1, . . . , L}, let χ′
mj1b = 1

if the sampled codon forX ′
mj has base b at the first position, and χmj1b = 0 otherwise. Likewise

for χmj2b and χmj3b. Then, we set u1mj = Sτχmj1 ⊗ Sτχmj2 ⊗ Sτχmj3. We use fixed assem-

bly, settingw = ( 1
M , . . . , 1

M ). Then, the complete synthesis model (Equation 3.1) describes the

distribution of sequences produced by the baseline approach.

Note that the baseline is effectively a kernel density estimate of p. It is thus unsurprising that

the baseline underperforms relative to variational synthesis, since kernel density estimates typically

underperform compared to mixture models.

Practically, we use S corresponding to a Mutazyme II enzyme (Section C.5.2) and set τ = 5
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Figure C.1: Illustrative example of training curves for a stochastic synthesis model (enzymatic mutagenesis with fixed

assembly) with different values ofM . For each value ofM , training is repeatedwith three initial seeds. Themodels are

each trained on samples from the DHFR Potts model, as described in Section C.5.4.

as a typical value for proteins of the length considered here290. The samples from p used as initial

sequences,X ′
1, . . . , X

′
M , are subsampled from the same training dataset of 100,000 sequences used

for variational synthesis (Section C.5.4). We examined the performance of the method averaged over

3 independent sets of initial sequences.

C.5.4 Optimization and perplexity evaluation

DHFR Potts, GFP, TCR To optimize synthesis models, we drew Ñ = 100, 000 samples from

each target distribution p and applied stochastic EM, as described in Section C.2.2. We chose batch

sizes to be as large as possible without running out of memory. In particular, we used batch sizes of

100,000 (the full dataset) withM = 1,M = 10 andM = 100, and batch sizes of 10,000 for

M = 1000. We trained for 80 epochs withM = 1,M = 10 andM = 100, and 16 epochs

forM = 1000. Training took 2-5 minutes for each target-synthesis pair using a Tesla V100 GPU.
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Example training curves are shown in Figure C.1.

Each synthesis model was trained on the same set of Ñ = 100, 000 samples from each tar-

get distribution, and evaluated based on the average per residue perplexity on the training dataset,

exp(− 1
Ñ

∑Ñ
i=1

1
ℓ(Xi) log qθ(Xi)), where ℓ(Xi) is the length of the sequenceXi. Note that we do

not perform heldout evaluation, as our goal is to see how well each synthesis model can match a

target library of size 100,000; overfitting the synthesis model is not a concern, and may even help

downstream performance, as described in Section C.2.3. We initialized each optimization from

three random seeds, and chose the result with the lowest perplexity.

DHFR raw For the DHFR raw dataset, we handle variable length sequences as described in Sec-

tion C.2.4, and optimized each synthesis model using EMwith batch size of 3,629 (the full dataset),

for 100 epochs. We setL to be the maximum length of sequences in the dataset including the stop

codon, 170. We evaluated using mean per residue perplexity on the full dataset. We initialized each

model from three random seeds, and chose the result with the lowest perplexity.

C.5.5 BEAR two-sample test

We use the vanilla version of the BEAR two-sample test proposed in Section 5 of Amin et al. 12 to

compare the target and the synthesis distributions. The test computes the Bayes factor comparing

the hypothesis that two datasets {X1, . . . , XÑ} and {X ′
1, . . . , X

′
Ñ ′} come from the same underly-

ing distribution versus different distributions. It uses pBEAR(X1, . . . , XÑ |α, λ), the probability of

the dataset under a BayesianMarkov model with Dirichlet concentration parameter α and lag λ. In
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particular, the Bayes factor is

BF =
pBEAR(X1, . . . , XÑ , X

′
1, . . . , X

′
Ñ ′)

pBEAR(X1, . . . , XÑ )pBEAR(X ′
1, . . . , X

′
Ñ ′)

(C.30)

where

pBEAR(X1, . . . , XÑ ) = 1
Λ

Λ∑
λ=1

pBEAR(X1, . . . , XÑ |α, λ). (C.31)

We used the training dataset of 100,000 samples from p as the first dataset in the two-sample test,

and 100,000 independent samples drawn from the optimized synthesis model qθ̂Ñ
as the second

dataset. (In the case of DHFR raw, we used the 3,629 sequences as the target sample.) Note that

the goal here is to understand whether the particular set of Ñ samples from p used for training look

like a plausible set of samples from qθ̂Ñ
, following the logic of Section C.2.3, so we do not resample

from p to compute the test. We use α = 0.5 andΛ = 8; we found that in general the posterior

over lags concentrated at values of λ below 8, suggesting the test has sufficiently high resolution.

Computing the test took about 5-10 minutes for each target-synthesis pair, with 20 cores on an Intel

Xeon E5 v3 CPU.

C.5.6 Sequence-to-function predictors

GFP: TAPE

We computed TAPE predictions of GFP fluorescence using the interface in the FLEXS package239.

Sequences with internal stop codons were assigned the minimum log fluorescence in the Sarkisyan
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et al. 226 dataset, 1.2. Variants with predicted log fluorescence above 3 were classified as hits, in line

with the analysis of Sarkisyan et al. 226 who classify variants below 3 as dark.

TCR: Tcellmatch

We used Tcellmatch, trained on the same single-cell TCR sequencing data as in the original paper3,

with the suggested model architecture (1x1 convolutional embeddings based on BLOSUM50 and

biGRU layers). We used the mean squared logarithmic error to evaluate the model’s ability to pre-

dict MHCmultimer binding counts. We trained the Tcellmatch model only on TCRβ sequences,

since the target pwas trained only on TCRβ sequences. The Tcellmatch model uses only the CDR3

region to make predictions. In general, techniques for identifying the CDR3 region in TCRs rely

on nucleotide-level information, which is unavailable for generated amino acid sequences. How-

ever, we constructed the target p by conditioning on a latent alignment, which in turn is based on

a reference sequence with nucleotide-level information (Section C.5.1). We thus use the positions

corresponding to the CDR3 in the reference sequence (109:122, as annotated by the 10x pipeline)

to define the CDR3 for each sampled sequence from p and qθ. Although the Tcellmatch model

can be used to predict many different antigens, we focused on predictions of theGILGFV FTL

influenza antigen, since the model had the most accurate predictions for this particular antigen (ac-

cording to theR2 metric used by Fischer et al. 77 , in particularR2 = 0.70). We conditioned on

a single donor (donor 1) when making predictions with Tcellmatch. Sequences with internal stop

codons were assigned zero counts. Variants with predicted counts above 10 were classified as hits, in

line with the analysis of Fischer et al. 77 .
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EstimatingHit Rates

Given a dataset of indicators for whether or not each of 100,000 samples from qθ was a hit or not,

i.e. {f(X1), . . . , f(XN )}where f : X 7→ {0, 1}, we estimated the overall hit rate using a

Beta(0.5, 0.5) prior (Jeffreys prior). We report the standard deviation of the posterior in Figure 3.4C

and G.

Estimating the Number of UniqueHits

Based on the hit rate (Section C.5.6), we can estimate the total number of hits for libraries of any

size. However, we are also interested in the total number of unique hits, since discovering identi-

cal sequences is not as useful as discovering diverse sequences. Evaluating predictors on very large

numbers of samples, though, can be impractical since predictors (especially TAPE) can be com-

putationally expensive. Instead, we used a Good-Toulmin estimation strategy: we examined the

hits from a sample of 100,000 sequences from qθ and then extrapolated to estimate the number of

unique hits in a library of 1,000,000 sequences. We used the smoothed Good-Toulmin estimator

proposed by Orlitsky et al. 191 , with the recommended Binomial model. Note that the estimator

is considered trustworthy for datasets up to a factor of logN larger than the initial dataset; since

log(105) = 11.5 ≥ 10, it is applicable here. We estimate the variance of the estimate under re-

sampling using the jackknife, which can be efficiently computed for the smoothed Good-Toulmin

estimator71.
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C.5.7 Error bars

In this section we summarize the calculation of the error bars in Figures 3.3 and 3.4. For the base-

line model, we show the estimated standard deviation across independent samples of the initial

M sequences from p (that is, the initial sequences that are mutagenized by ePCR). We use three

independent samples for each value ofM . For perplexity plots (Figures 3.3ACD and 3.4AE) we

do not include any error estimates for non-baseline models, since we have exactly computed the

total perplexity across the training dataset, and we are only interested in the match between the syn-

thesis model and the training dataset, not in the synthesis model’s generalization performance (as

explained in Section C.2.3). Bayes factors are themselves measurements of statistical significance,

so we do not include any error bars for non-baseline models in Figures 3.3B and 3.4BF. For plots

of hit rate (Figure 3.4CG), error bars show the posterior standard deviation of the hit rate under

a Beta(0.5, 0.5) prior (the Jeffreys prior) (Section C.5.6). For plots of estimated unique hits (Fig-

ures 3.4DH), error bars show the jackknife estimate of the standard deviation (Section C.5.6) For

the baseline model, in plots of both hit rate and unique hits, error bars include the variance across

different initial sequences from p, and are computed using the law of total variance.

C.5.8 Additional results

DHFR

We further examined the match between stochastic synthesis models and the target DHFR Potts

model, examining the difference in moments of each distribution. In particular, we looked at the dif-
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A B

A BFigure C.2: (A) Difference inmean between synthesis and target models, for various stochastic synthesis models with

fixed assembly applied to the DHFR Potts target. Mathematically, ‖Eqθ
[X] − Ep[X]‖2 whereX is represented as

a one-hot encoding and ‖ · ‖2 is the Euclidean distance. (B) Difference in position-wise covariancematrices between

synthesis and target models. Mathematically, let C̃
(p)
j,j′,d,d′ := Covp(Xj,d, Xj′,d′) denote the covariance under

p between thedth amino acid at position j and thed′th amino acid at position j′. Themagnitude of the covariance

between positions j and j′ can bemeasured asC(p) := ‖C̃(p)
j,j′‖2. Thenwe plot the position-wise covariance error

‖C(p) − C(qθ)‖2. In both plots, error bars for the baselinemodel are the standard deviation over initial sequences

(Section C.5.7).

A B C
Figure C.3: Zoom in of Figure 3.3C.

ference in the mean sequence produced by the synthesis and target distributions, and the difference

in covariance between positions of the sequences produced by the synthesis and target distribu-

tions (Figure C.2). Comparing different variational synthesis models, we see improved perplexity

(Figure 3.3A) corresponds well with lower moment error (Figure C.2). Interestingly, the baseline

synthesis method (Section C.5.3) yields comparatively low moment error for largeM despite com-

paratively poor perplexity.
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A B C

Figure C.4: Comparing fixed versus combinatorial assembly for the DHFR Potts target. (The perplexity comparison can

be found in Figure 3.3C and C.3.) (A) Two-sample test Bayes factor. (B) Difference inmean between synthesis and tar-

get models, as defined in Figure C.2. (C) Difference in position-wise covariancematrices between synthesis and target

models, as defined in Figure C.2.

We further examined the difference in performance between combinatorial and fixed assembly

models. For enzymatic mutagenesis, switching from fixed to combinatorial assembly improves the

two-sample test Bayes factor (Figure C.4A), mean (Figure C.4B) and covariance (Figure C.4C). For

arbitrary codon synthesis, switching from fixed to combinatorial assembly slightly improves the

Bayes factor (Figure C.4A), has no effect on the mean (as we expect mathematically and see in Fig-

ure C.4B), but substantially worsens the covariance (Figure C.4C). These results illustrate how the

advantages of using fixed versus combinatorial assembly vary depending on the codon diversification

technology.

We further examined the performance of different stochastic synthesis models applied to the

DHFR raw dataset of unaligned evolutionary sequences. Applying the two-sample test, we find

that using large numbers of templates with any codon diversification technology is better than using

small numbers of templates with a very expressive codon diversification technology (Figure C.5),

in line with the perplexity results (Figure 3.3D). We also see that variational synthesis is capable of
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Figure C.5: Two-sample test Bayes factor for synthesis models with fixed assembly applied to the DHFR raw dataset. For

perplexity comparison, see Figure 3.3D.

Figure C.6: Predictedmutational effects of substituting each position of the stabilized wild-type GFP sequence with an

alanine (i.e. an in silico alanine scan). Dotted line shows the threshold for classifying a variant as functional.

matching the target closely enough to pass the two-sample test, but so is the baseline method in this

case.

GFP

We examined the difference in moments between the target GFP distribution and the stochastic

synthesis models. The results (Figure C.7) are qualitatively similar to those described for DHFR

(Section C.5.8 and Figure C.2), with the baseline model performing better than its perplexity would

suggest.
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A B

A BFigure C.7: (A) Difference inmean between GFP synthesis and target models, as defined in the caption of Figure C.2. (B)

Difference in position-wise covariancematrices between GFP synthesis and target models, as defined in the caption of

Figure C.2.

Figure C.8: Average log predicted fluorescence of samples from various stochastic synthesis models and from the GFP

target p itself (MC synthesis). Error bars are estimates of the standard deviation of themean (for the baselinemodel, this

includes variance across different initial sequences, as described in Section C.5.7; for the rest of themodels, it is just the

standard error, and negligible in these plots).

We examined the difference in average log fluorescence between samples from various stochastic

synthesis models, as compared to exact samples from the target (that is, as compared to the average

log fluorescence under MC synthesis) (Figure C.8). Interestingly, we find that while using finite

codon mixtures withM = 1 yields relatively low hit rates compared to arbitrary codon mixtures

withM = 1 (Figure 3.4G), it yields nearly equivalent average log fluorescence (Figure C.8).

We examined the difference in performance between combinatorial and fixed assembly methods

applied to the GFP target distribution. On statistical measures of the difference between the syn-
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A B C D

E F G

Figure C.9: Fixed versus combinatorial stochastic synthesis applied to the GFP target distribution. (A) perplexity, (B)

two-sample test Bayes factor, (C) mean error (as defined in Figure C.2), (D) covariance error (as defined in Figure C.2), (E)

average log fluorescence, (F) hit rate and (G) number of unique hits withN1 = 106 andN0 = 103. Error bars are as

described in Section C.5.7.

thesis and target distribution (Figure C.9ABCD), we find broadly similar effects to those observed

for DHFR Potts: for instance, we see moderate improvements in perplexity for enzymatic mutage-

nesis at largeM when switching from fixed to combinatorial assembly, but little effect for arbitrary

codon mixtures, and substantially worse covariance for arbitrary codon mixtures. On measures of

function, using combinatorial assembly leads to dramatically worse performance (Figure C.9EFG):

using arbitrary codon mixtures with combinatorial instead of fixed assembly drops the number of

unique hits by three orders of magnitude. This result suggests that passing the BEAR two-sample

test with large Bayes factors is not enough to ensure high hit rates when using combinatorial assem-

bly; one should also inspect the covariance error.
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Figure C.10: Predicted binding effects of substituting each position of a natural CDR3 sequence

(CASSIRSAY EQY F ) with each of 20 amino acids (in silico deepmutational scan). The threshold for functional-

ity (10 counts) is marked by a dotted line in the colorbar.

A B

A B

Figure C.11: (A) Difference inmean between TCR synthesis and target models, as defined in the caption of Figure C.2. (B)

Difference in position-wise covariancematrices between TCR synthesis and target models, as defined in the caption of

Figure C.2.

