Generative Statistical Methods for
Biological Sequences

A DISSERTATION PRESENTED
BY
ErLi N. WEINSTEIN
TO
TaE CoMMITTEE ON HIGHER DEGREES IN BioPHYSICS

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DocToR oF PHILOSOPHY
IN THE SUBJECT OF
Broruysics

HARVARD UNIVERSITY
CAMBRIDGE, MASSACHUSETTS
APRIL 2022



2022 — EL1 N. WEINSTEIN
CREATIVE COMMONS BY-NC-ND 4.0 INTERNATIONAL LICENSE.



Thesis advisor: Professor Debora S. Marks Eli N. Weinstein

Generative Statistical Methods for Biological Sequences

ABSTRACT

Measuring and making sequences is central to modern biology and biomedicine. From evolution-
ary biology to immunology to therapeutics and beyond, scientists collect massive datasets of DNA,
RNA and protein sequences, and create new sequences in the laboratory through large-scale DNA
synthesis or genome editing. This dissertation is about the problem of learning from measurements
of complex sequence data and predicting unobserved or future sequences that can be made in the
laboratory. The dissertation describes new generative statistical methods for biological sequences,
working within the framework of Bayesian statistics and probabilistic machine learning, and es-
tablishes theoretical guarantees on these methods using frequentist analysis. Part I proposes new
tools for building biological sequence models, critiquing biological sequence models, and designing
experiments to synthesize samples from biological sequence models. Part II deals with the use of
misspecified models in biological sequence analysis and beyond, developing a new understanding of
how such “wrong” models can be used effectively for estimation and discovery. Overall, the disserta-
tion contributes principles and methods for reliable and accurate prediction, analysis and design of

biological sequences across biology and biomedicine.
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Introduction

Measuring and making sequences is central to modern biology and biomedicine. The past decades
have seen twin revolutions in technology for reading and writing DNA, with dramatic decreases in
cost and increases in scale. High-throughput sequencing technology has led to the creation of mas-
sive sequence datasets, including measurements of genomes from organisms across the tree of life; of

human genomes from around the world; of bacterial genomes from in and on the human body; of



viral genomes from decades of evolution; and of much more. Meanwhile, high-throughput synthe-
sis technology has led to the routine creation of vast numbers of precisely defined sequences in the
laboratory, which can be tested in parallel using modern assays. Efficient genome editing technology
has enabled precise modification of existing sequences inside the cells of humans and other organ-
isms. This dissertation is about statistical methods for learning from sequence data, and forming
predictions of new sequences that can be made 77 vitro or in vivo using synthesis or genome edit-
ing. It is about understanding measurements of sequences in enough detail to be able to make new
sequences.

The statistical methods presented fall under the framework of probabilistic machine learning,
and are specifically Bayesian (with a few exceptions). They revolve centrally around the construction
of generative probabilistic models of sequences, building on a fundamental recipe known as “Box’s

»26 (

loop”** (Fig. 1):

1. Hypothesize a model of the data, in the form of a probability distribution over measured

sequences X1, ..., X and hidden variables 6, i.e. p(X1.n, 6).

2. Infer the values of the hidden variables, i.e. compute the posterior p(6 | X;.n). Examining

the posterior gives us insight into the data through the lens of our hypothesized model.

3. Ciriticize the model to determine whether or not it accurately captures the data. (If it fails,

return to step I.)

4. Generate new sequences from the posterior predictive distribution of the model that can be

made in the laboratory, i.e. X{, X5, ... ~ p(z | X1.n).
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Model Inference

Experimental
ren Design

Criticism

Figure 1: Box’s loop 2° provides a framework for going from measurements of sequences to experimental designs for new
sequences that can be made in the laboratory.

We can thus use generative probabilistic models to analyze complex sequence data and predict new
sequences that can be synthesized experimentally.

While generative methods for biological sequence statistics have existed for decades, they are far
from the dominant approach to biological sequence analysis. Instead, existing methods are more
commonly either (a) entirely non-probabilistic, with no formally defined estimand, instead simply
processing the data through a series of heuristics or (b) focused on predicting some property from
sequences, i.e. interested only in conditional distributions p(y | ) where y is a covariate of interest

(e.g. a phenotype). Generative Bayesian methods allow us to, among other things:

. Predict and forecast unobserved or future sequences on the basis of past sequence data.

—

)

. Handle uncertainty in inferences drawn from sequence data.

3. Replace heuristic data analysis methods with rigorous and formal statistical methods, whose

properties can be analyzed theoretically.
4. Test predictions experimentally, through the construction of novel sequences.

The next section illustrates in more detail why these properties are desirable.



0.1 APPLICATIONS OF GENERATIVE BIOLOGICAL SEQUENCE STATISTICS

Our primary goal is to enable new kinds of scientific studies of biological sequences, that are diffi-
cult or impossible to perform using current methodology. To illustrate, consider three case studies

drawn from virology, immunology and evolutionary biology.

0.1.1 FORECASTING PATHOGEN EVOLUTION

Rapidly evolving pathogens such as influenza or SARS-CoV-2 are difficult to diagnose, immu-
nize against, and treat, in part because their genome sequences change quickly over time %5,

We would therefore like to forecast future genome sequences, to prepare diagnostics, vaccines,

and drugs preemptively. In particular, one approach is to (1) assemble a dataset of past sequences
collected from different patients at different times, i.e. (X1,%1), ..., (Xn,tN), (2) construct

(x| tfuture), a prediction of the viral sequences that will be observed at some future time ¢ fyzyre,
and then (3) make samples X1, Xo,... ~ p(x | tfyture) in the laboratory, so that drugs or di-
agnostics can be tested against these future sequences. It is especially important that we can form
reasonable predictions even with relatively little past sequence data, in order to deal with emerging
pathogens. It is also important that we can accurately handle uncertainty, since failure to consider
the possibility of a variant that later emerges can have serious real-world consequences: failed diag-
nostics, failed vaccines, and failed drugs.

Chapter 1 develops new methods for generative sequence regression, i.e. new methods of con-

structing distributions p(z | t) that more accurately account for uncertainty as compared to



commonly-used heuristics. We demonstrate these methods by constructing the first generative fore-
cast of pathogen sequence evolution, focusing on the influenza hemagglutinin protein, the key site
of interaction between influenza and the human immune system. Chapter 3 develops an experimen-
tal design strategy to efficiently construct large numbers of samples X1, X5, ... ~ p(z | ¢ future)
from generative sequence models in the laboratory. Our overall approach makes possible, for in-
stance, large scale testing of antibody drugs or patient sera against likely future viral antigens, and is

generalizable to describe other pathogens or to account for other covariates besides time.

0.1.2 DESIGNING PERSONALIZED IMMUNOTHERAPIES

Cell therapies are a successful and rapidly developing class of therapeutics for cancer and other dis-
eases >'. TCR T cell therapies use a T cell receptor (TCR) to direct an engineered T cell to kill tar-
get cells, e.g. cancer cells. Creating such therapies requires synthesizing TCRs that not only bind
specific antigens, but also (1) do not bind any self-antigens in the patient, since this would cause off-
target effects and (2) look like the natural TCR sequences found in the patient, to avoid immune
rejection of the cell therapy '**. One possible approach to creating such patient-specific TCR T cell
therapies is to (1) measure the repertoire of natural TCR sequences present in a patient or a closely
related donor, i.e. record a dataset of sequences X1, . .., X, (2) estimate the underlying, patient-
specific distribution of sequences p(x), and (3) synthesize samples X1, X3, ... ~ p(z) and deliver
them into cells to create candidate therapies that can be screened for activity against the tumor. It
is crucial in this application that the synthesized sequences accurately match the distribution of pa-

tient sequences: we want a high diversity of sequences, to ensure a binder exists, but we also need the



sequences to look like patient TCRs.

Chapters 1 and 2 develop new methods for sequence density estimation, i.e. new methods of esti-
mating distributions p(x) describing sequence samples X1, . .., X . These are applied to TCR se-
quencing data, providing a detailed model and map of individual patients’ immune systems. Chap-
ter 3 develops new experimental design methods to construct large-scale libraries of approximate
samples from models, X{, X5, ... ~ p(z). We apply this method to TCR models, and estab-
lish that the resulting libraries can accurately match patients’ TCR repertoires using statistical tests
developed in Chapter 2. Detailed simulations suggest that our generative statistical methods can
potentially yield many orders-of-magnitude more patient-specific binders for TCR T cell therapy as

compared to previous techniques.

0.1.3 THE PAST AND FUTURE OF LIFE

Understanding the long-term future evolution of life on Earth is a fundamental biological question.
Although difficult to address in general, the question is more tractable when we focus not on entire
genomes but on individual proteins whose structure and function has been well-conserved across
billions of years of evolution. Here, a common model of long-term evolution describes sequences
diffusing over a fixed fitness landscape; under this hypothesis, sequences in the far future can be de-
scribed as samples from the stationary distribution of the diffusion **>''°. We would like to estimate
the stationary distribution to understand past and future evolution. In particular, given a dataset

of present-day genome sequences from across the tree of life, i.e. X1, ..., Xy, we would like to es-

timate the stationary distribution p> () and then assay samples from the stationary distribution



X1, X5, ... ~ p>®(z) in the laboratory to determine their properties. A crucial challenge is to re-
move biases that come from recent phylogenetic history, in order to form a reliable estimate of the
underlying landscape that constrains molecular evolution and determines long-run outcomes.
Chapter 4 analyzes a model of long-term molecular evolution, taking into account fitness land-
scapes and phylogenetic history. It establishes fundamental limits on what we can learn from present-
day observational sequence data, and demonstrates how phylogenetic bias can be reduced across a

wide range of example protein families.

0.1.4 CONCLUSIONS

The above examples are only case studies, representing some specific applications of the methods
developed in this dissertation that we have so far explored. Similar questions, however, can be asked
in many other subfields of biology: we may be interested in how organisms adapt to climate change,
and so want to predict sequences based on temperature or other environmental variables; we may be
interested in developing novel therapeutics based on individuals’ gut microbiomes, and so want to
construct large sequence libraries based on metagenomic data; or we may be interested in the future
evolution of a tumor, and want to predict oncogene sequences that could emerge. The methods
developed in this dissertation are grounded in underlying statistical and biophysical theory, and can

thus be widely applied to address these questions and many more.



0.2 STATISTICAL FOUNDATIONS

In this section, we review some of the key statistical questions that this dissertation addresses, taking
a frequentist perspective on Bayesian methodology. Our presentation is general, and holds for any
type of data; in Section 0.3 we introduce crucial concepts that arise when working with biological
sequence data specifically. Note that our presentation throughout this introduction is heuristic, and

we gloss over edge cases and measure-theoretic definitions in an effort to clarify the essential ideas.

0.2.1 ESTIMATING AND TESTING DISTRIBUTIONS

We assume that sequence data is drawn from some true data generating distribution po(x) as inde-

pendently and identically distributed samples,

X1, Xa, ... "5 po(a), (r)
where each X; € X is a sequence from e.g. a particular individual, species, cell, etc. Density estima-
tion is the problem of estimating po () given a dataset of samples, D = {X1,..., Xn}.

Say we have some other distribution p; () over sequences, for instance from a model. Goodness-
of-fit-tests asks whether or not p1(x) = po(z), given samples from po (), and given p1 (). Two-
sample tests ask the same question, given only samples from p; () rather than the density p; ()
itself.

We often have covariates Y; with each sequence X, such as the time or place the sequence was



collected, or a property that the sequence possesses, such as whether it binds something or catalyzes
a certain chemical reaction. In this case we assume that (X1, Y7), (X2,Y2),... ~iiq4 po(z,y).
Regression is the the problem of estimating the conditional distribution po(z | y) given a dataset
D={(X1,Y1),...,(Xn,Yn)}.

This dissertation introduces new density estimation methods, regression methods, goodness-of-
fit tests and two-sample tests for biological sequences. Such methods are fundamental tools through-
out statistics, and can be used to solve more complex problems. For instance, if we are interested
in understanding the causal impact of sequence changes on protein function, in the presence of
confounders, we may want to use a propensity score method, which would require a method for
sequence regression '*°. Although this dissertation does not go into depth on such downstream uses,

they represent an important area of future application.

0.2.2 MODELS

Models consist of sets of probability distributions, with elements indexed by a parameter, i.e. M =
{po(z) : 0 € O}. In parametric models, the dimension of © is finite; in nonparametric models, the
dimension of © is infinite. The goal of inference is to find an element of M that is close to po, given
a dataset of samples from D. This tells us a latent parameter value and distribution that can explain
the observed data. We say a model is well-specified if pg € M, so the model can exactly match the
data generating distribution. We say a model is misspecified if pg ¢ M, in which case we can only

hope to find an element of M that is close to py according to some distance metric or divergence.