TCR

We examined the difference in moments between the target TCR distribution and the stochastic

synthesis models. The results (Figure C.11) are qualitatively similar to those described for DHFR

(Section C.5.8 and Figure C.2), with the baseline model performing better than its perplexity would

suggest.

We examined the difference in average binding counts between samples from various stochastic

synthesis models, as compared to exact samples from the target TCRmodel (that is, as compared to
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Figure C.12: Average predicted binding counts of samples from various stochastic synthesis models and from p itself (MC

synthesis). Error bars are estimates of the standard deviation of themean (for the baselinemodel, this includes variance

across different initial sequences; for the rest of themodels, it is just the standard error).

Figure C.13: Same as Figure 3.4H, but for the EBV epitopeRAKFKQLL instead of the influenza epitope.

MC synthesis) (Figure C.12). Unlike for GFP, we find that the average value of the assay output is

roughly proportional to the hit rate.

We examined additional viral epitopes, besides the influenza epitope, for which decent Tcell-

match predictions were available. The second highest quality Tcellmatch predictor (R2 = 0.43)

was for an Epstein-Barr virus (EBV) epitope,RAKFKQLL. MC synthesis withN0 = 103

generates just 0.05 hits on average across independent libraries, while variational synthesis with

N1 = 106, using arbitrary codon mixtures andM = 10, generates an expected 30 unique hits

(Figure C.13). Here, variational synthesis makes the difference between likely failure and likely
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A B C

Figure C.14: Same as Figure C.12, but for the EBV epitopeRAKFKQLL (A), the EBV epitopeRLRAEAQVK (B)

and the CMV epitopeKLGGALQAK (C).

success. We also examined two viral epitopes for which the target TCRmodel had an estimated

hit rate of zero (based on a sample of 105 sequences from the model): a cytomegalovirus epitope

(KLGGALQAK , TcellmatchR2 = 0.40) and another EBV epitope (RLRAEAQVK , Tcell-

matchR2 = 0.36). Note that a hit rate of close to zero is unsurprising, given that the Tcellmatch

predictor has low accuracy, and that the individual patient which the TCRmodel was trained on

may not have TCRs that bind these epitopes. For these two epitopes, we found that variational

synthesis was still able to closely match the average binding counts under the target TCRmodel

(Figure C.14).
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D
Supplementary Material for Chapter 4

D.1 Evolutionary dynamics models

Application of the Sella &Hirsh 230 model (Eqn. 4.1) in JFPMs rests on a number of assumptions;

we briefly the most relevant here.

When applying Eqn. 4.1 to amino acid sequences, as is typical for fitness estimation models, we

ignore biases that come from the genetic code, which can modify the steady state probability of
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amino acids (in the absence of fitness effects) away from a uniform distribution. This is justified

practically by the small effect sizes: if at steady state an amino acid has probability 1/64 instead of

1/20, the total difference in log probability is log(1/20)− log(1/64) ≈ 1, which is small compared

to (for instance) the log probability differences relevant for disease risk prediction with fitness mod-

els, which are≈ 10 (Frazer et al. 80 , Extended data Fig. 3). Moreover, this bias only contributes an

overall shift in amino acid probabilities, independent of position, and so does not change our main

theoretical results. We ignore biases caused by asymmetric mutation rates for analogous reasons

(though note they are often included in PMs in practice)230.

The constant β depends on the effective population size, as well as the underlying population

genetics model (Moran or Wright) and organismal ploidy (Sella &Hirsh 230 , Table 1). Following

standard practice, we treat β as fixed for simplicity, though in reality it may vary over time and across

lineages. Taking into account these possible changes clearly would not contradict our main theoreti-

cal result, that fitness and phylogeny are non-identifiable.

D.2 Proofs

D.2.1 Proof of Proposition 4.2.3

N.b. this result is known in the literature (Ho & Ané 104 , Eqn. 1) but we are unaware of a proof, so we

provide one here for completeness.

Proof. For notational convenience, we will work with a standardized OUT, with µ = 0 and σ = 1.

The final result can be obtained by translating and scaling the distribution of leaves. The transition
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Figure D.1: Tree labeling for the proof of Proposition 4.2.3

distribution from point x′ at time t′ to pointX at time t under the Ornstein-Uhlenbeck (OU)

process is

X ∼ Normal
(
x′e− 1

2 (t−t′), 1− e−(t−t′)
)
. (D.1)

This distribution can be reparameterized in location-scale form as

ϵ ∼ Normal(0, 1)

X = x′e− 1
2 (t−t′) +

√
1− e−(t−t′)ϵ.

As t → ∞we reach the stationary distribution Normal(0, 1). Let b ∈ {1, ...,B} index the

branches of the tree, let λb be the length of branch b, and let j ∈ {1, ..., N} index the leaves

(observed species or sequences); see Fig. D.1. We have assumed that the most recent common an-

cestor of the observed sequences was sampled from p∞; this can be represented by adding a single

branch length (indexed b = 1) to the root with length λ1 = ∞. Let ϵb be the noise describ-

ing the OU diffusion over each branch. Let ξj,b be the total time from leaf j to the nearest vertex
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on branch b, so long as branch b is on the path from leaf j to the root; otherwise, set ξj,b = ∞.

For instance, in the diagram in Figure D.1, we have ξ1,4 = 0, ξ1,2 = λ4, ξ1,1 = λ4 + λ2, and

ξ1,5 = ξ1,6 = ξ1,7 = ξ1,3 =∞. We can now write the leaf position as

Xj =
∑

b

e− 1
2 ξj,b

√
1− e−λbϵb. (D.2)

Define the matrix

Mj,b = e− 1
2 ξj,b

√
1− e−λb , (D.3)

such thatXj =
∑

bMj,bϵb. We can now describe the complete leaf distribution as

ϵ⃗ ∼ MultivariateNormal(0, IB)

X1:N = M · ϵ⃗,

where IB is the B-dimensional identity matrix. Thus, according to the location-scale representation

of the multivariate normal,

X1:N ∼ MultivariateNormal(0,MM>). (D.4)

We can simplify the covariance matrixΣ := MM>. First

Σj,j′ =
∑

b

Mj,bMj′,b =
∑

b

e− 1
2 (ξj,b+ξj′,b)(1− e−λb).
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Figure D.2: In red are the leaves considered in the examples in the proof of Proposition 4.2.3; in green is their most recent

common ancestor.

Before introducing the notation required to derive the general result, it’s helpful to get a sense of

how the derivation works; in the example tree (Figure D.1),

Σ1,2 = e− 1
2 (λ4+λ5)(1− e−λ2) + e− 1

2 (λ4+λ5+2λ2)(1− e−λ1)

= e− 1
2 (λ4+λ5) + (−e− 1

2 (λ4+λ5+2λ2) + e− 1
2 (λ4+λ5+2λ2))− e− 1

2 (λ4+λ5+2λ2−2λ1)

= e− 1
2 (λ4+λ5).

The sum over b telescopes, leaving only the initial term, which corresponds to the total time between

leaf node 1 and leaf node 2. To construct the general result, define b̃j,j′ as the branch whose later

node is the most recent common ancestor of leaves j and j′. In the example in Figure D.2, b̃2,4 = 4.

LetR be an ordered list of branches from b̃j,j′ to b = 1, the earliest branch. In the example in

Figure D.2,R = [4, 2, 1]. Finally, let tjj′ be the length of the shortest path from leaf j to leaf j′, the

time from the most recent common ancestor to j plus the time to j′. In the example in Figure D.2,
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t2,4 = λ5 + λ6 + λ8. We now have

Σjj′ =
B∑

b=1
e− 1

2 (ξj,b+ξj′,b)(1− e−λb)

=
∑
b∈R

e− 1
2 (ξj,b+ξj′,b)(1− e−λb)

= e− 1
2 tjj′ − e

− 1
2 (tjj′ +2λb̃j,j′ )

+
|R|∑
k=2

e
− 1

2 (tjj′ +2
∑k−1

k′=1 λRk′ )(1− e−λRk ).

Breaking down the telescoping sum, and using the fact that the final element ofR is t1 =∞,

= e− 1
2 tjj′ − e− 1

2 (tjj′ +2
∑|R|

k′=1 λRk′ ) = e− 1
2 tjj′ .

So we have the simple result that the covariance matrix depends just on the divergence times be-

tween leaves,

Σjj′ = e− 1
2 tjj′ . (D.5)

Translating the distribution Eqn. D.4 by µ and scaling by σ yields the result.

D.2.2 Proof of Theorem 4.3.3

Before proving the result, we briefly clarify a definition in the statement of the theorem:

Definition D.2.1 (Exchangeable in leaves). LetH be a tree with countably infinite leaves and letHπ

be a permutation of a phylogeny in its leaves, i.e. the same treeH with the leaves observed in a different

order, according to a permutation π. A distribution over phylogenies is exchangeable in its leaves if
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p(H) = p(Hπ) for any permutation π.

Proof. Outline: First, using the results from Sarkar 225 , we construct an embedding for each tree into

the hyperbolic plane, being careful that the embedding preserves exchangeability. Second, we apply

de Finetti’s Theorem to obtain the conditionally independent representation of the joint distribution

ofZ1, Z2, .... Third, we use the distortion bound from Sarkar 225 to bound theWasserstein distance

between p(ν) and p(ν̃).

First we describe the Sarkar 225 (1 + ϵ) distortion embedding algorithm setup. Vertices in phylo-

genetic trees have maximum degree three, and, by assumption, the minimum edge length in a treeH

is greater than η > 0with probability one. For any ϵ′ > 0, choose a ρ < π/3 and a scale factor

λ >

(1 + ϵ′

ϵ′

)2k
η
log tan

ρ

2
, (D.6)

where k is the Gaussian curvature of the hyperbolic planeH (for most hyperbolic geometry models,

and in particular the Lorentz manifold, k = −1). Then, let h1(H), h2(H), ... be the position of the

leaves in the embedding ofH produced by the (1 + ϵ) distortion embedding algorithm in Sarkar 225 ,

using edge scale factor λ, and ρ separated cones with cone angle 2π/3 − 2ρ. Taking the last line of

the proof of Theorem 6 in Sarkar 225 , we are guaranteed that even for a countably infinite number

of leaves,

max
i,i′

λtii′(H)
d̃(hi(H), hi′(H))

≤ 1 + ϵ′

max
i,i′

d̃(hi(H), hi′(H))
λtii′(H)

= 1,

(D.7)
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where i, i′ ∈ N := {1, 2, . . .}, and d̃(·, ·) is the hyperbolic distance function.

Next we will modify the embedding function h to ensure that the distribution of embedded

leaves is exchangeable. Let [H] be the set of phylogenetic trees that are equivalent toH up to re-

ordering of the vertices. For each equivalence class [H]we choose one ordering of the vertices to

be the canonical tree Ĥ([H]), and for any treeH let πc(H) be the leaf permutation such that the

reordered treeHπc(H) = Ĥ([H]). Now define the modified leaf embedding function h′(H) :=

hπ(H)(Hπc(H))where π(H) is the inverse permutation of πc(H). Since by assumption the prior

p(H) on the phylogenetic tree is exchangeable, we can rewrite p(H) using the induced distribution

over equivalence classes p([H]) as

[H] ∼ p([H])

π ∼ Permutation

H := Ĥ([H])π,

where Permutation is the uniform distribution over all permutations ofN := {1, 2, . . .}. We now

define the distribution over leaf embeddings as

H ∼ p(H)

Z1:∞ := h′
1:∞(H),

(D.8)
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which we can rewrite as

[H] ∼ p([H])

π ∼ Permutation

Z1:∞ := hπ(Ĥ([H])).

The distribution p(Z1, Z2, ...) is therefore exchangeable. Applying de Finetti’s Theorem133 we

have a.s.

G ∼ G

Zi
iid∼ G for i ∈ {1, 2, . . .}

(D.9)

whereG is a randommeasure distributed according to a prior G. Moreover, the embedding distor-

tion bounds (Eqn. D.7) are preserved for eachH, since

1 + ϵ ≥max
i,i′

λtii′(Ĥ([H]))
d̃(hi(Ĥ([H])), hi′(Ĥ([H])))

= max
i,i′

λtπiπi′ (Hπc(H))
d̃(hπi(Hπc(H)), hπi′ (Hπc(H)))

= max
i,i′

λtii′(H)
d̃(h′

i(H), h′
i′(H))

,

(D.10)

and by the same logic

1 = max
i,i′

d̃(hi(Ĥ([H])), hi′(Ĥ([H])))
λtii′(Ĥ([H]))

= max
i,i′

d̃(h′
i(H), h′

i′(H))
λtii′(H)

. (D.11)
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Wewill now construct the Wasserstein bound. Define the joint distribution over ν and ν̃,

H ∼ p(H)

νii′(H) := log(1
2
tii′(H))

ν̃ii′(H) := log(d(h′
i(H), h′

i′(H)))

(D.12)

where we have chosen d(·, ·) = 1
2λ d̃(·, ·). Note that the marginal distribution of ν matches its

definition in the statement of the theorem, and that, applying Eqn. D.8 and Eqn. D.9, the marginal

distribution of ν̃ also matches its definition. Using the fact that log is a monotonically increasing

function, Eqn. D.10 gives

log sup
i,i′

exp(νii′(H))
exp(ν̃ii′(H))

≤ log(1 + ϵ)

sup
i,i′

[νii′(H)− ν̃ii′(H)] ≤ ϵ,

and similarly using the bound from Eqn. D.11, supi,i′ [ν̃i,i′(H) − νi,i′(H)] ≤ 0.Thus, with proba-

bility 1 under p(H),

‖ν(H)− ν̃(H)‖∞ = sup
i,i′
|νii′(H)− ν̃ii′(H)| ≤ ϵ.

Recall that the Wasserstein distance between the distribution of two random variables ν and ν̃ can

be written as

W1(p(ν), p(ν̃)) = inf
γ∈J

Eγ [‖ν − ν̃‖∞]
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whereJ is the set of joint distributions with marginals corresponding to the distributions of ν and

ν̃ (Dudley 64 , Chap. 11.8). Using the joint distribution in Eqn. D.12, the Wasserstein distance is

bounded by

W1(p(ν), p(ν̃)) ≤ EH∼p(H)[‖ν(H)− ν̃(H)‖∞] ≤ ϵ. (D.13)

Now consider the case whereW1(p(ν), p(ν̃)) = 0. (N.b. in this case, we do not need to assume

that the minimum time between nodes inH is greater than η > 0.) Since the Wasserstein metric is a

metric on the space of probability distributions (Dudley 64 Lemma 11.8.3), p(ν) = p(ν̃) a.e.. Using

the standard properties of Gaussian processes (Williams & Rasmussen 289 , Chap. 2), the GPLVM

model (Eqn. 4.5) can be written as

G ∼ G

Zi
iid∼ G for i ∈ N

ν̃ii′ := log d(Zi, Zi′)

X1:∞ ∼ MultivariateNormal(µ,Σii′ := σ2 exp(− exp ν̃ii′)),

(D.14)

which is equivalent to the OUT distribution,

H ∼ p(H)

νii′ := log[1
2
tii′(H)]

X ′
1:∞ ∼ MultivariateNormal(µ,Σi,i′ := σ2 exp(− exp νi,i′)).