0.2.3 BAYESIAN INFERENCE

Bayesian inference is a method for estimating parameters from data. It proceeds by positing a prior
distribution 7(#) over parameters of a model M and then applying Bayes’ rule to construct a poste-
rior distribution over parameters, given the data. For instance, with a dataset of samples X1, ..., Xy

from po(x), we have the posterior

m(0) ITY po(Xi) _
Jo m(0) T, po(Xi)do

(0]X1,..., Xn) = (2)

Bayesian inference is useful because it quantifies uncertainty in possible values of 0, given finite data,
providing a distribution over possible parameter values. With infinite data, the posterior will (in
general) converge to a delta function at 6, where pg, = po if the model M is well-specified. If the

model is misspecified, we have pg, = argmin v KL(pollpe), where

xw(pollpo) = | po(e) loglpo(@) /po(a))da

is the Kullback-Leibler (KL) divergence. In the misspecified case 0 is sometimes referred to as the
“pseudo-true” parameter rather than the “true” parameter. Analogous results hold in the regression
setting, where we have samples (X1, Y1), (X2, Y2), ... ~iq4 po(x,y).

Computing the posterior and sampling likely parameters from the posterior is often challenging.
In this case, we will typically use variational inference to approximate the posterior. Variational

inference proceeds by first positing a variational family V = {g4(6) : ¢ € ®} whereg4(0) €

10



P(O). Elements gy of the variational family ) are chosen to be easy to sample from; for example,
they could be Gaussian distributions. Variational inference then proceeds by finding an element of

)V that approximates the posterior (Eqn. 2) by minimizing a KL divergence,

Gy = argmin, ), KL (g4 (O)||TI(0] X1, ..., XN)) - (3)

The resulting distribution gy« (#) is a tractable approximation to the posterior.

0.3 SEQUENCE SPACE AND DISTRIBUTIONS

So far we have considered statistical questions and methods in the abstract, for any type of data. In

this section we focus on the specifics of biological sequence data, describing key spaces and metrics.

0.3.1 SEQUENCE SPACE

A fundamental consideration in statistics is the mathematical space in which the data lies, i.e. X
where X1, Xo,... € X. A general definition of the space X" of biological sequences is the set of
finite length strings of letters drawn from a fixed alphabet. For DNA the alphabet would be the four
nucleotides, and for proteins it would be the twenty amino acids. Allowing X to contain all finite
length strings allows us to model the vast majority of genetic elements, including genes, nRNA,
proteins, promoters, chromosomes, etc., though note that it does not cover multi-chromosome
genomes or other “sequences” that in fact consist of multiple DNA or polypeptide molecules.

Crucially, we will avoid the overly restrictive assumption that X is the space of fixed length strings.

II1



While widespread in the field in the field of biological sequence analysis, such an assumption typi-
cally rests on heuristic data preprocessing methods — such as multiple sequence alignment for pro-
teins, or variant calling for genomes — that manipulate variable length sequence data to force it into
the space of fixed length strings. These methods are often problematic in that they either make un-
tenable assumptions about future data (e.g. that it has probability zero of being longer than previ-
ously observed data), destroy information (e.g. ignore structural variation in genomes) or both.

We will also avoid the assumption that X is the space of infinite length strings. Although this
assumption is common in the analysis of phylogenetic sequence models, it is a poor description of
reality, particularly when working with protein-length rather than genome-length sequences. More-
over, we are interested in predicting unobserved sequences based on previously observed sequences,
rather than predicting the end of a sequence given its start; the relevant asymptotic limit is therefore

the limit of large numbers of sequences, not very long sequences.

0.3.2 SEQUENCE DISTRIBUTIONS

Another important consideration is the set of distributions over sequence space X’ that a dataset of
sequences might be drawn from, i.e. the set P(X'), where we assume py € P(X). We will in general
try to avoid the common but overly restrictive assumption that our parametric models M are well-
specified, i.e. that P(X') C M. However, allowing P(X) to be all possible distributions over finite
strings is often too weak an assumption to be tractable theoretically or practically, primarily because
of the difficulties of working with extreme variation in sequence length. We therefore introduce

plausible assumptions that control the distribution over sequence length.

12



For many biological sequence datasets, it is appropriate to assume that while there may be vari-
ation in sequence length, this variation is not heavy-tailed. Functional constraints, for instance,
often restrict variation in sequence length as molecules evolve, e.g. a protein must maintain its
three-dimensional shape to perform a particular function and so cannot easily mutate to become
extremely long (Sec. 0.4.2). In Chapter 2, we introduce and study sub-exponential sequence distribu-
tions, which consist of any distribution p(z) for which, for some ¢ > 0, we have E x () [exp (¢ X )] <
00, where | X| is the length of X.

More restrictive assumptions on P (X’) can be relevant when modeling DNA synthesis. In par-
ticular, many synthesis technologies cannot produce arbitrary length sequences, and so in studying
these technologies is appropriate to assume that the distribution over sequences that they produce is
bounded, i.e. the probability of synthesizing a sequence with length above some maximum value is

zero. We study bounded sequence distributions in Chapter 3.

0.3.3 METRICS ON SEQUENCE DISTRIBUTIONS

To evaluate methods for estimating or approximating sequence distributions, it is important to
consider what it might mean for two distributions to be similar or different. In generative biological
sequence statistics, we often want to approximate a distribution p(z) closely enough that sequences
sampled from our approximation p(z) have the same properties as those sampled from p(x), as
measured by some downstream experimental assay. This leads to a natural class of distance metrics
on sequence distributions. In particular, let f(z) be a function describing a sequence property; for

instance, f () could be a quantitative measure of the binding strength of an antibody sequence x,

13



or a binary indicator for whether or not the antibody x has binding strength above some threshold.
We can quantify the distance between p(z) and p(x) using an integral probability metric (IPM),

defined as

IPM7(p, p) = sup e | Explf (X)] — Ex~p[f (X)]], (4)

where F is a set of functions. IPMs measure the worst-case difference in an average property of
sequences sampled from each distribution, over all possible assay functions f € F. A small IPM
value guarantees that when we synthesize a library of sequences from our approximation p, they will
have similar properties to the target distribution p, even when we do not know the assay function f.

IPMs depend crucially on the choice of function class F, which in turn depends on what we can
safely assume about the downstream assay function f. In practice, virtually all high-throughput
biological assays have limited dynamical range, i.c. there is some lowest possible and highest possible
value that they can measure. A natural F for biological sequence distributions is thus the set of
bounded functions, i.e. F = {f : || fllco < u} where || f|loc = sup,cy |[f(x)|and uisan upper
bound. In this case, IPM 7 is (up to a constant factor u) the total variation (TV) distance***. Since
the TV distance can be difficult to work with practically, we will try to make sure the TV distance is
small by controlling the KL divergence (Chapters 1, 3 and 4), which upper bounds the TV distance,
or the Hellinger distance (Chapter 2), which upper and lower bounds the TV distance.

It is useful to draw a contrast here with other areas of statistics, and especially to applications
where the data are continuous and we are not interested in physically making and measuring samples

from a distribution. In such applications a common goal is to approximate summary statistics of a

14



target distribution p(x), such as its mean and variance. In this case, TV distance is not so useful: a
small TV distance does not ensure a small difference in means |E x ., [X] — Ex~3[X]], since for
f(x) = x with X unbounded we have || f||coc = 00. Instead, the Wasserstein distance is often
used 'S, By the Kantorovich-Rubinstein duality, the Wasserstein distance is equivalent (up to a

constant factor u) to an IPM with F the set of functions with bounded Lipschitz semi-norm, i.c.

F=A{fIflle < u}where||fllL =sup, ey |f(z)— f(2)]/d(z,a), withd(:,-)adistance

metric *#*

. Small Wasserstein distances imply accurate mean approximations: for f(z) = x and
d(z,2') = |x — 2’| wehave || ||, = 1 < oo. However, bounding the Wasserstein distance is
not especially useful in biological sequence statistics. There are many examples of proteins where a
single mutation abolishes function, i.e. a very small change in sequence leads to a very large change
in a key property (see Ding et al. *° for an example). Thus in practice for a real assay function f we
can expect || f|| . to often be large, even as large as || f || oo. In biological sequence statistics, therefore,

we do not expect the Wasserstein distance to offer much tighter bounds on the difference in assay

output |Ex~p[f(X)] — Ex~p[f(X)]| as compared to the TV distance.

0.3.4 ENTROPY OF SEQUENCE DISTRIBUTIONS
A useful way of measuring and comparing sequence distributions is in terms of the diversity of se-
quences that they generate. We will focus on a particular version of the distribution entropy, the
per-residue perplexity (PRP),
1
exp _[EXNp(x) W log(p(X)) ) (5)
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where recall | X| is the length of the sequence X. PRP is useful because it is directly comparable
between distributions that produce sequences of different lengths, and because it is interpretable as
the “effective” number of amino acid or nucleotides that the distribution generates at each position
of the sequence, on average across positions.

PRP is an absolute scale on which we can place sequence distributions. Here we give a brief tour
of the PRP scale for proteins. The minimum PRP is 1, corresponding to a p(z) that is just a delta
function at a single sequence (no diversity). Meanwhile, the PRP for a uniform distribution over
all 20 amino acids is 20. We can perform back-of-the-envelope calculations to get a rough sense of

the PRP of distributions studied in different areas of biological sequence statistics (calculations in

Sec. A.s).

1. All of life: A distribution p(x) that generates amino acids sequentially, based on the fre-

quency at which they are observed across all of life, will have a PRP of 17.92.

2. Evolutionary protein families: Simple models of evolutionary protein families, i.e. similar
or homologous proteins from across life, often rely on the BLOSUM substitution matrices;

with the BLOSUMG62 matrix, we expect a PRP of 11.00.

3. Human population: Based on the number of single nucleotide polymorphisms observed in
individual humans relative to the reference genome, we can estimate the PRP of the distribu-

tion over human genomes as 1.02.

These calculations are based on simple models of real distributions; a more accurate model of the

distribution of sequences across life, for instance, will no doubt have lower PRP than 17.92. Nonethe-
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less, they are useful as a rough guess for what PRPs can be expected in different estimation and mod-
eling problems. This dissertation focuses primarily on distributions with higher PRP than the hu-

man population but lower PRP than all of life, with typical estimates ranging between 1.5 and 8.

0.3.5 CONCLUSIONS

Biological sequence data is not like other kinds of data, and occupies an unusual and challenging
position in statistics. Biological sequences cannot be handled with the theory of vector data (e.g.

X = {1,..., B}M), since they are variable in length. Nor can sequences be handled using the the-
ory of time series data (e.g. X = {1,..., B} x {1,..., B} x ...), since they are finite. Partially
as a consequence of length variation, it is difficult to define sensible distance metrics d(z, z”) over
sequence space X'. Moreover, while in other fields a top priority is estimating expectations of known
functions - i.e. key distributional summary statistics such as mean and variance - in biological se-
quence statistics we care more about expectations of unknown functions, which are unlikely to be

smooth with respect to any sequence distance we might define  priors.

0.4 B1oPHYSICAL FOUNDATIONS

To build effective statistical methods for biological sequence data we must consider the underlying
biophysics of sequence evolution. In this section we describe a broad framework for stochastic mod-
els of sequence evolution, accounting for three key phenomena: mutation, fitness and phylogeny.
Many existing models can be thought of as special cases, modifications, or extensions of this frame-

work. In particular, although the focus is on describing how species change over evolutionary time,
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the same ideas can be applied with modification to a variety of other biological phenomena, such as
the development of immune receptor repertoires or tumors within a single organism, or experimen-

tal evolution systems.

0.4.1 MUuTATION

We start by examining models of how DNA mutates over time, as organisms reproduce. Such mod-
els typically take the form of a Markov process, with a transition probability function P7 (x, Xo)
describing the probability that an initial sequence X mutates into another sequence x after time 7
(where time may be either discretized or continuous).

The most widely important and well-studied class of mutations are substitutions, in which a letter
at a particular position in a sequence is replaced with another letter, e.g. because of errors during
DNA replication. A standard model says the probability of observing a substitution in a descen-
dent sequence X, at a particular position j, depends only on the letter in that same position in the
ancestor, i.e. Xoj, and the length of time or number of generations 7 that has elapsed since the an-
cestor. This can be summarized with a transition probability distribution X ~ P7(z, Xy), usinga

substitution matrix S,

X ~ Categorical(Xo; - S7) forall j € {1,...,|X]}, (6)

where j indexes the position in a sequence, S7 is the matrix S raised to the power 7, and we rep-

resent X with a one-hot encoding, i.e. if the bth letter of the alphabet is at position j of X, then
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Xojp = land X = 0for b’ # b. This independent model is simple and widely used, particularly
in phylogenetics, though note that it ignores more complex statistical dependencies that may affect
substitution probability, such as the wider sequence context.

A second important class of mutations are znsertions and deletions (indels), in which letters are
be added or removed from a sequence at a particular position, creating a longer or shorter sequence.
While this process is straightforward to simulate - i.e. it is easy to write down implicit models'*
where insertions and deletions are randomly added over time to an ancestral sequence — it is non-
trivial to construct probabilistic models with explicit analytic likelihoods over future sequences,
P7(x, Xo)'®”. This problem has been extensively studied in biological sequence analysis; a gen-
eralized solution for fixed 7 appears in Chapter 1. A closely related problem is that of alignment:
inferring, given two or more sequences, which positions in each sequence are evolutionarily related
via substitution mutations (“conserved sites”) rather than indels.