(D.15)
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So the distribution p(X1:∞) produced by the GPLVM is equivalent to the distribution p(X ′
1:∞)

produced by the OUTmodel a.e..

D.3 Simulation details

In both scenarios, we generated sequences of fixed length |X| = 30, with an alphabet size ofB +

1 = 4 (corresponding to nucleotides).

Scenario 1We simulated from a Potts model

ppotts(x) = 1
Z
exp

∑
l

∑
b

hlbxlb +
∑

l

∑
l′>l

∑
b

∑
b′

ell′bb′xlbxlb′



where h is the sitewise energies, e is the pairwise energies, x is a one-hot sequence encoding, l indexes

sequence positions and b indexes letters. Following the simulations in Ingraham&Marks 121 , which

were intended to roughly match the statistics of typical real protein Potts models, we drew hlb ∼

InvGamma(2, 0.8) and

All′ =


1 if l′ = l + 1

Bernoulli(0.1) otherwise

Bll′bb′ ∼ Normal(0, 1.2)

ell′bb′ = All′Bll′bb′ .

The energies h and ewere drawn once, and the same values used across independent simulations.
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We sampled from the model using a Gibbs sampler with 100 steps of burn-in and 10 parallel chains

using the code from Ingraham&Marks 121

(https://github.com/debbiemarkslab/persistent-vi). We shuffled the resulting samples

to remove autocorrelation.

Scenario 2We used a site-wise independent fitness function:

f(x) =
30∑

l=1

∑
b

hlbxlb,

with site-wise residue biases hl, where xl is a one-hot encoding of the letter at the l-th position of

x. To generate phylogenetically correlated sequences, we sampled phylogenetic trees from a King-

man Coalescent (Bertoin 22 , Def. 2.1) with rate 1. Starting from a random sequence drawn from the

steady state distribution at the root, we evolved the sequence simulating a Wright process in a hap-

loid population (Sella &Hirsh 230 , Eqn. 3) according to the tree and fitness function. In particular,

for sequences x0, x that are one mutation away, the mutation rate is

lim
τ→0

1
τ
P τ (x, x0) = Neff

e2(f(x)−f(x0)) − 1
e2Neff(f(x)−f(x0)) − 1

,

where we set the effective population size toNeff = 10000. This stochastic process has steady state

p∞(x) ∝ exp (2(Neff − 1)f(x)) ,

(Sella &Hirsh 230 , Eqn. 7).

454

https://github.com/debbiemarkslab/persistent-vi


SWI modelWe fit the SWI model with maximum likelihood estimation.

BEAR model In these simulations, we used a vanilla BEARmodel with a uniform embedded

ARmodel (i.e. a BayesianMarkov model) for simplicity. We set the Dirichlet prior concentration to

the constant α = 0.5. Based on the theoretical analysis in Amin et al. 12 (Thm. 35), we used a prior

on lags of the form

p(L) ∝ exp(−BL) (D.16)

whereB is the alphabet size (4 for nucleotides). We inferred the prior via empirical Bayes, marginal-

izing over the transition probabilities following the protocol in Amin et al. 12 . Conditional on

lagL, sampling from the posterior over the BEARmodel is straightforward thanks to Dirichlet-

Categorical conjugancy.

EvaluationWe defined Sf following standard protocols for fitness estimation models. In partic-

ular, we let Sf (p) be the Spearman correlation between p(x) and f(x) for x ∈ ΛwhereΛ consists

of all possible single point mutations (i.e. single letter changes) of an initial (“wild-type”) sequence.

The wild-type sequence was chosen as the most likely sequence under p∞, computed exactly for

Scenario 2 and estimated based on the 106 samples for Scenario 1.

To estimate model perplexity (Fig. 4.4C and D.5B), we usedN = 10, 000 independent se-

quences from p0 and computed the per-residue perplexity

exp
(
− 1∑N

n=1 |Xn|

N∑
n=1

log p(Xn)
)
, (D.17)
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A B

Figure D.3: (A) Same as Fig. 4.4A, for four independent simulations following Scenario 1. (B) Same as Fig. 4.4B, for four

independent simulations following Scenario 2.

where |Xn| is the sequence length and p(Xn) is the probability of the sequence under the model.

To estimate the KL to the fitness distribution in Scenario 2 (Fig. 4.4D) , we sampledN =

10, 000 independent sequences from p∞, {X1, . . . , XN} and estimated

kl(p∞||p) ≈ H(p∞)− 1
N

N∑
n=1

log p(Xn),

whereH(p∞) is the entropy of p∞, which can be computed analytically. For BEAR, we plotted the

KL to the posterior predictive, which, using Jensen’s inequality can also be seen to lower bound

EΠBEAR(p|Xtrain)[kl(p
∞||p)],

whereΠBEAR(p|Xtrain) is the BEAR posterior learned from the training dataset.
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SWI fit

stationary

Figure D.4: Probability of each nucleotide at each position learned by the SWImodel (above) and in the stationary distri-

bution p∞ (below), for a simulation from Scenario 2.
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Figure D.5: (A) Fraction of independent simulations (out of 10 total), following Scenario 1 (Sec. 4.6), in which Hypothesis

2 was accepted at levelα = 0.025. (B) Perplexity on heldout data of the BEAR and the SWImodels in Scenario 1. Thick

line corresponds to the average over 10 individual simulations (thin lines).
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D.4 Empirical results details

D.4.1 Data

Prediction task #1 (functional effect) Following standard practice, we report the absolute value

of the Spearman correlation as Sf (p), since in some assays a negative change in the measured quan-

tity corresponds to larger fitness (note that in all cases the predicted directionality of the effect un-

der each model was correct). We focused on single amino acid substitutions, taking only those for

which EVE was able to make a prediction (EVE is limited by its reliance on a multiple sequence

alignment). We used the same data as in Shin et al. 235 , Table 1, taking the 37 experiments per-

formed on the following 32 proteins: UBC9_HUMAN, UBE4B_MOUSE, P84126_THETH,

HIS7_YEAST, BLAT_ECOLX, IF1_ECOLI, PTEN_HUMAN, B3VI55_LIPST, GAL4_YEAST,

POLG_HCVJF, PABP_YEAST, CALM1_HUMAN, AMIE_PSEAE, TRPC_THEMA,

RASH_HUMAN, YAP1_HUMAN, TRPC_SULSO, DLG4_RAT, BG_STRSQ, KKA2_KLEPN,

HSP82_YEAST, B3VI55_LIPST (stabilized), MK01_HUMAN, HIV BF520 env, SUMO1_HUMAN,

RL401_YEAST, PA_FLU, HG_FLU, TPMT_HUMAN, HIV BG505 env, TPK1_HUMAN, and

MTH3_HAEAE (stabilized).

Prediction task #2 (pathogenicity)We used the pathogenicity labels of single amino acid sub-

stitutions curated from ClinVar148 in Frazer et al. 80 . We considered labels for 87 human proteins

less than 250 amino acids in length: AICDA, AQP2, ATPF2, B9D2, CAH5A, CAV3, CD40L,

CF410, CHC10, CIA30, CLD16, CLN8, COQ4, CRBB2, CRGD, CTRC, CXB1, CXB2, CXB3,
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CXB4, CXB6, CY24A, DERM, DGUOK, DHDDS, EDAD, EFTS, ELNE, ETFB, ETHE1,

EXOS3, FGF10, FGF23, FOXE3, FRDA, GP1BB, HBB, HEM4, HSPB1, HSPB8, IFM5, IFT27,

JAGN1, KAD2, KCNE1, KCNE2, KITM, LITAF, MMAB,MMAC,MPU1, MYPR, NDP,

NDUS8, NFU1, NKX25, NMNA1, OPA3, PAHX, PDYN, PMM2, PMP22, PNPH, PNPO,

PROP1, PSPC, PTPS, RASH, RNH2A, S5A2, SAP3, SBDS, SCO1, SDHB, SDHF2, SIX1, SIX3,

SOMA, TMM70, TNNT2, TPK1, TPM2, TR13B, TWST1, VHL, XLRS1, ZC4H2.

Training dataAll models were trained on datasets of protein sequences gathered as described

in Shin et al. 235 for pathogenicity effect prediction tasks and as described in Frazer et al. 80 for func-

tional effect prediction tasks. SWI and EVE were trained on the multiple sequence alignment, while

Wavenet and BEARwere trained on the raw sequences as described in Shin et al. 235 . All datasets

were uniformly subsampled to produce a 75%/25% train/test split.

D.4.2 Models and code

The SWI model was trained via maximum likelihood.

TheWavenet model was trained via maximum likelihood with the default architecture, hyperpa-

rameters and training protocol described in Shin et al. 235 , for 100,000 steps. Code is from https:

//github.com/debbiemarkslab/SeqDesign. We did not apply the Wavenet model to the sec-

ond prediction task, as it has only previously been developed for the first task.

The EVEmodel was trained via variational inference, using the same architecture, hyperparam-

eters, and training protocol described in Frazer et al. 80 . Code is from https://github.com/

debbiemarkslab/EVE. To match the protocol of the original paper, EVE was – unlike SWI, Wavenet
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and BEAR – (a) trained on the full dataset rather than the training set alone, and (b) used a se-

quence reweighting heuristic.

The BEARmodel used an embedded convolutional neural network (the same architecture as

used in Amin et al. 12 , with layer 1 width of 16, filter width of 5 and 30 filters total) and a uniform

prior over lags 2, 3, 5, 7, and 9. Code is from https://github.com/debbiemarkslab/BEAR.

The model was trained using empirical Bayes, as described in Amin et al. 12 , for 500 steps with a

batch size of 500000 kmers. To construct posterior credible intervals, we used 41 samples from the

posterior for prediction task #1, and 1000 samples for prediction task #2.

We computed the heldout perplexity (Eqn. D.17) for the BEAR posterior predictive and for

Wavenet to produce Fig. D.6.

D.4.3 Convergence experiments

To plot the convergence of the posterior over p0 as a function ofN (Fig. 4.5CD, D.7 and D.8), we

used a vanilla BEARmodel, a nonparametric BayesianMarkov model. Note that here we fixed the

embedded ARmodel, rather than refitting with largerN , so that we could analyze the the conver-

gence behavior with reference to the asymptotic results of Thm. 35 in Amin et al. 12 , which does

not take into account empirical Bayes. We set the Dirichlet concentration to 10 and used a prior

over lags as in Eqn. D.16.
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Figure D.6: Ratio of the per residue perplexity on heldout data of theWavenet model and of the BEARmodel posterior

predictive, across the 37 assays used for the first prediction task. Note lower perplexity corresponds to better density

estimation performance.

Supplementary consitency figure

A B C

D E

Figure D.7: Same as Fig. 4.5CD, for 5 additional assay examples. A-C are each distinctβ-lactamase assays; D is fromGAL4

(DNA-binding domain); E is fromUBE4B (U-box domain).
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A B C D

E F G H

Figure D.8: Convergence of the BEAR posterior over AUCswithN (green distributions), compared to the AUC of SWI

(blue line) and EVE (yellow line), for the second prediction task. (A) is for the CXB1 gene, (B) CXB6, (C) EXOS3, (D) FGF23,

(E)OPA3, (F) PAHX, (G) PROP1, (H) S5A2.

D.4.4 Interpolation experiments

We fit a BEARmodel using the architecture and training protocol described in Sec. D.4.2, opti-

mizing both the parameters of the ARmodel and h via empirical Bayes. We then varied h from its

optimized value, and recalculated the total marginal likelihood and the posterior distribution over

Sf (p) (Fig. 4.5EF and D.9). We also computed the value of Sf (qθ̂) for the fit BEARmodel in the

h→ 0 limit (Fig. D.10).
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Supplementary h scan figure

A
1e6 1e6 1e7 1e7

B C D

1e6 1e6 1e6 1e6
E F G H

Figure D.9: Same as Fig. 4.5EF, for 8 additional assay examples. (A) Aliphatic amidase, (B) levoglucosan kinase (sta-

bilized), (C) HIV env protein (BF520), (D)β-glucosidase, (E) UBE4B (U-box domain) (F) TIM barrel, (G) thiopurine S-

methyltransferase, (H) thiamin pyrophosphokinase 1.

functional effect prediction tasks (assays)

pathogenicity prediction tasks (genes)

A

B

Figure D.10: Same as Fig. 4.5AB, with the addition of the ARmodel in theh → 0 limit (purple). In prediction task 1

(A), Hypothesis 2 is accepted in 28/37 assays (75%) while Hypothesis 1 is accepted in 6/37 (16%) for the ARmodel. In

prediction task 2 (B), Hypothesis 2 is accepted in 16/97 genes (16%) andHypothesis 1 is accepted in 17/97 genes (18%)

for the ARmodel.
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E.1 Methods details

E.1.1 Calibrating T

The SVC contains a hyperparameter T > 0. To choose an appropriate value of T , we aim, roughly,

to match the coverage of the generalized posterior

πsvcN (θ)dθ = 1
zN

exp
(
− N

T
n̂ksd(p0(x))‖q(x|θ))

)
π(θ)dθ

to the coverage of the standard Bayesian posterior

πklN (θ)dθ = 1
q(X(1:N))

exp
( N∑

i=1
log q(X(i)|θ)

)
π(θ)dθ

when the model is well-specified.

Let θ∗ be the true parameter value, such that p0(x) = q(x|θ∗) almost everywhere. LetGkl(θ) :=

∇2
θEX∼p0 [− log q(X|θ)] and let θklN := argmax

∑N
i=1 log q(X(i)|θ) be the maximum likelihood

estimator. Let hklN be the density of
√
N(θ − θklN )when θ ∼ πklN . Under regularity conditions176,

according to the Bernstein–vonMises theorem, hklN converges to a normal distribution in total varia-

tion, ∫
Rm

∣∣∣hklN (x)−N
(
x | 0, Gkl(θ∗)−1)∣∣∣dx a.s.−−−−→

N→∞
0.

According to Theorem 5.6.9, the generalized posterior associated with the SVC has analogous be-

havior. LetGsvc(θ) := ∇2
θ

1
T nksd(p0(x)‖q(x|θ)) and let θsvcN := argmin n̂ksd(p0(x)‖q(x|θ)).
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Let hsvcN be the density of
√
N(θ − θsvcN )when θ ∼ πsvcN . Then by Theorem 5.6.9, hsvcN converges

to a normal distribution in total variation,

∫
Rm

∣∣∣hsvcN (x)−N
(
x | 0, Gsvc(θ∗)−1)∣∣∣dx a.s.−−−−→

N→∞
0.

For the uncertainty in each posterior to be roughly the same order of magnitude, we want

detGkl(θ∗) ≈ detGsvc(θ∗),

or equivalently,

T ≈
(
det
[
∇2

θ

∣∣
θ=θ∗

nksd(p0(x)‖q(x|θ))
]

det
[
∇2

θ

∣∣
θ=θ∗

EX∼p0 [− log q(X|θ)]
])1/m

.

To choose a single T value, we simulate true parameters from the prior, generate data from each

simulated true parameter, and take the median of the estimated T values. That is, we use the median

T̂ across samples drawn as

θ∗ ∼ π(θ)

X(i) iid∼ q(x|θ∗)

T̂ =

 | det
[
∇2

θ

∣∣
θ=θ∗

n̂ksd(p0(x)‖q(x|θ))
]
|

| det
[
∇2

θ

∣∣
θ=θ∗

1
N

∑N
i=1− log q(X(i)|θ)

]
|

1/m

.

(E.1)

In practice, we find that the order of magnitude of T̂ is stable across samples θ∗ from π(θ). See

Section E.4.3 for an example.
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E.1.2 Kernel recommendations

To obtain subsystem independence (Proposition 5.6.6), we suggest using a kernel that factors across

subspaces, such that k(X,Y ) = kF (XF , YF )kB(XB, YB)where kF and kB are integrally strictly

positive definite kernels. In the applications in Sections 5.7 and 5.8, we use the following kernel.

Definition E.1.1. The factored inverse multiquadric (IMQ) kernel is defined as

k(x, y) =
d∏

i=1

(
c2 + (xi − yi)2)β/d

for x, y ∈ Rd, where β ∈ [−1/2, 0) and c > 0.

Note that this kernel factors across any subset of dimensions, that is, if S ⊆ {1, . . . , d} and Sc =

{1, . . . , d} \ S, then we can write k(x, y) = kS(xS , yS)kSc(xSc , ySc). Thus, if the foreground

subspaceXF is the span of a subset of the standard basis, such that xF = V >x = xS for some S ⊆

{1, . . . , d}, then it follows that k factors as k(x, y) = kF (xF , yF )kB(xB, yB). Along with this

observation, the next result shows that the factored IMQ satisfies the conditions of Theorem 5.6.9

that pertain to k alone.

Proposition E.1.2. The factored IMQ kernel is symmetric, positive, bounded, integrally strictly

positive definite, and has continuous and bounded partial derivatives up to order 2.

Proof. It is clear that k(x, y) = k(y, x) and k(x, y) > 0. Next, we show that k has continuous

and bounded partial derivatives up to order 2. Note that we can write k(x, y) =
∏d

i=1 ψ(xi − yi)
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where ψ(r) = (c2 + r2)β/d for r ∈ R. Differentiating, we have

ψ′(r) = β

d

2r
c2 + r2ψ(r)

ψ′′(r) =
(β2

d2 −
β

d

)( 2r
c2 + r2

)2
ψ(r) + β

d

2
c2 + r2ψ(r).

Since r2 ≥ 0 and β < 0, |ψ(r)| ≤ c2β/d for all r ∈ R. Further, it is straightforward to verify that

|ψ′(r)| and |ψ′′(r)| are bounded on R by using the fact that |r|/(c2 + r2) ≤ 1/(2c). By the chain

rule, it follows that for all i, j, the functions k(x, y), |∂k/∂xi|, and |∂2k/∂xi∂yj | are bounded.

Thus, we conclude that k, ‖∇k‖, and ‖∇2k‖ are bounded.

Finally, we show that k is integrally strictly positive definite. First, for any d, for x, y ∈ Rd, the

function (x, y) 7→ (c2 + ‖x − y‖22)β/d is an integrally strictly positive definite kernel (see, for

example, Section 3.1 of Sriperumbudur et al. 244); we refer to this as the standard IMQ kernel. Since

the factored IMQ is a product of one-dimensional standard IMQ kernels, it defines a kernel on Rd

(Lemma 4.6 of Steinwart & Christmann 247) and is positive definite (Theorem 4.16 of Steinwart

& Christmann 247). By Bochner’s theorem (Theorem 3 of Sriperumbudur et al. 244), a continuous

positive definite kernel can be expressed in terms of the Fourier transform of a finite nonnegative

Borel measure. In particular, applying Bochner’s theorem to ψ(r), we have

k(x, y) = Ψ(x− y) :=
d∏

i=1
ψ(xi − yi) =

d∏
i=1

∫
R
exp
(
−
√
−1(xi − yi)ωi

)
dΛ0(ωi)

=
∫
Rd
exp
(
−
√
−1(x− y)>ω

)
dΛ(ω)
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by Fubini’s theorem, whereΛ0 is the finite nonnegative Borel measure on R associated with ψ(r)

andΛ = Λ0 × · · · × Λ0 is the resulting product measure on Rd. Applying Bochner’s theorem in

the other direction, we see thatΨ is a positive definite function. Moreover, since the standard IMQ

kernel is characteristic (Theorem 7 of Sriperumbudur et al. 244), it follows that the support ofΛ0 is

R (Theorem 9 of Sriperumbudur et al. 244), and thus the support ofΛ is Rd. This implies that the

factored IMQ kernel k is characteristic (Theorem 9 of Sriperumbudur et al. 244) and, since k is also

translation invariant, kmust be integrally strictly positive definite (Section 3.4 of Sriperumbudur

et al. 243).

Our choice of the factored IMQ kernel is motivated by the analysis of Gorham&Mackey 93 ,

which suggests that the standard IMQ is a good default choice for the kernelized Stein discrepancy,

particularly when working with distributions that are (roughly speaking) very spread out. In particu-

lar, it is straightforward to show that the factored IMQ kernel, like the standard IMQ kernel, meets

the conditions of Theorem 3.2 of Huggins &Mackey 116 . However, we do not pursue further the

question of whether the nksd with the factored IMQ detects convergence and non-convergence

since our statistical setting is different from that of Gorham&Mackey 93 , and we are assuming the

data consists of i.i.d. samples from some underlying distribution rather than correlated samples

from anMCMC chain which may or may not converge.
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E.1.3 Exact solution for exponential families

Here, we show that when q(x|θ) is an exponential family, the estimated nksd has the form

n̂ksd(p0(x)‖q(x|θ)) = θ>Aθ +B>θ + C (E.2)

whereA,B, andC depend on the data but not on θ. Since qθ(x) = q(x|θ) = λ(x) exp(θ>t(x)−

κ(θ)), we have sqθ
(x) = ∇x logλ(x) + (∇xt(x))>θ where (∇xt(x))ij = ∂ti/∂xj . Thus, we can

write

uθ(x, y) := sqθ
(x)>sqθ

(y)k(x, y) + sqθ
(x)>∇yk(x, y) + sqθ

(y)>∇xk(x, y) (E.3)

+ trace(∇x∇>
y k(x, y))

= θ>[(∇xt(x))(∇yt(y))>k(x, y)]θ

+ [(∇x logλ(x))>(∇yt(y))>k(x, y) + (∇y logλ(y))>(∇xt(x))>k(x, y)

+ (∇xk(x, y))>(∇yt(y))> + (∇yk(x, y))>(∇xt(x))>]θ

+ [(∇x logλ(x))>(∇y logλ(y))k(x, y) + (∇y logλ(y))>(∇xk(x, y))

+ (∇x logλ(x))>(∇yk(x, y)) + trace(∇x∇>
y k(x, y))]. (E.4)
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Then the estimated nksd takes the form in Equation E.2 if we choose

A := 1∑
i 6=j k(X(i), X(j))

∑
i 6=j

∇xt(X(i))∇xt(X(j))>k(X(i), X(j))

B> := 1∑
i 6=j k(X(i), X(j))

∑
i 6=j

[
(∇x logλ(X(i)))>∇xt(X(j))>k(X(i), X(j))

+ (∇x logλ(X(j)))>∇xt(X(i))>k(X(i), X(j))

+ (∇xk(X(i), X(j)))>∇xt(X(j))>

+ (∇yk(X(i), X(j)))>∇xt(X(i))>]
C := 1∑

i 6=j k(X(i), X(j))
∑
i 6=j

[
(∇x logλ(X(i)))>(∇x logλ(X(j)))k(X(i), X(j))

+ (∇x logλ(X(j)))>∇xk(X(i), X(j))

+ (∇x logλ(X(i)))>∇yk(X(i), X(j))

+ trace(∇x∇>
y k(X(i), X(j)))

]
.
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If the prior on θ isN (µ,Σ0), then the SVC is

K =
(2π
N

)mB/2
(2π)−mF /2(detΣ0)−1/2

×
∫
exp
(
− N

T
[θ>Aθ +B>θ + C]

)
exp
(
− 1

2
(θ − µ)>Σ−1

0 (θ − µ)
)
dθ

=
(2π
N

)mB/2
(2π)−mF /2(detΣ0)−1/2

×
∫
exp
(
− 1

2
θ>
(2N
T
A+ Σ−1

0

)
θ +

(
− N

T
B> + µ>Σ−1

0

)
θ − N

T
C − 1

2
µ>Σ−1

0 µ

)
dθ

=
(2π
N

)mB/2
(detΣ0)−1/2

(
det
(2N
T
A+ Σ−1

0

))−1/2

× exp
(1

2

(
− N

T
B> + µ>Σ−1

0

)>(2N
T
A+ Σ−1

0

)−1(
− N

T
B> + µ>Σ−1

0

)
− N

T
C − 1

2
µ>Σ−1

0 µ

)
.

Meanwhile, if q(x|θ) = N (θ,Σ)whereΣ is a fixed covariance matrix, then we have∇x logλ(x) =

−Σ−1x and∇xt(x) = Σ−1.

E.1.4 Comparing many foregrounds using approximate optima

Here, we justify the technique described in Section 5.2.3. As in Section 5.2.3, define ℓj(θ) =

n̂ksd(p0(xFj )‖q(xFj |θ)) for j ∈ {1, 2}, and let θN (w) = argminθ L(w, θ)where

L(w, θ) := ℓ1(θ) + w(ℓ2(θ)− ℓ1(θ))
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forw ∈ [0, 1]. We assume that the conditions of Theorem 5.6.9 are met, over bothXF1 andXF2 .

Since (∂L/∂θi)(w, θN (w)) = 0, we have

0 = ∂

∂w

(∂L
∂θi

(w, θN (w))
)

= ∂2L
∂w∂θi

(w, θN (w)) +
∑

j

∂2L
∂θi∂θj

(w, θN (w))
( ∂

∂w
θN,j(w)

)
,

or equivalently, in matrix/vector notation,

0 = ∇w(∇θL(w, θN (w))) = ∇θ∇wL(w, θN ) +∇2
θL(w, θN )∇w(θN (w)).

Rearranging, we have

∇wθN (w) = −
(
∇2

θL(w, θN )
)−1∇θ∇wL(w, θN ).

Atw = 0we find, plugging back in the definition ofL,

∇wθN (0) = −∇2
θℓ1(θN (0))−1(∇θℓ2(θN (0))−∇θℓ1(θN (0)))

= −∇2
θℓ1(θN (0))−1∇θℓ2(θN (0)).

Applying a first-order Taylor series expansion gives us θN (1) ≈ θN (0) + ∇wθN (0), which yields

Equation 5.13.
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(a) (b)

(c) (d)

Figure E.1: Behavior of the Stein volume criterionK, the foregroundmarginal likelihoodwith a background volume
correctionK(a), and the foregroundmarginal nksdK(b) on toy examples. The plots show the results for 5 randomly

generated datasets (thin lines) and the average over 100 random datasets (bold lines). Here, unlike Figure 5.2, the Pitman-

Yor expression formB is used, withα = 0.5, θ = 1, andD = 0.2.

E.2 Asymptotics of the alternative selection criteria

Theorem 5.6.17 shows that the SVC exhibits all four types of consistency: data selection, nested

data selection, model selection, and nested model selection. In this section, we establish the consis-

tency properties of the alternative criteria considered in Section 5.3.
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E.2.1 Setup

We first review the asymptotics of the standard marginal likelihood, discussed in depth by Dawid 50

and Hong & Preston 108 , for example. Define

fklN (θ) := − 1
N

N∑
i=1

log q(X(i)|θ), θklN := argmin
θ

fklN (θ),

fkl(θ) := −EX∼p0 [log q(X|θ)], θkl∗ := argmin
θ

fkl(θ).

Letm be the dimension of the parameter space. Under suitable regularity conditions176, the Laplace

approximation to the marginal likelihood is

q(X(1:N)) =
∫
q(X(1:N)|θ)π(θ)dθ ∼

exp
(
−NfklN (θklN )

)
π(θkl∗ )∣∣ det∇2

θ f
kl(θkl∗ )

∣∣1/2

(2π
N

)m/2
(E.5)

almost surely, where aN ∼ bN indicates that aN/bN → 1 asN →∞. We can rewrite this as

log q(X(1:N)) +N(fklN (θklN )− fklN (θkl∗ ))

+N(fklN (θkl∗ )− fkl(θkl∗ )) +Nfkl(θkl∗ )

+ m

2
logN − log

 π(θkl∗ )(2π)m/2∣∣ det∇2
θf

kl(θkl∗ )
∣∣1/2

 a.s.−−−−→
N→∞

0.

(E.6)
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As shown by Dawid 50 and Hong & Preston 108 , under regularity conditions,

N(fklN (θklN )− fklN (θkl∗ )) = OP0(1)

N(fklN (θkl∗ )− fkl(θkl∗ )) = OP0(
√
N)

Nfkl(θkl∗ ) = OP0(N)

log

 π(θkl∗ )(2π)m/2∣∣ det∇2
θf

kl(θkl∗ )
∣∣1/2

 = OP0(1).

(E.7)

The nksd marginal likelihood has a similar decomposition. Following Section 5.6, define

fnksdN (θ) := 1
T
n̂ksd(p0(x)‖q(x|θ)), θnksdN := argmin

θ

fnksdN (θ),

fnksd(θ) := 1
T
nksd(p0(x)‖q(x|θ)), θnksd∗ := argmin

θ

fnksd(θ).

As shown in Theorem 5.6.9,

zN :=
∫
exp(−NfnksdN (θ))π(θ)dθ ∼ exp(−NfnksdN (θnksdN ))π(θnksd∗ )∣∣ det∇2

θf
nksd(θnksd∗ )

∣∣1/2

(2π
N

)m/2

almost surely asN →∞. As above, we can rewrite this as

log zN +N(fnksdN (θnksdN )− fnksdN (θnksd∗ ))

+N(fnksdN (θnksd∗ )− fnksd(θnksd∗ )) +Nfnksd(θnksd∗ )

+ m

2
logN − log

 π(θnksd∗ )(2π)m/2∣∣ det∇2
θf

nksd(θnksd∗ )
∣∣1/2

 a.s.−−−−→
N→∞

0.

(E.8)
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By Theorem 5.6.12, we have

N(fnksdN (θnksdN )− fnksdN (θnksd∗ )) = OP0(1),

N(fnksdN (θnksd∗ )− fnksd(θnksd∗ )) = OP0(
√
N),

Nfnksd(θnksd∗ ) = OP0(N),

log

 π(θnksd∗ )(2π)m/2∣∣ det∇2
θf

nksd(θnksd∗ )
∣∣1/2

 = OP0(1),

(E.9)

and further, when the model is well-specified, such that nksd(p0(x)‖q(x|θnksd∗ )) = 0,

N(fnksdN (θnksd∗ )− fnksd(θnksd∗ )) = OP0(1). (E.10)

For ease of reference, here are the various scores that we consider for model/data selection.

Marginal likelihood of the augmented model (foreground+background):

q̃(X(1:N)|F) =
∫ ∫

q(X(1:N)
F |θ) q̃(X(1:N)

B |X(1:N)
F , ϕB)π(θ)πB(ϕB)dθdϕB.