Although indels and substitutions are in general the most extensively studied classes of mutations
in biological sequence analysis, there are of course other types of mutations, many of which have
been understudied primarily because of limitations in sequencing technology rather than biological

importance; these include, in particular, mechanisms of large-scale cutting and joining of DNA,

such as recombination, structural variation, etc.

0.4.2 FITNESS

We next consider the effects of natural selection. To analyze how selection alters the evolution of

sequences, we move from the level of individual organisms to that of populations. We again work
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with a transition distribution on sequences P” (z, X¢), but now, rather than describing how indi-
vidual sequences change over time when an organism reproduces, it describes how a population of
genomes changes. In particular, let P7(x, X() be the probability that a population where genome
X is fixed - i.e. the most recent common ancestor of every organism in the population had se-
quence X — transitions such that x is fixed, after time 7.

In general P7(x, X¢) will depend on both sequence mutation and selection. A fitness landscape
F(-) : X = Ry describes the relationship between sequence and selection. The (absolute) fitness
exp[F'(x)] of a genome sequence  is the number of offspring that organisms with that sequence
produce on average. We will consider a simple set of population genetics assumptions, with haploid
organisms reproducing according to a Wright process, and the mutation rate assumed to be small rel-
ative to the population size. In these conditions, Sella & Hirsh **® show that the transition operator

for a single timestep can be approximated as

1—exp(2[F(Xo)—F(x .
Niul, Xo) Tamnrtnraly 7 # Xo,

P! (z,Xo) = (7)
L= "w2x, PY(2', Xo) otherwise,

where NN is the population size and (x, Xo) is the probability of mutating from X to z, accord-
ing to e.g. a substitution or indel model (Sec. 0.4.1). Eqn. 7 combines the effects of mutation (via
) with the effects of selection (via F’) to produce a modified transition distribution describing se-
quence evolution over time in a population of organisms.

A key consequence of these evolutionary dynamics is their asymptotic behavior in the long-time
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limit. Sella & Hirsh **° show under general assumptions that the stationary distribution takes the

form of a Boltzmann distribution with log fitness playing the role of energy,
T—00. o0 1
P72, Xo) T p%(x) = + exp(BF(@)) ®)

where the inverse temperature 5 = 2(/N — 1) depends on population size and Z is the normaliza-
tion constant. Thus, given enough time, we expect the population to have a random fixed genotype
X ~ p™(x), with the log probability of the sequence log p™° () proportional to the log fitness of
the sequence F'(z). Estimating the stationary distribution p> from data is a key problem because it
provides information about the underlying fitness landscape F.

The structure of the fitness landscape function F' is of particular importance. We will primar-
ily study the fitness landscapes of individual biomolecules. This can be justified using an additivity
assumption, namely that F((z) = F™(2(™)) 4+ F(©)(2()) where F™ (2(™)) is the contri-
bution of the molecule of interest (™) (e.g. a particular protein encoded within the genome) to
the overall fitness F(), and F(©) (:(¢)) is the contribution of everything else in the genome. Un-
der this assumption, the stationary distribution p™ () factors as p™ () = p™ (2(™)p> (2(%),
so that the molecule of interest (™) is independent of the rest of the genome, and can be studied
in isolation. A further assumption is that the fitness is additive within the molecule of interest, i..
F(z) = Z‘Jﬂl F;(z;) (notationally, for the rest of the dissertation we will be focused on individual
molecules, so we drop the superscript (™). For instance, if  is a protein, its biological activity may

depend critically on the right kind of amino acid being in each position. In this case the stationary
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distribution p>° () is independent across positions, and is thus an instance of a “sitewise indepen-
dent model”. A more flexible assumption on F' is that it can also depend on pairs of positions, i.e.
F(x) = Z‘jﬂl Fj(zj) + Z‘f:ll ElﬁL] Fjji(xj, ;). For instance, if amino acids at two sites in-
teract in three-dimensional space, the function of the protein can depend on having a correct pair
of amino acids at these positions, e.g. one positively and one negatively charged. In this case the sta-
tionary distribution p°° (z) is the celebrated Potts model of proteins '****°. More complex fitness
functions can arise, however, particularly when there is length variation.

Evolutionary dynamics are complex, and the basic Sella & Hirsh **° model can break down when

mutation rates are high, when there are asymmetries in mutational biases, when the population has

substructure, when fitness changes as a function of time, etc..

0.4.3 PHYLOGENY

So far we have described models of sequence evolution at the level of individual organisms, and at
the level of individual populations of organisms, all of the same species. We now turn to models of
multiple populations, each corresponding to separate species. This necessitates understanding the
effects of phylogeny, the history of species.

A phylogenetic tree describes the history of species formally. It consists of a directed and rooted
full binary tree H = (V, E, T') with edges E and nodes V/, along with time labels for the nodes,
T : V — R4 (Fig. 4.1A). Each node v corresponds to a particular species, with the sequence
Xy fixed in the species’ population. Each species derives from its ancestor as X, ~ PAt (x, Xy )s

where X, is the sequence of the parent node (the ancestor), v is the child node (the descendent),
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and At = T'(vg) — T'(v1) is the length of the edge between them (Fig. 4.1B). The evolutionary dy-

namics of individual populations P” (x, X¢) thus give rise to the evolutionary dynamics of multiple

species through a branching process. A central challenge in phylogenetics is inferring the latent tree

structure given only sequences from present-day species, i.e. the leaves of the phylogenetic tree.
Note that this basic model fails to take into account a number of important biological phenom-

ena, including especially horizontal gene transfer. It also ignores situations where the definition

of separate populations/species is not clear cut, as well as situations where the transition operator

P7(x, X) varies across branches.

0.4.4 CONCLUSIONS

We have outlined a framework for models of molecular evolution, building up from the individual
organism to the population to the multispecies level, taking into account mutations, fitness and
phylogeny. At the broadest level, these models pair a description of sequence dynamics in terms of a
Markov transition probability function — which is determined by mutation rates and has a station-
ary distribution that reflects the fitness landscape — with a description of species” history over time
in terms of a binary branching tree. Attempting to take into account the full picture — mutations,
fitness and phylogeny — typically leads to models that are both highly complex (requiring many
parameters) and incomplete (ignoring the possibility of more complex mutational dynamics, popu-
lation dynamics, etc.). A fundamental challenge is to instead construct models that simultaneously
capture key phenomena of interest while remaining robust to biological complexity and scalable to

large datasets. For instance, a standard approach to learning evolutionary histories is to use a transi-
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tion operator that describes substitution mutations and ignores fitness; but ignoring fitness effects
can distort phylogenetic tree estimates, and ignoring indels typically relies on preprocessing methods
that violate the i.i.d. data assumption and get in the way of sequence prediction (Sec. o.3.1; Chap-
ters 1 and 4). A standard approach to learning fitness landscapes is to ignore phylogenetics and treat
the data as coming from the stationary fitness distribution (Eqn. 8); but phylogenetic effects can

distort fitness inferences arbitrarily, so these methods are not necessarily robust (Chapter 4).