Foreground marginal nksd, background volume correction (a.k.a. the SVC):

K :=
(2π
N

)mB/2 ∫
exp
(
− N

T
n̂ksd(p0(xF )‖q(xF |θ))

)
π(θ)dθ.
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Foreground marginal likelihood, background volume correction:

K(a) :=
(2π
N

)mB/2
q(X(1:N)

F ).

Foreground marginal nksd:

K(b) :=
∫
exp

(
−N
T
n̂ksd(p0(xF )‖q(xF |θ))

)
π(θ)dθ.

Foreground marginal kl, background volume correction:

K(c) :=
(2π
N

)mB/2 ∫
exp (−N k̂l(p0(xF )‖q(xF |θ)))π(θ)dθ.

Foreground nksd, background volume correction:

K(d) :=
(2π
N

)mB/2
exp
(
−N
T
min

θ
n̂ksd(p0(xF )‖q(xF |θ))

)
.

Foreground nksd, foreground and background volume correction (a.k.a. BIC for SVC)

KBIC :=
(2π
N

)(mF +mB)/2
exp
(
− N

T
min

θ
n̂ksd(p0(xF )‖q(xF |θ))

)
.

478



E.2.2 Data selection

AssumemBj = o(N/ logN) for j ∈ {1, 2}. By Equations E.6 and E.7,

1
N
log
K(a)

1

K(a)
2

P0−−−−→
N→∞

EX∼p0 [− log q(XF2 |θkl2,∗)]− EX∼p0 [− log q(XF1 |θkl1,∗)] (E.11)

= kl(p0(xF2)‖q(xF2 |θkl2,∗)) +HF2 − kl(p0(xF1)‖q(xF1 |θkl1,∗))−HF1 ,

soK(a) does not satisfy data selection consistency. The SVC satisfies data selection consistency by

Theorem 5.6.17 (part 1). We show that the other scores also satisfy data selection consistency. Since

K(b) = (2π/N)−mB/2K whereK is the SVC, by Theorem 5.6.17 (part 1),

1
N
log
K(b)

1

K(b)
2

P0−−−−→
N→∞

1
T
nksd(p0(xF2)‖q(xF2 |θnksd2,∗ ))− 1

T
nksd(p0(xF1)‖q(xF1 |θnksd1,∗ )).

(E.12)

By Equation E.11 and the fact thatK(c) = exp(NHF )K(a), we have

1
N
log
K(c)

1

K(c)
2

P0−−−−→
N→∞

kl(p0(xF2)‖q(xF2 |θkl2,∗))− kl(p0(xF1)‖q(xF1 |θkl1,∗)). (E.13)

SinceK(d) = (2π/N)mB/2 exp(−NfnksdN (θnksdN )), then by Equation E.9,

1
N
log
K(d)

1

K(d)
2

P0−−−−→
N→∞

1
T
nksd(p0(xF2)‖q(xF2 |θnksd2,∗ ))− 1

T
nksd(p0(xF1)‖q(xF1 |θnksd1,∗ )).

(E.14)
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Similarly, sinceKBIC = (2π/N)mF /2K(d),

1
N
log
KBIC1
KBIC2

P0−−−−→
N→∞

1
T
nksd(p0(xF2)‖q(xF2 |θnksd2,∗ ))− 1

T
nksd(p0(xF1)‖q(xF1 |θnksd1,∗ )).

(E.15)

These methods therefore satisfy data selection consistency. For the marginal likelihood of the aug-

mented model, supposemB1 andmB2 do not depend onN . Then by Equation E.6,

1
N
log

q̃(X(1:N)|F1)
q̃(X(1:N)|F2)

P0−−−−→
N→∞

EXF2 ∼p0 [− log q(XF2 |θkl2,∗)] + EX∼p0 [− log q̃(XB2 |XF2 , ϕ
kl
2,∗)]

(E.16)

− EXF1 ∼p0 [− log q(XF1 |θkl1,∗)]− EX∼p0 [− log q̃(XB1 |XF1 , ϕ
kl
1,∗)]

]

We can rewrite this in terms of the KL divergence. First note the decomposition,

H = −
∫
p0(x) log p0(x)dx = −

∫
p0(xFj ) log p0(xFj )dxFj −

∫
p0(x) log p0(xBj |xFj )dx

for j ∈ {1, 2}. Adding and subtracting the entropyH in Equation E.16, and using the fact that the

background model is well-specified,

1
N
log

q̃(X(1:N)|F1)
q̃(X(1:N)|F2)

P0−−−−→
N→∞

kl(p0(xF2)‖q(xF2 |θkl2,∗)) + kl(p0(xB2 |xF2)‖q̃(xB2 |xF2 , ϕ
kl
2,∗))

− kl(p0(xF1)‖q(xF1 |θkl1,∗))− kl(p0(xB1 |xF1)‖q̃(xB1 |xF1 , ϕ
kl
1,∗))

= kl(p0(xF2)‖q(xF2 |θkl2,∗))− kl(p0(xF1)‖q(xF1 |θkl1,∗)). (E.17)
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E.2.3 Nested data selection

In nested data selection, we are concerned with situations in whichXF2 ⊂ XF1 and the model

is well-specified over bothXF1 andXF2 . Assume further thatmB2 − mB1 does not depend on

N . First, considerK(d) andKBIC. SinceK(d) = (2π/N)mB/2 exp(−NfnksdN (θnksdN )) and by

Theorem 5.6.12, fnksdN (θnksdN ) = OP0(1/N), we have

1
logN

log
K(d)

1

K(d)
2

P0−−−−→
N→∞

mB2 −mB1

2
. (E.18)

Likewise, sinceKBIC = (2π/N)mF /2K(d), it follows that

1
logN

log
KBIC1
KBIC2

P0−−−−→
N→∞

mF2 +mB2 −mF1 −mB1

2
. (E.19)

As in Section 5.6.4, it is natural to assumemB2 > mB1 andmF2 +mB2 > mF1 +mB1 , in which

case these criteria satisfy nested data selection consistency.

None ofK(a),K(b), andK(c) are guaranteed to satisfy nested data selection consistency, because

the contribution of background model complexity is negligible or nonexistent. To see this, note that

assumingmBj = o(N/ logN), by Equation E.11 we have

1
N
log
K(a)

1

K(a)
2

P0−−−−→
N→∞

HF2 −HF1 . (E.20)
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Meanwhile, sinceK(b) = (2π/N)−mB/2K then by Theorem 5.6.17 (part 2),

1
logN

log
K(b)

1

K(b)
2

P0−−−−→
N→∞

mF2 −mF1

2
. (E.21)

SinceXF2 ⊂ XF1 , we havemF2 ≤ mF1 except perhaps in highly contrived scenarios. IfmF2 <

mF1 then Equation E.21 shows that log(K
(b)
1 /K(b)

2 ) P0−→ −∞. On the other hand, ifmF2 =

mF1 , then by Equations E.8 and E.9, log(K
(b)
1 /K(b)

2 ) = OP0(1), so it is not possible to have

log(K(b)
1 /K(b)

2 ) P0−→∞. Therefore,K(b) does not satisfy nested data selection consistency.

SinceK(c) = eNHFK(a) = eNHF (2π/N)mB/2q(X(1:N)
F ), then by Equations E.6 and E.7,

1√
N
log
K(c)

1

K(c)
2

=
√
N

( 1
N

N∑
i=1

log
p0(X(i)

F1
)

p0(X(i)
F2

)
− E

(
log

p0(XF1)
p0(XF2)

))
+OP0(N−1/2 logN).

(E.22)

If σ2 := VP0(log p0(XF1)/p0(XF2)) is positive and finite, then by the central limit theorem and

Slutsky’s theorem,N−1/2 log(K(c)
1 /K(c)

2 ) D−→ N (0, σ2). Thus,K(c) randomly selectsF1 orF2

with equal probability, and therefore, it does not satisfy nested data selection consistency.

For the marginal likelihood of the augmented model, supposemB1 andmB2 do not depend

onN . The marginal likelihood achieves nested data selection consistency because the augmented

models are both well-specified and describe the complete data spaceX ; this guarantees that the

OP0(
√
N) terms in the marginal likelihood decomposition cancel. Specifically, p0(x) = q(x |
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θklj,∗, ϕ
kl
j,∗,Fj) for j ∈ {1, 2}, and thus, by Equations E.6 and E.7 applied to the augmented model,

1
logN

log
q̃(X(1:N)|F1)
q̃(X(1:N)|F2)

P0−−−−→
N→∞

mF2 +mB2 −mF1 −mB1

2
. (E.23)

Nested data selection consistency follows assumingmF2 +mB2 > mF1 +mB1 as before. This can

be contrasted with Equation E.22, where although both foreground models are well-specified, they

describe different data (X(1:N)
F1

versusX(1:N)
F2

), so theOP0(
√
N) terms remain.

E.2.4 Model selection

All of the criteria we consider satisfy model selection consistency. To see this, we apply the same

asymptotic analysis as used for data selection in Section E.2.2, under the same conditions onmB,

obtaining

1
N
log

q̃1(X(1:N)|F)
q̃2(X(1:N)|F)

P0−−−−→
N→∞

kl(p0(xF )‖q2(xF |θkl2,∗))− kl(p0(xF )‖q1(xF |θkl1,∗)), (E.24)

1
N
log
K(a)

1

K(a)
2

P0−−−−→
N→∞

kl(p0(xF )‖q2(xF |θkl2,∗))− kl(p0(xF )‖q1(xF |θkl1,∗)), (E.25)
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1
N
log
K(b)

1

K(b)
2

P0−−−−→
N→∞

1
T
nksd(p0(xF )‖q2(xF |θnksd2,∗ ))− 1

T
nksd(p0(xF )‖q1(xF |θnksd1,∗ )),

(E.26)

1
N
log
K(c)

1

K(c)
2

P0−−−−→
N→∞

kl(p0(xF )‖q2(xF |θkl2,∗))− kl(p0(xF )‖q1(xF |θkl1,∗)), (E.27)

1
N
log
K(d)

1

K(d)
2

P0−−−−→
N→∞

1
T
nksd(p0(xF )‖q2(xF |θnksd2,∗ ))− 1

T
nksd(p0(xF )‖q1(xF |θnksd1,∗ )),

(E.28)

1
N
log
KBIC1
KBIC2

P0−−−−→
N→∞

1
T
nksd(p0(xF )‖q2(xF |θnksd2,∗ ))− 1

T
nksd(p0(xF )‖q1(xF |θnksd1,∗ )).

(E.29)

Note that in contrast to the data selection case,K(a) satisfies model selection consistency since the

entropy termsHFj cancel due to the fact thatF is fixed. We can think of this as a consequence of

the kl divergence’s subsystem independence; if we are just interested in modeling a fixed foreground

space, there is no problem considering the foreground marginal likelihood alone34,35,212.
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E.2.5 Nested model selection

In nested model selection, since both models are well-specified, we have qj(xF |θklj,∗) = p0(xF ) =

qj(xF |θnksdj,∗ ) for j ∈ {1, 2}. Thus, the estimated divergences cancel:

n̂ksd(p0(xF )‖q1(xF |θnksd1,∗ )) = n̂ksd(p0(xF )‖q2(xF |θnksd2,∗ )),
N∑

i=1
log q1(X(i)

F |θ
kl
1,∗) =

N∑
i=1

log q2(X(i)
F |θ

kl
2,∗),

k̂l(p0(xF )‖q1(xF |θkl1,∗)) = k̂l(p0(xF )‖q2(xF |θkl2,∗)).

Using this along with Equations E.6–E.10, under the same conditions onmB as in Section E.2.2,

1
logN

log
q̃1(X(1:N)|F)
q̃2(X(1:N)|F)

P0−−−−→
N→∞

mF ,2 −mF ,1
2

, (E.30)

1
logN

log
K(a)

1

K(a)
2

P0−−−−→
N→∞

mF ,2 −mF ,1
2

, (E.31)

1
logN

log
K(b)

1

K(b)
2

P0−−−−→
N→∞

mF ,2 −mF ,1
2

, (E.32)

1
logN

log
K(c)

1

K(c)
2

P0−−−−→
N→∞

mF ,2 −mF ,1
2

, (E.33)
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log
K(d)

1

K(d)
2

= OP0(1), (E.34)

1
logN

log
KBIC1
KBIC2

P0−−−−→
N→∞

mF ,2 −mF ,1
2

, (E.35)

where we are using the assumption that the background model is the same in the two augmented

models q̃1 and q̃2 and somB,1 = mB,2. OnlyK(d) fails to satisfy nested model selection consis-

tency.

E.3 Proofs

E.3.1 Proofs of NKSD properties

Proof of Proposition 5.6.3. By assumption, the kernel is bounded, say |k(x, y)| ≤ B, and

sp, sq ∈ L1(P ). Thus, by the Cauchy–Schwarz inequality,

∣∣∣∣ ∫
X

∫
X

(sq(x)− sp(x))>(sq(y)− sp(y))k(x, y)p(x)p(y)dxdy
∣∣∣∣

≤ B
(∫

X ‖sq(x)− sp(x)‖p(x)dx
)2
<∞.

Since the kernel is integrally strictly positive definite and |k(x, y)| ≤ B,

0 <
∫

X

∫
X
k(x, y)p(x)p(y)dxdy ≤ B <∞. (E.36)
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Thus, the nksd is finite. Equation 5.30 follows from Theorem 3.6 of Liu et al. 158 .

Proof of Proposition 5.6.4. The denominator of the nksd is positive since k is integrally strictly

positive definite. Defining δ(x) = sq(x)− sp(x), the numerator of the nksd is

∫
X

∫
X
δ(x)>δ(y)k(x, y)p(x)p(y)dxdy =

d∑
i=1

∫
X

∫
X
δi(x)δi(y)k(x, y)p(x)p(y)dxdy. (E.37)

If δi(x)p(x) = 0 almost everywhere with respect to Lebesgue measure onX , then the ith term on

the right-hand side is zero. Meanwhile, if δi(x)p(x) is not a.e. zero, then
∫

X |δi(x)|p(x)dx > 0,

and hence, the ith term is positive since k is integrally strictly positive definite and δi ∈ L1(P ) by

assumption. Hence, the nksd is nonnegative, and equals zero if and only if δ(x)p(x) = 0 almost

everywhere.

Suppose δ(x)p(x) = 0 almost everywhere. Since p(x) > 0 onX by assumption, this implies

sp(x) = sq(x) a.e., and in fact, sp(x) = sq(x) for all x ∈ X by continuity. SinceX is open

and connected, then by the gradient theorem (that is, the fundamental theorem of calculus for line

integrals), p(x) ∝ q(x), and hence, p(x) = q(x) onX . Conversely, if p(x) = q(x) almost

everywhere, then δ(x)p(x) = 0 almost everywhere.

Proof of Proposition 5.6.6. Define

δ1(x1) := ∇x1 log q(x)−∇x1 log p(x) = ∇x1 log q(x1)−∇x1 log p(x1)

δ2(x2) := ∇x2 log q(x)−∇x2 log p(x) = ∇x2 log q(x2)−∇x2 log p(x2).
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LetX,Y ∼ p(x) independently. Note that E[k1(X1, Y1)] > 0 and E[k2(X2, Y2)] > 0 since k1

and k2 are integrally strictly positive definite by assumption. Therefore,

nksd(p(x)‖q(x)) = E[(∇x log q(X)−∇x log p(X))>(∇x log q(Y )−∇x log p(Y ))k(X,Y )]
E[k(X,Y )]

= E[δ1(X1)>δ1(Y1)k1(X1, Y1)]E[k2(X2, Y2)]
E[k1(X1, Y1)]E[k2(X2, Y2)]

+ E[δ2(X2)>δ2(Y2)k2(X2, Y2)]E[k1(X1, Y1)]
E[k1(X1, Y1)]E[k2(X2, Y2)]

= E[δ1(X1)>δ1(Y1)k1(X1, Y1)]
E[k1(X1, Y1)]

+ E[δ2(X2)>δ2(Y2)k2(X2, Y2)]
E[k2(X2, Y2)]

= nksd(p(x1)‖q(x1)) + nksd(p(x2)‖q(x2)).

The following modified version applies to the estimator n̂ksd(p‖q) (Equation 5.5).

Proposition E.3.1.

n̂ksd(p(x)‖q(x)) = nksd(p(x1)‖q(x1)) + nksd(p(x2)‖q(x2)) (E.38)

where

nksd(p(x1)‖q(x1)) :=
∑

i 6=j u1(X(i)
1 , X

(j)
1 )k2(X(i)

2 , X
(j)
2 )∑

i 6=j k1(X(i)
1 , X

(j)
1 )k2(X(i)

2 , X
(j)
2 )

u1(x1, y1) :=sq(x1)>sq(y1)k1(x1, y1) + sq(x1)>∇y1k1(x1, y1) + sq(y1)>∇x1k1(x1, y1)

+ trace(∇x1∇>
y1k1(x1, y1))

sq(x1) :=∇x1 log q(x1),
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and vice versa for nksd(p(x2)‖q(x2)) with the roles of 1 and 2 swapped.

Proof. Recall the definition of n̂ksd(p(x)‖q(x)) in Equation 5.5. Note that∇x1k(x, y) =

k2(x2, y2)∇x1k1(x1, y1) and∇x1 log q(x) = ∇x1 log q(x1). Examining u(x, y) term-by-term,

∇x log q(x)>∇y log q(y)k(x, y) =
[
∇x1 log q(x1)>∇y1 log q(y1)k1(x1, y1)

]
k2(x2, y2)

+
[
∇x2 log q(x2)>∇y2 log q(y2)k2(x2, y2)

]
k1(x1, y1),

∇x log q(x)>∇yk(x, y) =[∇x1 log q(x1)>∇y1k1(x1, y1)]k2(x2, y2)

+ [∇x2 log q(x2)>∇y2k2(x2, y2)]k1(x1, y1),

∇xk(x, y)>∇y log q(y) =[∇x1k1(x1, y1)>∇y1 log q(y1)]k2(x2, y2),

+ [∇x2k2(x2, y2)>∇y2 log q(y2)]k1(x1, y1)

trace(∇x∇>
y k(x, y)) = trace(∇x1∇>

y1k1(x1, y1))k2(x2, y2),

+ trace(∇x2∇>
y2k2(x2, y2))k1(x1, y1).

Thus, defining u1 and u2 as in Proposition E.3.1, we have

u(x, y) = u1(x1, y1)k2(x2, y2) + u2(x2, y2)k1(x1, y1),

k(x, y) = k1(x1, y1)k2(x2, y2).

The result follows.
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To interpret Proposition E.3.1, note that

EX,Y ∼p[u1(X1, Y1)k2(X2, Y2)]
EX,Y ∼p[k1(X1, Y1)k2(X2, Y2)]

=
EX1,Y1∼p(x1)[u1(X1, Y1)]
EX1,Y1∼p(x1)[k1(X1, Y1)]

= nksd(p(x1)‖q(x1)),

so nksd(p(x1)‖q(x1)) is an estimator of nksd(p(x1)‖q(x1)), and likewise for nksd(p(x2)‖q(x2)).

E.3.2 Proof of Theorems 5.6.9 and 5.6.11

Our proofs in this section build on the proof of Theorem 3 of Barp et al. 17 .

Proposition E.3.2. Under the assumptions of Theorem 5.6.9, for any compact convexC ⊆ Θ,

sup
θ∈C

|fN (θ)− f(θ)| a.s.−→ 0. (E.39)

Proof. First, we establish almost sure convergence for the denominator of fN (θ). Since k is as-

sumed to be bounded and to have bounded derivatives up to order two, we can chooseB < ∞

such thatB ≥ |k|+ ‖∇xk‖+ ‖∇x∇>
y k‖. In particular, the expected value of the kernel is finite:

∫
X

∫
X
|k(x, y)|P0(dx)P0(dy) ≤ B <∞. (E.40)

By the strong law of large numbers for U-statistics (Theorem 5.4A of Serfling 231),

1
N(N − 1)

∑
i 6=j

k(X(i), X(j)) a.s.−−−−→
N→∞

∫
X

∫
X
k(x, y)P0(dx)P0(dy). (E.41)
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Note that the limit is positive since k(x, y) > 0 for all x, y ∈ X . For the numerator, we establish

bounds on uθ and∇θuθ. LetC ⊆ Θ be compact and convex. By Equation 5.5, for all θ ∈ C and

all x, y ∈ X ,

|uθ(x, y)| ≤ |sqθ
(x)>sqθ

(y)k(x, y)|+ |sqθ
(x)>∇yk(x, y)|

+ |sqθ
(y)>∇xk(x, y)|+ | trace(∇x∇>

y k(x, y))|

≤ ‖sqθ
(x)‖‖sqθ

(y)‖B + ‖sqθ
(x)‖B + ‖sqθ

(y)‖B +Bd

≤ g0,C(x)g0,C(y)B + g0,C(x)B + g0,C(y)B +Bd

=: h0,C(x, y).

(E.42)

Similarly, for all θ ∈ C and all x, y ∈ X ,

‖∇θuθ(x, y)‖ ≤ ‖∇θ(sqθ
(x)>sqθ

(y))k(x, y)‖+ ‖∇θ(sqθ
(x)>∇yk(x, y))‖

+ ‖∇θ(sqθ
(y)>∇xk(x, y))‖+ ‖∇θ trace(∇x∇>

y k(x, y))‖

≤ g0,C(x)g1,C(y)B + g0,C(y)g1,C(x)B + g1,C(x)B + g1,C(y)B

=: h1,C(x, y).

(E.43)

Note that h0,C and h1,C are continuous and belong toL1(P0 × P0).

Let S1 ⊆ S2 ⊆ · · · ⊆ X be a sequence of compact sets such that ∪∞
M=1SM = X . Note that

this implies∪∞
M=1SM × SM = X × X . Suppose for the moment that, for eachM , the following

collections of functions are equicontinuous onC: (A) (θ 7→ uθ(x, y) : x, y ∈ SM ) and (B)
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(
θ 7→

∫
uθ(x, y)P0(dy) : x ∈ SM

)
. Assuming this, Theorem 1 of Yeo & Johnson 296 shows that

sup
θ∈C

∣∣∣∣ 1
N(N − 1)

∑
i 6=j

uθ(X(i), X(j))−
∫

X

∫
X
uθ(x, y)P0(dx)P0(dy)

∣∣∣∣ a.s.−−−−→
N→∞

0, (E.44)

and that θ 7→
∫

X
∫

X uθ(x, y)P0(dx)P0(dy) is continuous. (Note that although Yeo & Johnson 296

assumeX = R, their proof goes through without further modification for any nonemptyX ⊆ Rd.)

Combining Equations E.41 and E.44, we have

supθ∈C

∣∣ 1
N(N−1)

∑
i 6=j uθ(X(i), X(j))−

∫ ∫
uθ(x, y)P0(dx)P0(dy)

∣∣
1

N(N−1)
∑

i 6=j k(X(i), X(j))
a.s.−−−−→

N→∞
0.

Thus, it follows that supθ∈C |fN (θ)− f(θ)| → 0 a.s. by Equations E.41 and E.42. To complete the

proof, we must show that (A) and (B) are equicontinuous onC .

(A) Since θ 7→ uθ(x, y) is differentiable onC , then by the mean value theorem, we have that for

all θ1, θ2 ∈ C and all x, y ∈ SM ,

|uθ1(x, y)− uθ2(x, y)| ≤ ‖∇θ|θ=θ̃ uθ(x, y)‖‖θ1 − θ2‖

≤ h1,C(x, y)‖θ1 − θ2‖

≤
(

sup
x,y∈SM

h1,C(x, y)
)
‖θ1 − θ2‖ <∞

where θ̃ = γθ1 + (1 − γ)θ2 for some γ ∈ [0, 1]. Here, the second inequality holds since θ̃ ∈ C

by the convexity ofC , and the supremum is finite because a continuous function on a compact set
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attains its maximum. Therefore, (θ 7→ uθ(x, y) : x, y ∈ SM ) is equicontinuous onC .

(B) To see that
(
θ 7→

∫
uθ(x, y)P0(dy) : x ∈ SM

)
is equicontinuous onC , first note that

∫
|uθ(x, y)|P0(dy) ≤

∫
h0,C(x, y)P0(dy) <∞.

Further, due to Equations E.42 and E.43, we can apply the Leibniz integral rule78 Theorem 2.27

and find that∇θ

∫
uθ(x, y)P0(dy) exists and is equal to

∫
∇θuθ(x, y)P0(dy). Now we apply

the mean value theorem and the same reasoning as before to find that for all θ1, θ2 ∈ C and all

x ∈ SM ,

∣∣∣∫ uθ1(x, y)P0(dy)−
∫
uθ2(x, y)P0(dy)

∣∣∣ ≤ ∥∥∇θ|θ=θ̃

∫
uθ(x, y)P0(dy)

∥∥‖θ1 − θ2‖

≤ ‖θ1 − θ2‖
∫ ∥∥∇θ|θ=θ̃ uθ(x, y)

∥∥P0(dy)

≤ ‖θ1 − θ2‖ sup
x∈SM

∫
h1,C(x, y)P0(dy) <∞

where θ̃ = γθ1+(1−γ)θ2 for some γ ∈ [0, 1]. The supremum is finite since x 7→
∫
h1,C(x, y)P0(dy)

is continuous, which can easily be seen by plugging in the definition of h1,C . Therefore,
(
θ 7→

∫
uθ(x, y)P0(dy) : x ∈ SM

)
is equicontinuous onC .

Proposition E.3.3. Under the assumptions of Theorem 5.6.9, (f ′′′
N : N ∈ N) is uniformly bounded

onE.

Proof. First, for any x, y ∈ X , if we define g(θ) = sqθ
(x) and h(θ) = sqθ

(y) then uθ =

(g>h)k + g>(∇yk) + h>(∇xk) + trace(∇x∇>
y k). By differentiating, applyingMinkowski’s
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inequality to the resulting sum of tensors, and applying the Cauchy–Schwarz inequality to each

term, we have

‖∇3
θuθ(x, y)‖ ≤ ‖∇3g‖‖h‖k + 3‖∇2g‖‖∇h‖k + 3‖∇g‖‖∇2h‖k + ‖g‖‖∇3h‖k

+ ‖∇3g‖‖∇yk‖+ ‖∇3h‖‖∇xk‖.

Using the symmetry of the kernel to combine like terms, this yields that

∥∥∥∑
i 6=j

∇3
θuθ(X(i), X(j))

∥∥∥
≤
∑
i 6=j

(
2‖∇3

θsqθ
(X(i))‖‖sqθ

(X(j))‖B + 6‖∇2
θsqθ

(X(i))‖‖∇θsqθ
(X(j))‖B + 2‖∇3

θsqθ
(X(i))‖B

)

whereB < ∞ such thatB ≥ |k| + ‖∇xk‖ + ‖∇x∇>
y k‖. Since fN (θ) = 0whenN = 1 by

definition, we can assume without loss of generality thatN ≥ 2, so 1
N−1 = 1

N (1 + 1
N−1) ≤ 2/N .
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Since each term is non-negative, we can add in the i = j terms,

∥∥∥ 1
N(N − 1)

∑
i 6=j

∇3
θuθ(X(i), X(j))

∥∥∥
≤ 2B
N2

∑
i,j

(
2‖∇3

θsqθ
(X(i))‖‖sqθ

(X(j))‖+ 6‖∇2
θsqθ

(X(i))‖‖∇θsqθ
(X(j))‖+ 2‖∇3

θsqθ
(X(i))‖

)

= 4B
( 1
N

∑
i

‖∇3
θsqθ

(X(i))‖
)( 1
N

∑
j

‖sqθ
(X(j))‖

)
(E.45)

+ 12B
( 1
N

∑
i

‖∇2
θsqθ

(X(i))‖
)( 1
N

∑
j

‖∇θsqθ
(X(j))‖

)

+ 4B
( 1
N

∑
i

‖∇3
θsqθ

(X(i))‖
)
.

By assumption,
{ 1

N

∑
i ‖∇2

θsqθ
(X(i))‖ : N ∈ N, θ ∈ E

}
is bounded with probability 1, and

similarly for
{ 1

N

∑
i ‖∇3

θsqθ
(X(i))‖ : N ∈ N, θ ∈ E

}
. We show the same for 1

N

∑
i ‖sqθ

(X(i))‖

and 1
N

∑
i ‖∇θsqθ

(X(i))‖. By Equation 5.40, we have

∫
sup
θ∈Ē

‖sqθ
(x)‖P0(dx) ≤

∫
g0,Ē(x)P0(dx) <∞.

Hence, by Theorem 1.3.3 of Ghosh & Ramamoorthi 88 , 1
N

∑
i ‖sqθ

(X(i))‖ converges uniformly

on Ē, almost surely. In particular, 1
N

∑
i ‖sqθ

(X(i))‖ is uniformly bounded onE, almost surely.

The same argument holds for 1
N

∑
i ‖∇θsqθ

(X(i))‖ using g1,Ē(x). Therefore, by Equation E.45,

it follows that ‖ 1
N(N−1)

∑
i 6=j ∇3

θuθ(X(i), X(j))‖ is uniformly bounded onE. Since k is positive

by assumption, 1
N(N−1)

∑
i 6=j k(X(i), X(j)) > 0 for allN ≥ 2 and by Equations E.40 and E.41,

1
N(N−1)

∑
i 6=j k(X(i), X(j)) converges a.s. to a finite quantity greater than 0. We conclude that
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almost surely,

‖f ′′′
N (θ)‖ = 1

T

‖ 1
N(N−1)

∑
i 6=j ∇3

θuθ(X(i), X(j))‖
1

N(N−1)
∑

i 6=j k(X(i), X(j))

is uniformly bounded onE, forN ∈ {2, 3, . . .}. Recall that forN = 1, fN (θ) = 0 by definition.

Therefore, almost surely, (f ′′′
N : N ∈ N) is uniformly bounded onE.

Proof of Theorem 5.6.9. We show that the conditions of Theorem 3.2 of Miller 176 are met, from

which the conclusions of this theorem follow immediately.