0.5 OUTLINE OF THE DISSERTATION

The dissertation consists of five chapters organized into two parts. Here we briefly review the con-
tribution of each chapter, placing them in the larger context of generative biological sequence statis-

tics.

0.5.1 PARTI: BOX’S LOOP FOR SEQUENCES

Box’s loop (Fig. 1) is an idealized virtuous feedback loop of improved scientific understanding, in
which probabilistic models are proposed, refined, and then applied. However, Box’s loop has been
challenging to implement in practice in the context of biological sequences. The purpose of Part I
of this dissertation is to help remove existing barriers to Box’s loop, developing powerful and scal-
able tools to build, infer, criticize, and design experiments based on generative biological sequence
models.

Chapter 1, based on Weinstein & Marks **#, develops a new tool for building generative sequence

models, a structured observation distribution which we call the “mutational emission” (MuE) dis-
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tribution. Observation distributions (also called “error”, “emission” or “output” distributions) are
a ubiquitous tool in statistics and machine learning, and provide a systematic way of working with
data in a particular space X, with a particular form of variability. Given a covariate or a latent vari-
able Z, we can model an observed datapoint X as X ~ Observation(g(Z)) where Observation(-)
is the observation distribution and g is a function we can choose (a linear function, a deep neural
network, etc.). For instance if X were count data, recording the number of times a rare event oc-
curred, a standard choice of observation distribution would be the Poisson distribution. The MuE
is an observation distribution for biological sequence data, where X is in the set of finite length
strings X’ (Sec. 0.3.1). It explicitly accounts for mutational variability, in particular substitutions
and indels (Sec. 0.4.1). Methodologically, MuE observation models are intended as an alternative
to a ubiquitous preprocessing procedure — multiple sequence alignment (MSA) — that manipu-
lates the data to have standardized length; MuE observation models can be interpreted similarly to
MSA-based models (i.e. in terms of variation at conserved sites and indels), but have the virtue of
providing valid predictions over unobserved or future sequences, enabling fully generative sequence
modeling (Sec. 0.3.1). We develop fast variational inference strategies for MuE observation models
(Sec. 0.2.3), taking advantage of parallel scan algorithms. MuE observation models and inference
algorithms are now part of the Pyro probabilistic programming language, allowing them to be eas-
ily constructed and used in combination with other models for other kinds of data*?. We apply
MuE observation models to build a generative forecast of pathogen sequence evolution (Sec. o.1.1),
as well as detailed maps of immune receptor repertoires in individual patients (Sec. 0.1.2), and im-

proved descriptions of disordered protein families.
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Chapter 2, based on Amin et al. '*, develops a new generative sequence model, the Bayesian em-
bedded autoregressive (BEAR) model. BEAR models can be used both for density estimation and
for model criticism, in particular goodness-of-fit and two-sample testing (Sec. 0.2.1). They combine
a nonparametric Bayesian Markov model with a structured prior, centered on the predictions of a
parametric autoregressive model. We develop fast empirical Bayes inference algorithms for BEAR
models, which take advantage of powerful database construction tools for biological sequences.
These algorithms are scalable to whole genome and even metagenome datasets — terabytes of data
or more — and we find BEAR models exhibit excellent predictive performance in both the small and
large data regimes. We prove theoretically that BEAR models are asymptotically consistent non-
parametric density estimators: their posterior converges to azy data generating distribution po, in
terms of Hellinger distance (Sec. 0.3.3), so long as py is sub-exponential (Sec. 0.3.2). Since we can
tractably compute the marginal likelihood of BEAR models, they can also be used for goodness-of-
fit testing and two-sample testing, and we prove the asymptotic correctness of these tests as well. We
demonstrate BEAR models on whole genome sequencing data from plants (whose genomes have
notoriously complex structural variation), metagenomic data from patients with irritable bowel
syndrome, and single cell RNA sequencing data from tumors. We apply BEAR two-sample tests
to evaluate changes in the microbiome of patients before and after kidney transplantation, and to
criticize simulator models of whole genome sequencing data.

Chapter 3, based on Weinstein et al. *%*

, turns to the problem of designing experiments based
on generative sequence models, and in particular, synthesizing samples from models in the labo-

ratory. A standard approach, which we term “Monte Carlo (MC) synthesis”, is to draw samples
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from the model computationally, and then synthesize these samples individually in the laboratory;
this approach is typically limited by synthesis costs. We propose an alternative strategy, “variational
synthesis”, which relies on stochastic synthesis techniques, or biochemical methods that produce a
diverse set of product molecules from single reactions rather than a pure product. Stochastic synthe-
sis methods can produce a massive number of unique DNA molecules in a single test tube, vastly
more than could be synthesized individually, but the molecules are randomized. We propose to

(1) model the distribution over product molecules with another generative probabilistic model

¢o (), with parameters 6 corresponding to quantities over which the experimentalist has control,
and then (2) choose the optimal 8* such that gg« ~ p. Running the synthesis protocol in the labo-
ratory with the optimized parameters 6* will then produce a large number of approximate samples
from p(x). We model the distribution of product sequences in terms of underlying substitution
and recombination mutations (Sec. 0.4.1); the full distribution gy () takes the form of a mixture
model. We optimize 6 by minimizing a KL divergence with the target model distribution, in partic-
ular 6% = argmin KL (p||gg). Using integral probability metrics (Sec. 0.3.3), we provide theoretical
guarantees that variational synthesis will produce large numbers of hits in downstream assays, as
compared to MC synthesis. We further show that some, but not all, stochastic synthesis technolo-
gies can approximate arbitrary target distributions p(z) arbitrarily well, where p(z) is assumed to be
bounded (Sec. 0.3.2). We then demonstrate a complete Box’s loop pipeline: building models with
the MuE observation distribution, criticizing models with BEAR two-sample tests, and designing
experiments with variational synthesis. We show, using simulated assay functions trained on held-

out sequence-to-function data, that using variational synthesis instead of MC synthesis can lead to
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> 400x increase in the number of hits in example fluorescent protein and T cell receptor engineer-

ing problems (Sec. 0.1.2).