By Condition 5.6.10 and Equation 5.35, fN has continuous third-order partial derivatives on

Θ. LetE be the set from Condition 5.6.10. With probability 1, fN → f uniformly onE (by

Proposition E.3.2 withC = Ē) and (f ′′′
N ) is uniformly bounded onE (by Proposition E.3.3). Note

that f is finite onΘ by Proposition 5.6.3. Thus, by Theorem 3.4 of Miller 176 , f ′ and f ′′ exist onE

and f ′′
N → f ′′ uniformly onE with probability 1. Since θ∗ is a minimizer of f and θ∗ ∈ E, we

know that f ′(θ∗) = 0 and f ′′(θ∗) is positive semidefinite; thus, f ′′(θ∗) is positive definite since it is

invertible by assumption.

Case (a): Now, consider the case whereΘ is compact. Then almost surely, fN → f uniformly on

Θ by Proposition E.3.2 withC = Θ. Since θ∗ is a unique minimizer of f , we have f(θ) > f(θ∗)

for all θ ∈ Θ \ {θ∗}. LetH ⊆ E be an open set such that θ∗ ∈ H and H̄ ⊆ E. We show that

lim infN infθ∈Θ\H̄ fN (θ) > f(θ∗). SinceΘ \H is compact,

inf
θ∈Θ\H̄

f(θ)− f(θ∗) =: ϵ > 0.
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By uniform convergence, with probability 1, there existsN such that for allN ′ > N , supθ∈Θ |fN ′(θ)−

f(θ)| ≤ ϵ/2, and thus,

inf
θ∈Θ\H̄

fN ′(θ) ≥ inf
θ∈Θ\H̄

f(θ)− ϵ/2 = f(θ∗) + ϵ/2.

Hence, lim infN infθ∈Θ\H̄ fN (θ) > f(θ∗) almost surely. Applying Theorem 3.2 of Miller 176 , the

conclusion of the theorem follows. Note that f ′′
N (θN )→ f ′′(θ∗) a.s. since θN → θ∗ and f ′′

N → f ′′

uniformly onE.

Case (b): Alternatively, consider the case whereΘ is open and fN is convex onΘ. For all θ ∈ Θ,

with probability 1, fN (θ) → f(θ) (by Proposition E.3.2 withC = {θ}). However, we need to

show that with probability 1, for all θ ∈ Θ, fN (θ) → f(θ). We follow the argument in the proof

of Theorem 6.3 of Miller 176 . LetW be a countable dense subset ofΘ. SinceW is countable, with

probability 1, for all θ ∈ W , fN (θ) → f(θ). Since fN is convex, then with probability 1, for

all θ ∈ Θ, the limit f̃(θ) := limN fN (θ) exists and is finite, and f̃ is convex (Theorem 10.8 of

Rockafellar 219). Since fN is convex and f(θ) is finite, f(θ) is also convex. Since f and f̃ are convex,

they are also continuous (Theorem 10.1 of Rockafellar 219). Continuous functions that agree on

a dense subset of points must be equal. Thus, with probability 1, for all θ ∈ Θ, fN (θ) → f(θ).

Applying Theorem 3.2 of Miller 176 , the conclusion of the theorem follows.

Proof of Theorem 5.6.11. Our proof builds on Appendix D.3 of Barp et al. 17 , which establishes

a central limit theorem for the ksd when the model is an exponential family. The outline of the

proof is as follows. First, we establish bounds on sqθ
and its derivatives, using the assumed bounds
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on∇xt(x) and∇x logλ(x). Second, we establish that f ′′(θ) is positive definite and independent

of θ, and that f ′′
N (θ) converges to it almost surely; from this, we conclude that f ′′(θ∗) is invert-

ible and fN (θ) is convex. These results rely on the convergence properties of U-statistics and on

Sylvester’s criterion.

The assumption that logλ(x) is continuously differentiable onX implies that λ(x) > 0 for

x ∈ X . Since qθ(x) = λ(x) exp(θ>t(x)− κ(θ)), we have

sqθ
(x) = ∇x logλ(x) + (∇xt(x))>θ

∇θsqθ
(x) = (∇xt(x))> ∈ Rd×m

∇2
θsqθ

(x) = 0 ∈ Rd×m×m

where (∇xt(x))ij = ∂ti/∂xj . Thus, sqθ
(x) has continuous third-order partial derivatives with

respect to θ, and Equations 5.41 and 5.42 are trivially satisfied. Equation 5.40 holds for all compact

C ⊆ Θ since ‖∇x logλ(x)‖ and ‖∇xt(x)‖ are continuous functions inL1(P0) and

‖sqθ
(x)‖ = ‖∇x logλ(x) + (∇xt(x))>θ‖ ≤ ‖∇x logλ(x)‖+ ‖∇xt(x)‖‖θ‖,

‖∇θsqθ
(x)‖ = ‖∇xt(x)‖.

Hence, Condition 5.6.10 holds. By Equation 5.36 and Proposition 5.6.3,

f(θ) = 1
T
nksd(p0(x)‖q(x|θ)) = 1

TK

∫
X

∫
X
uθ(x, y)P0(dx)P0(dy) (E.46)
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whereK :=
∫ ∫

k(x, y)P0(dx)P0(dy). By Equation E.3,

uθ(x, y) = θ>B2(x, y)θ +B1(x, y)>θ +B0(x, y) (E.47)

where

B2(x, y) = (∇xt(x))(∇yt(y))>k(x, y),

B1(x, y) = (∇yt(y))(∇x logλ(x))k(x, y) + (∇xt(x))(∇y logλ(y))k(x, y)

+ (∇yt(y))(∇xk(x, y)) + (∇xt(x))(∇yk(x, y)),

B0(x, y) = (∇x logλ(x))>(∇y logλ(y))k(x, y) + (∇y logλ(y))>(∇xk(x, y))

+ (∇x logλ(x))>(∇yk(x, y)) + trace(∇x∇>
y k(x, y)).

By Condition 5.6.7, |k(x, y)|, ‖∇xk(x, y)‖, and ‖∇x∇>
y k(x, y)‖ are bounded by a constant, say,

B < ∞. Thus, it is straightforward to check thatB2,B1, andB0 belong toL1(P0 × P0) since

‖∇xt(x)‖ and ‖∇x logλ(x)‖ are inL1(P0). Further, 0 < K < ∞ since 0 < k(x, y) ≤ B < ∞

by assumption. Thus,

f(θ) = 1
TK

∫ ∫ (
θ>B2(x, y)θ +B1(x, y)>θ +B0(x, y)

)
P0(dx)P0(dy) ∈ R.

Since k is symmetric,B2(x, y)> = B2(y, x). Hence,∇θ(θ>B2(x, y)θ) = (B2(x, y) +
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B2(y, x))θ, so by Fubini’s theorem,

f ′(θ) = 1
TK

∫ ∫ (
2B2(x, y)θ +B1(x, y)

)
P0(dx)P0(dy) ∈ Rm,

f ′′(θ) = 2
TK

∫ ∫
B2(x, y)P0(dx)P0(dy) ∈ Rm×m.

Here, differentiating under the integral sign is justified simply by linearity of the expectation. Note

that f ′′(θ) is a symmetric matrix sinceB2(x, y)> = B2(y, x). Next, to show f ′′(θ) is positive def-

inite, let v ∈ Rm \ {0}. By assumption, the rows of∇xt(x) are linearly independent with positive

probability under P0. Thus, there is a setE ⊆ X such that P0(E) > 0 and (∇xt(x))>v 6= 0 for

all x ∈ E. Define g(x) = (∇xt(x))>v p0(x) ∈ Rd. Then
∫

X |gi(x)|dx > 0 for at least one i, and

∫
X |gi(x)|dx ≤ ‖v‖

∫
X ‖∇xt(x)‖p0(x)dx <∞ for all i. Thus,

v>f ′′(θ)v = 2
TK

∫ ∫
g(x)>g(y)k(x, y)dxdy = 2

TK

d∑
i=1

∫ ∫
gi(x)gi(y)k(x, y)dxdy > 0

since k is integrally strictly positive definite. Therefore, f ′′(θ) is positive definite. In particular,

f ′′(θ∗) is invertible.

Finally, we show that with probability 1, for allN sufficiently large, fN (θ) is convex. By Equa-

tions 5.35 and E.47,

fN (θ) = 1
T

∑
i 6=j

[
θ>B2(X(i), X(j))θ +B1(X(i), X(j))>θ +B0(X(i), X(j))

]∑
i 6=j k(X(i), X(j))

.
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Thus,

f ′′
N (θ) = 2

T

∑
i 6=j B2(X(i), X(j))∑
i 6=j k(X(i), X(j))

.

By the strong law of large numbers for U-statistics (Theorem 5.4A of Serfling 231), we have f ′′
N (θ)→

f ′′(θ) almost surely, since
∫

X
∫

X ‖B2(x, y)‖P0(dx)P0(dy) < ∞ and 0 < K < ∞. For a sym-

metric matrixA, let λ∗(A) denote the smallest eigenvalue. Since λ∗(A) is a continuous function of

the entries ofA, we have λ∗(f ′′
N (θ))→ λ∗(f ′′(θ)) a.s. asN →∞. Thus, with probability 1, for all

N sufficiently large, f ′′
N (θ) is positive definite, and hence, fN is convex. Further, for suchN , since

fN is a quadratic function with positive definite Hessian, we haveMN := infθ∈Θ fN (θ) > −∞

and zN =
∫

Θ exp(−NfN (θ))π(θ)dθ ≤ exp(−NMN ) <∞.

E.3.3 Proof of Theorem 5.6.12

To establish Theorem 5.6.12, we use the properties of U-statistics described in Chapter 5.5 of Ser-

fling 231 . When the data distribution matches the model distribution, n̂ksd converges more quickly

than when it does not match; this same property was used by Liu et al. 158 to develop a goodness-of-

fit test based on the ksd.

Proof. We first study the asymptotics of f ′
N (θ∗). Denoting∇θ

∣∣
θ=θ∗

uθ by∇θuθ∗ for brevity,

f ′
N (θ∗) = 1

T

1
N(N−1)

∑
i 6=j ∇θuθ∗(X(i), X(j))

1
N(N−1)

∑
i 6=j k(X(i), X(j))

.
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The denominator converges a.s. to a finite positive constant, as in the proof of Proposition E.3.2. It

is straightforward to verify that EX,Y ∼P0 [‖∇θuθ∗(X,Y )‖2] < ∞ since sqθ∗ and∇θ

∣∣
θ=θ∗

sqθ
are

inL2(P0) by assumption. By Theorems 5.5.1A and 5.5.2 of Serfling 231 ,

1
N(N − 1)

∑
i 6=j

∇θuθ∗(X(i), X(j))− EX,Y ∼P0 [∇θuθ∗(X,Y )] = OP0(N−1/2).

Further, by the Leibniz integral rule78 Theorem 2.27,

EX,Y ∼P0 [∇θuθ∗(X,Y )] = ∇θ

∣∣
θ=θ∗

EX,Y ∼P0 [uθ(X,Y )] = T EX,Y ∼P0 [k(X,Y )]f ′(θ∗) = 0,

using the fact that f ′(θ∗) = 0 since θ∗ is a minimizer of f . Thus,

f ′
N (θ∗) = OP0(N−1/2). (E.48)

Next, we examine the convergence of θN to θ∗. For allN sufficiently large, f ′
N (θN ) = 0 by

Theorem 5.6.9 (part 1), and thus, by Taylor’s theorem,

0 = f ′
N (θN ) = f ′

N (θ∗) + f ′′
N (θ+

N )(θN − θ∗),

where θ+
N is on the line between θN and θ∗. As in the proof of Theorem 5.6.9, f ′′

N → f ′′ uniformly
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on the setE defined in Condition 5.6.10. Thus, since f ′′
N is continuous onE and θ+

N → θ∗,

f ′′
N (θ+

N ) a.s.−−−−→
N→∞

f ′′(θ∗). (E.49)

In particular, f ′′
N (θ+

N ) is invertible for allN sufficiently large, since f ′′(θ∗) is invertible by assump-

tion. Hence,

θN − θ∗ = −f ′′
N (θ+

N )−1f ′
N (θ∗), (E.50)

and therefore, by Equation E.48,

‖θN − θ∗‖ ≤ ‖f ′′
N (θ+

N )−1‖‖f ′
N (θ∗)‖ = OP0(N−1/2). (E.51)

This result matches Theorem 4 in Barp et al. 17 . By Taylor’s theorem,

fN (θ∗)− fN (θN ) = f ′
N (θN )>(θ∗ − θN ) + 1

2
(θ∗ − θN )>f ′′

N (θ++
N )(θ∗ − θN )

= 1
2

(θ∗ − θN )>f ′′
N (θ++

N )(θ∗ − θN )

for allN sufficiently large, where θ++
N is on the line between θN and θ∗. Therefore, using the same

reasoning as for Equations E.49 and E.51,

|fN (θ∗)− fN (θN )| ≤ 1
2
‖f ′′

N (θ++
N )‖‖θ∗ − θN‖2 = OP0(N−1). (E.52)
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This proves the first part of the theorem (Equation 5.43). Next, consider fN (θ∗) − f(θ∗). Recall

that

fN (θ∗) = 1
T

1
N(N−1)

∑
i 6=j uθ∗(X(i), X(j))

1
N(N−1)

∑
i 6=j k(X(i), X(j))

.

It is straightforward to verify that EX,Y ∼P0 [|uθ∗(X,Y )|2] < ∞ since sqθ∗ is inL
2(P0). By Theo-

rems 5.5.1A and 5.5.2 of Serfling 231 ,

1
N(N − 1)

∑
i 6=j

uθ∗(X(i), X(j))− EX,Y ∼P0 [uθ∗(X,Y )] = OP0(N−1/2).

Similarly, since k is bounded,

1
N(N − 1)

∑
i 6=j

k(X(i), X(j))− EX,Y ∼P0 [k(X,Y )] = OP0(N−1/2).

It is straightforward to check that the second part of the theorem (Equation 5.44) follows.

For the third part, our argument follows that of the proof of Theorem 4.1 of Liu et al. 158 . Sup-

pose nksd(p0(x)‖q(x|θ∗)) = 0, and note that P0(x) = Qθ∗(x) by Proposition 5.6.4. Given a

differentiable function g : Rd → Rd, define∇>
x g(x) :=

∑d
i=1 ∂gi(x)/∂xi. Then

EX∼P0 [uθ∗(X, y)] = sp0(y)>
∫

X

(
(∇xp0(x))k(x, y) + p0(x)(∇xk(x, y))

)
dx

+
∫

X

(
(∇xp0(x))>∇yk(x, y) + p0(x)(∇>

x∇yk(x, y))
)
dx

= sp0(y)>
∫

X
∇x
(
p0(x)k(x, y)

)
dx+

∫
X
∇>

x∇y(p0(x)k(x, y))dx. (E.53)
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The first term on the right-hand side of Equation E.53 is zero since, by assumption, k is in the Stein

class of P0 (Condition 5.6.2). The second term is also zero since, by the Leibniz integral rule78 The-

orem 2.27,
∫
∇>

y ∇x(p0(x)k(x, y))dx = ∇>
y

∫
∇x(p0(x)k(x, y))dx, which again equals zero

because k is in the Stein class of P0. Therefore, EX∼P0 [uθ∗(X, y)] = 0 for all y ∈ X , and in par-

ticular, the variance of this expression is also zero: VY ∼P0 [EX∼P0 [uθ∗(X,Y )]] = 0. By Theorem

5.5.2 of Serfling 231 , it follows that

1
N(N − 1)

∑
i 6=j

uθ∗(X(i), X(j)) = OP0(N−1) (E.54)

since EX,Y ∼P0 [uθ∗(X,Y )] = 0. Although Serfling 231 requires VX,Y ∼P0 [uθ∗(X,Y )] > 0, Equa-

tion E.54 holds trivially if VX,Y ∼P0 [uθ∗(X,Y )] = 0. As before, since the denominator of fN (θ∗)

converges a.s. to a finite positive constant, we have that fN (θ∗) = OP0(N−1). Equation 5.45

follows since f(θ∗) = 0when nksd(p0(x)‖q(x|θ∗)) = 0.

E.3.4 Proof of Theorem 5.6.17

Proof. Applying Theorem 5.6.9 (part 3) to each foreground model j ∈ {1, 2}, we have

log zj,N +Nfj,N (θj,N )− logπ(θj,∗) + log | det f ′′
j (θj,∗)|1/2 − 1

2
mFj ,j log(2π/N) a.s.−−−−→

N→∞
0.
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SinceKj,N = (2π/N)mBj
/2
zj,N , this implies

logKj,N +Nfj,N (θj,N )− 1
2

(mFj ,j +mBj ) log(2π/N) + Cj
a.s.−−−−→

N→∞
0

whereCj is a constant that does not depend onN . Hence,

log
K1,N

K2,N
+N(f1,N (θ1,N )− f2,N (θ2,N ))

− 1
2

(mF1,1 +mB1 −mF2,2 −mB2) log(2π/N) + C1 − C2
a.s.−−−−→

N→∞
0. (E.55)

By Theorem 5.6.12, fj,N (θj,N ) P0−→ fj(θj,∗), and therefore,

1
N
log
K1,N

K2,N
+ f1(θ1,∗)− f2(θ2,∗) P0−−−−→

N→∞
0.

Plugging in the definition of fj (Equation 5.36), this proves part 1 of the theorem.

For part 2, suppose f1(θ1,∗) = f2(θ2,∗) = 0 andmB2 −mB1 does not depend onN . Then by

Theorem 5.6.12, fj,N (θj,N ) = OP0(N−1). Using this in Equation E.55, we have

1
logN

log
K1,N

K2,N
+ 1

2
(mF1,1 +mB1 −mF2,2 −mB2) P0−−−−→

N→∞
0. (E.56)

For part 3, suppose f1(θ1,∗) = f2(θ2,∗) andmBj = cBj

√
N . Then by Theorem 5.6.12,
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fj,N (θj,N ) = fj(θj,∗) +OP0(N−1/2). Using this in Equation E.55, we have

1√
N logN

log
K1,N

K2,N
+ 1

2
(cB1 − cB2) P0−−−−→

N→∞
0. (E.57)

E.4 Additional probabilistic PCA details

E.4.1 Optimizing the NKSD

Computing the Laplace or BIC approximation to the SVC requires finding the minimizer of

n̂ksd(p0(x)‖q(x|θ))with respect to θ. In this section, we describe how components of the nksd

can be pre-computed to speed up this optimization process. The generative model used for pPCA

can be rewritten using the properties of multivariate normal distributions as

X ∼ N (0,HH> + vId). (E.58)

The Stein score function for the pPCAmodel is then

sqθ
(x) = ∇x log q(x|H, v) = −(HH> + vId)−1x.
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Define the matrices

Kij := I(i 6= j) k(X(i), X(j)),

K̇jb :=
N∑

i=1
I(i 6= j) ∂k

∂xb
(X(i), X(j)),

where I(E) is the indicator function, which equals 1 whenE is true and is 0 otherwise. Define the

scalars

K̄ :=
N∑

i,j=1
Kij ,

K̈ :=
N∑

i,j=1

d∑
b=1

I(i 6= j) ∂2k

∂xb∂yb
(X(i), X(j)).

LettingX ∈ RN×d be the data matrix, the NKSD can be written as

n̂ksd(p0(x)‖q(x|H, v)) = 1
K̄

[
trace(X>KX(HH> + vId)−1(HH> + vId)−1)

− 2 trace(X>K̇(HH> + vId)−1) + K̈
]
,

where we have used the fact that the kernel is symmetric. The termsX>KX andX>K̇ are the

only ones that include sums over the entire dataset; these can be pre-computed, before optimizing

the parametersH and v.
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To compute the matrix inversion (HH> + vId)−1 we follow the strategy of Minka 179 ,

(HH> + vId)−1 − v−1Id = (HH> + vId)−1(Id − v−1(HH> + vId))

= −(HH> + vId)−1HH>v−1

= −(U(L− vIk)U> + vId)−1U(L− vIk)U>v−1.

Thus, applying the Woodbury matrix identity and using IdU = U = UIkIk = UIkU
>U ,

(HH> + vId)−1 − v−1Id = −
[
v−1Id − v−2U

(
(L− vIk)−1 + v−1)−1

U>]U(L− vIk)U>v−1

= −U [v−1Ik − v−2((L− v)−1 + v−1)−1](L− vIk)U>v−1

= −UL−1(L− vIk)U>v−1

= U(L−1 − v−1Ik)U>.

Therefore,

(HH> + vId)−1 = U(L−1 − v−1Ik)U> + v−1Id.
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ComputingL−1 is trivial since the matrix is diagonal. Returning to the nksd we have

n̂ksd(p0(x)‖q(x|U,L, v))

= 1
K̄

[
trace

(
X>KX[U(L−1 − v−1Ik)2U> + 2v−1U(L−1 − v−1Ik)U> + v−2Id]

)
− 2 trace

(
X>K̇[U(L−1 − v−1Ik)U> + v−1Id]

)
+ K̈

]

= 1
K̄

[
trace

(
U>X>KXU(L−1 − v−1Ik)2)

+ trace
(
U>[2v−1X>KX − 2X>K̇]U(L−1 − v−1Ik)

)
+ v−1 trace

(
v−1X>KX − 2X>K̇

)
+ K̈

]
.

We optimizedU ,L and v using the trust region method implemented in pymanopt262.

E.4.2 Data selectionwith the SVC

We used the approximate optimum technique in Section 5.2.3 to estimate the SVC for different

foreground subspaces. Following Section E.1.2, we used the factored IMQ kernel with β = −0.5

and c = 1.

We focused on foreground subspaces that correspond to subsets of the data dimensions. More

specifically, recall thatXF = V >X ; then, we impose the restriction that each column of V is a

standard basis vector e(b) ∈ Rd, where e(b)
b = 1 and e(b)

b′ = 0 for b′ 6= b. A subspaceXF is then

characterized by the set of included dimensions SF ⊆ {1, . . . , d}. The marginal distribution of the

model q(xF |H, v) is now straightforward to compute based on Equation E.58 and the properties
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of multivariate normals:

XF ∼ N (0,HSFH
>
SF + vI|SF |)

whereHSF is the submatrix consisting of rows ofH indexed by SF , and |SF | is the size of the set

SF .

In the projected model, some of the parameters are nuisance variables with no contribution to

the likelihood. Since the dimension of a d × kmatrix on the Stiefel manifold is dk − k(k + 1)/2,

the total dimension of the foreground model (including contributions from parametersU ,L and v)

ismF = |SF |k − k(k + 1)/2 + k + 1, assuming |SF | ≥ k.

Code is available at https://github.com/EWeinstein/data-selection.

E.4.3 Calibration

The T hyperparameter was calibrated as in Section E.1.1. In detail, we sampled 10 independent true

parameter values from the prior, with α = 1 and d = 6. (We used a slightly less disperse prior than

during inference, where we set α = 0.1, to avoid numerical instabilities in the T̂ estimate.) Then,

for each of the true parameter values, we simulatedN = 2000 datapoints. For each simulated

true parameter value, we tracked the trend in the T̂ estimator (Equation E.1) with increasingN

(Figure E.2). The median estimated T value atN = 2000was 0.052 across the 10 runs.
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pPCA

T̂
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Figure E.2: EstimatedT for increasing number of data samples, for 10 independent parameter samples from the prior.

Themedian value atN = 2000 is T̂ = 0.052.

E.4.4 Pólya tree model

In this section, we describe the Pólya tree model76,171,151 following the construction of Berger &

Guglielmi 21 . Let
¯
ϵn := (ϵ1, . . . , ϵn) denote a vector of length n, where each ϵj ∈ {0, 1}. Each¯

ϵn

vector indexes an interval in R, given by

B
¯
ϵn :=

(
F̃−1(∑n

j=1 ϵj/2j
)
, F̃−1(∑n

j=1 ϵj/2j + 1/2n
)]
,

where F̃−1 is the inverse c.d.f. of some probability distribution. For all n ∈ {0, 1, 2, . . .} and all

¯
ϵn ∈ {0, 1}n, let

Y
¯
ϵn ∼ Beta(ξ

¯
ϵn0, ξ

¯
ϵn1),
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where the ξ’s are hyperparameters. We say that a random variableX ∈ R is distributed according to

a Pólya tree model if

P (X ∈ B
¯
ϵn) =

n∏
j=1

(Y
¯
ϵj−1)I(ϵj=0)(1− Y

¯
ϵj−1)I(ϵj=1),

where I(E) is the indicator function, which equals 1 whenE is true and is 0 otherwise. We follow

Berger & Guglielmi 21 and use

µ(B
¯
ϵn) := F

(
F̃−1(∑n

j=1 ϵj/2j + 1/2n
))
− F

(
F̃−1(∑n

j=1 ϵj/2j
))
,

ρ(
¯
ϵn) := 1

η

(
f(F̃−1(

∑n
j=1 ϵj/2j + 1/2n+1))
µ(B

¯
ϵn)

)2
,

ξ
¯
ϵn0 := ρ(

¯
ϵn)
√
µ(B

¯
ϵn0)

µ(B
¯
ϵn1)

,

ξ
¯
ϵn1 := ρ(

¯
ϵn)
√
µ(B

¯
ϵn1)

µ(B
¯
ϵn0)

,

where F and f are the c.d.f. and p.d.f. respectively of some probability distribution, and η > 0 is a

scale hyperparameter. We denote this complete model asX ∼ PolyaTree(F, F̃, η).

E.4.5 Datasets and preprocessing

We downloaded two publicly available datasets. The first dataset was taken from human peripheral

blood mononuclear cells (PBMCs):

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.

0/pbmc3k. This is a standard dataset used in the tutorials for Seurat249 and Scanpy291, for exam-
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ple. The second was taken from a dissociated extranodal marginal zone B-cell tumor, specifically

a mucosa-associated lymphoid tissue (MALT) tumor: https://support.10xgenomics.com/

single-cell-gene-expression/datasets/3.0.0/malt_10k_protein_v3.

We pre-processed the data using Scprep90, following its example: we normalized the total expres-

sion of each cell to match the median total expression in the dataset, to account for variability in

library size, and then square-root transformed the resulting normalized counts.

E.5 Additional glass model details

E.5.1 Glass model inference

We place a standard normal prior on each entry ofHj and a Laplace prior on each entry of Jjj′ with

scale 0.1 to encourage sparsity. To enforce that µ ≥ 0 (since scRNAseq counts are nonnegative) and

τ > 0, we place priors on a transformed version of these parameters, as follows:

µ̃ ∼ N (0, 1)

µ = log(1 + exp(µ̃))

τ̃ ∼ N (0, 1)

τ = log(1 + exp(τ̃)) + 1.

For posterior inference, we employ a mean-field variational approximation: independent normal

distributions for the entries ofHj , normal distributions for µ̃ and τ̃ , and Laplace distributions for

each entry of Jjj′ . We use the factored IMQ kernel for the NKSD, with β = −0.5 and c = 1.
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To optimize the variational approximation (Equation 5.14), we construct stochastic estimates of

its gradient. At each optimization step, the expectation Erζ

[
n̂ksd(p0(xF )‖q(xF |θ))

]
is estimated

using a minibatch of 200 randomly selected datapoints and a single sample from the variational ap-

proximation rζ . The rest of the variational inference algorithm follows standard practice in stochas-

tic variational inference, as implemented in Pyro: automatic differentiation to compute gradients,

reparameterization estimators for Monte Carlo expectations over the variational distribution, and

the Adam optimizer138,23.

We also used stochastic optimization to perform data selection, as follows. Let I = (I1, . . . , Id)>

be an indicator variable that specifies for each gene j whether it is included in the foreground sub-

space (Ij = 1) or not (Ij = 0). We place a distribution on I such that Ij ∼ Bernoulli(1/(1 +

exp(−ϕj))) for j = 1, . . . , d independently. Then, to perform data selection over all possible

subsets of genes, we optimize

argmaxϕ E(K(I) | ϕ) (E.59)

where the expectation is taken with respect to I , whereK(I) is the (estimated) SVC when genes

with Ij = 1 are included in the foreground space, and ϕ = (ϕ1, . . . , ϕd)> ∈ Rd is a vector of

log-odds. This stochastic approach to discrete optimization has been used extensively in reinforce-

ment learning and related fields. We use the Leave-One-Out REINFORCE (LOORF) estimator as

described in Section 2.1 of Dimitriev & Zhou 54 to estimate gradients of ϕ, using 8 samples per step.

We interleave updates to the variational approximation and to ϕ, using the Adam optimizer with

step size 0.01 for each. We ran the procedure with 4 random initial seeds, taking the result with the
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largest final estimated SVC.We halt optimization using the stopping rule proposed in Grathwohl

et al. 94 , stopping when the estimated mean minus the estimated variance of the SVC begins to de-

crease, based on the average over 2000 steps.

Code is available at https://github.com/EWeinstein/data-selection.

E.5.2 Datasets and preprocessing

In addition to the two datasets in E.4.5, we also explored a dataset of E18 mouse neurons: https:

//support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/neuron_

10k_v3.

We preprocessed each dataset using Scprep90 in the same way as in Section E.4.5. After prepro-

cessing, we used the top 200 most highly expressed genes from among the top 500 most variable

genes, according to the Scprep variability score. We log transform the counts, that is we define

xij = log(1 + cij)where cij is the expression count for gene j in cell i.
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Figure E.3: Posterior mean interaction energies∆Ejj′ for all selected genes, sorted. Dotted lines show the thresholds

for strong interactions (set by visual inspection).
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Figure E.4: Posterior mean interaction energies∆Ejj′ for the glass model applied to all 200 genes in theMALT dataset

(rather than the selected 187). Genes shown are the same as in Figure 5.8, for visual comparison.
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(a) (b)

Figure E.5: Comparison of the 187 selected genes and 13 excluded genes using data selection. (a) Violin plot of σ̄j over

all excluded and selected genes j , respectively, when applying themodel to all 200 genes, where σ̄j is themean posterior

standard deviation of the interaction energies∆Ejj′ for gene j , that is, σ̄j := 1
d−1

∑
j′ 6=j std(∆Ejj′ | data). (b)

Violin plot of fj over all excluded and selected genes j , respectively, where fj is the fraction of cells with count equal to

zero for gene j . The data selection procedure excluded all genes withmore than 85% zeros and selected all genes with

fewer than 85% zeros.
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