0.5.2 PARTII: USING MISSPECIFIED MODELS FOR ESTIMATION AND DISCOVERY

The goal of Box’s loop is to produce an accurate probabilistic model of a given dataset. From this
perspective, misspecified models are a major problem: they are “wrong”, in the sense that they can-
not accurately capture the underlying data generating distribution (Sec. 0.2.2). Misspecified models
should therefore be avoided if possible, and used with caution if necessary, when modeling com-
plex data. Although this attitude is something of a truism in probabilistic modeling, our efforts to
replace heuristic and semi-heuristic biological sequence analysis methods with more rigorous sta-
tistical methods led to a number of examples where such conventional wisdom breaks down or is
incomplete. We first present an example where misspecified models are a powerful tool for accurate
estimation, even with infinite data. We then consider a situation where the scientific goal is not to
produce an accurate model of the entire dataset, but rather only a piece of the dataset.

281

Chapter 4, based on Weinstein et al. **', considers the problem of estimating fitness landscapes
from evolutionary sequence data (Sec. 0.4.2). Existing methods ignore the effects of phylogeny,
treating the dataset of sequences as if it consisted of i.i.d. samples from the stationary distribution
P> (Sec. 0.4.3). In particular, they proceed by fitting a parametric model M = {py : § € O}
to data, and then using the log probability of a sequence under the inferred model as an estimate of

its log fitness (applying Eqn. 8). We show that the effects of phylogeny can distort the data gener-

ating distribution pg away from the stationary distribution p>°, and there are fundamental limits
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on what we can learn about p given samples from pg. Further, we show that when the assump-
tion that there are no phylogenetic effects is violated, using a misspecified model can result in better
estimates of p° as compared to a well-specified model: the model distribution at the pseudo-true
parameter, pg,, may be closer to p® than pg (Sec. 0.2.2). Applying the BEAR model to estimate
Po, we develop a hypothesis test to determine whether or not this effect holds in practice. Across
over a hundred separate datasets, we show that using misspecified models results in systematically
improved fitness estimation. Our results have implications for our ability to engineer new proteins
and diagnose genetic disease, as well as for our understanding of the long term past and future of
evolution (Sec. 0.1.3).

Finally, Chapter s, based on Weinstein & Miller 285 turns to a more general statistical problem,
motivated by common heuristic methods in biological sequence analysis and other fields of compu-
tational biology. Given a complex phenomena, scientists often proceed by developing working mod-
els for various special cases and subsets; thus, a natural question is where and when a given work-
ing model applies. We formalize this as the “data selection” problem: finding a lower-dimensional
statistic (such as a subset of dimensions) that is well fit by a given parametric model of interest. In
biological sequence statistics, for instance, there are a variety of heuristic methods for determining
sets of subsequences that are well fit by a profile hidden Markov model®. Since the data selection
problem has not been studied systematically before, we focus on the more standard statistical setting
of continuous real vector data, rather than sequence data. We introduce a Bayesian approach to data
selection, and study its asymptotic behavior, revealing that it quantifies a simple logic: we should

apply our working model to explain as much of the data as it can, and no more. We then develop an

29



alternative to the fully Bayesian approach, with analogous asymptotic behavior, that is faster to com-
pute. We demonstrate our method on single cell RNA sequencing datasets, determining where and
when a simple biophysical model of gene expression actually applies. Our results set the stage for fu-

ture work developing rigorous Bayesian data selection methods specifically for biological sequences.
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A Structured Observation Distribution

Generative probabilistic modeling of biological sequences has widespread existing and potential
application across biology and biomedicine, from evolutionary biology to epidemiology to protein
design. Many standard sequence analysis methods preprocess data using a multiple sequence align-
ment (MSA) algorithm, one of the most widely used computational methods in all of science*7°.

However, as we show in this article, training generative probabilistic models with MSA preprocess-
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ing leads to statistical pathologies in the context of sequence prediction and forecasting. To address
these problems, we propose a principled drop-in alternative to MSA preprocessing in the form of
a structured observation distribution (the “MuE” distribution). We prove theoretically that the
MuE distribution comprehensively generalizes popular methods for inferring biological sequence
alignments, and provide a precise characterization of how such biological models have diftered from
natural language latent alignment models. We show empirically that models that use the MuE as
an observation distribution outperform comparable methods across a variety of datasets, and apply
MuE models to a novel problem for generative probabilistic sequence models: forecasting pathogen
evolution.

This chapter presents work with Debora S. Marks, published at the International Conference on
Machine Learning (2021)***. EIN.W. conceived the research, performed the research and wrote the

paper; D.S.M. supervised the research at all stages.

1.1 INTRODUCTION

High-throughput sequencing is pervasive across biology and biomedicine, and critical to both past
and ongoing discoveries and technological advancements. Analyzing large scale sequence data, mak-
ing predictions about unobserved or future sequences, and generating new functional sequences,
are major and growing challenges with relevance to epidemiology (predicting pathogen evolution),
immunology (characterizing antibody repertoires), molecular evolution (mapping substructure

within protein families), protein design, and many more subfields of biology and biomedicine. In
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principal, generative probabilistic modeling enables (a) modular and uncertainty-aware data analysis,
(b) formal mathematical statement of underlying assumptions, and (c) generation of new samples,
which in the case of sequences can be synthesized and tested in the laboratory (taking advantage

of recent rapid progress in high-throughput synthesis) '47**4. However, although machine learn-
ing and statistics offer an extraordinary array of generative probabilistic models, extending existing
methods to apply to biological sequences while accounting for domain-specific prior knowledge is
nontrivial.

When analyzing biological sequence data, a standard approach is to preprocess the data before
building any models by constructing a multiple sequence alignment (MSA). MSA algorithms are
among the most widely used methods in all of science; according to a 2014 analysis, the 1oth most
cited scientific article of all time is an MSA algorithm, ahead of all other computational data analysis
and statistics articles>7*>5%255. Recent major advances in machine learning and statistical methods
for protein structure prediction, variant effect prediction for clinical genetics, protein design, epi-
demiological tracking, and more have continued to rely on MSAs 168,79,224,99 Although MSAs are
a powerful tool for understanding sequence evolution, in Section 1.4.1 of this article we show that
employing MSAs as preprocessing introduces statistical pathologies in the context of generative
sequence prediction and forecasting.

As a principled, drop-in alternative to MSA preprocessing, this article provides a structured ob-
servation distribution for biological sequences, the “mutational emission” (“MuE”) distribution.
Observation distributions are a common general-purpose technique for extending continuous-space

models to other types of data, perhaps most familiar in the context of generalized linear models,
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A Standard approach B Proposed approach
Model sequences with

Sequence data Multiple sequence alignment Model aligned sequences Sequence data MUE observation distribution
Y1 CGCCC Yumsaa C--GCCC---- Y1 CGCCC

Y2 ATGGCTCGAT Yusa,2 ATGGCTC-GAT Y2 ATGGCTCGAT

Y3 ACCTATGAA = Yusas A-C-CTATGAA €= Y3 ACCTATGAA €= Latent
Y, CTCAA Ymsaa --C-TC---AA Y, CTCAA “V- alignment
Y5 ACCATG Yusas A-C-C-ATG- - Y5 ACCATG variable

Figure 1.1: (A) A standard approach to building biological sequence models is to preprocess the data by constructing an
MSA. (B) We propose modifying the model instead of the data using the MuE distribution.

» <«

where they are sometimes also referred to as “error”, “emission”, or “output” distributions. For in-
stance, to predict count data, one might use a Poisson as an observation distribution, or to predict
positive continuous data, one might use a Gamma. Good observation distributions account for
both the support of the data and common forms of variability or noise in the data. For biological
sequences, we propose using the MuE as an observation distribution. The MuE takes the form of a
latent alignment model in which the regressor sequence can also be latent*>.”

The major contributions of the article are (1) identification of statistical pathologies introduced
by widely-used MSA preprocessing methods, (2) a drop-in general purpose alternative, the MuE
distribution, (3) a unified and comprehensive theoretical framework for cataloging and rederiving
existing biological latent alignment models from the MuE and (4) a novel application of genera-
tive probabilistic sequence models enabled by these advancements: forecasting pathogen evolution.
At the most practical level, our approach provides a complete recipe for applying one’s generative

model of choice to biological sequence data while avoiding the pathologies of MSA preprocessing:

*We will refer to biological alignments (diagrammatic representations of relatedness between sequences)
as “multiple sequence alignments” 7. We will refer to machine learning alignments (latent variables which
indicate which positions in one sequence generate which positions in another sequence) as “latent align-

»<o
ments” 52,
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add a MuE.

1.2 METHOD

1.2.1 BACKGROUND: MSA PREPROCESSING

MSA algorithms are applied to families of evolutionarily related biological sequences (proteins,
RNA or DNA) in order to infer sites in each sequence that are likely to be related to one another,
meaning that they descend from a common ancestor. MSAs can be used as the basis for extrapola-
tion: for instance, knowledge about one region in one sequence can be used to make guesses about
related regions in related sequences. MSAs can also be used to understand biological function: for
instance, if particular amino acids at particular sites are highly conserved across sequences, it may
be evidence that they are crucial to biological function. Generative probabilistic models of MSAs
have seen widespread success on these and many other tasks, including predicting the clinical im-
pacts of genetic mutations, inferring three-dimensional protein and RNA structure, and designing
new proteins79’168’280’224 . We next briefly describe how such MSA-based models are built, as well as
their advantages and flaws. In Section 1.2.2 we introduce our alternative, MuE observation models,
which directly generate sequences rather than MSAs. MuE observation models infer related sites
but also simultaneously (1) account for uncertainty in which sites are related, (2) allow rigorous
model evaluation and (3) enable prediction and forecasting of sequences.

Let {Y1,...,Yn} beadataset of N sequences, which may each be different in length, and let

B denote the alphabet (e.g. B = {A, T, G, C'} for DNA). MSA algorithms convert the sequence
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dataset into an N by J matrix, an MSA, adding gap symbols “—” such that sites in the same ma-
trix column are those inferred to be related (Figure 1.1A). Mathematically, MSA algorithms can be
summarized as nonlinear functions fysa that take in datasets of sequences and return processed
datasets, {Ymsa 1, .- - Ymsan} = fmsa({Y1,....Yn});foreachi € {1,..., N}, wehave
Yamsai € (BU{—1})7. Note J itself will depend on the input dataset.

Preprocessing sequence data by constructing an MSA is useful in that it (1) converts the data
into a matrix, and (2) adjusts for common sources of variability in biological sequence data, in par-
ticular insertion and deletion mutations. MSA preprocessing makes building statistical models of
sequences more straightforward. For instance, starting from an arbitrary model pg that generates
continuous matrices V; € R/*(B+1) where B := |B|, one general strategy is to employ a softmax
linker function and a categorical observation distribution (softmax(V;); := exp(Vi j5)/ >y exp(Vi jr)

forj € {1,...,J}). The complete approach is (Figure 1.1A),

Preprocess: {YMSA,h e YMSA,N} = fMSA({)/l, ceey YN}),

Model: V; ~ py (r.1)

Ymsa,i ~ Categorical(X; := softmax(V})).

By allowing arbitrary pg, this method enables, for example, the application of generative image mod-
els (such as variational autoencoders) to biological sequence data*'S. However, as we describe in
depth in Section 1.4.1, MSA preprocessing introduces substantial problems: each row of the output

matrix Ysa i depends via firsa on the entire input dataset {Y7, ..., Y } and we cannot know
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Figure 1.2: (A) Condition 1.2.2 allows only the positions of a® indark purple to be non-zero. (B) Example latent state
paths w taken by the Markov model in the MuE, and sequences Y that they can generate, given 2 is a one-hot encoding
of the DNA sequence TACGC. Rows correspond to positions 1, . . . , I, columns correspond to latent states 1, . . . , K.
(C) w defines a pairwise alignment between X and Y via Definition 1.4.3. (D) The collection of w values describe a
multiple sequence alignment of the generated sequences Y (Section 1.4.2).

ahead of time how future raw data Yy will change preprocessed past data Yjsa ;< n. This makes

likelihood-based model evaluation on newly observed or heldout data ill-defined.

1.2.2 THEMuTaTIONAL EMISSION DISTRIBUTION

As a drop-in alternative to MSA preprocessing, we introduce the “mutational emission” (“MuE”)
distribution. The MuE can be used in place of the Categorical observation distribution in Equa-

tion 1.1,

Model: V; ~ pg

Y; ~ MuE(X; := softmax(V;), ¢, £,a(?, a®),
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where ¢, ¢, a(?), and a® are parameters of the MuE, and V; € RMXD where M and D are hyperpa-
rameters rather than dimensions of the input data. The MuE avoids the pathologies of MSA prepro-
cessing by directly generating complete, variable-length sequences (Figure 1.1B). We refer generically
to models that use a MuE observation distribution, such as Equation 1.2, as “MuE observation”
models. (See Figure A.1 for a diagram of MuE observation models and Table A.1 for a notation ref-
erence.) In the limiting case where X; is a one-hot encoding of a sequence (i.e. X 1,4 € {0,1} and
> aXim,a = 1), the MuE can be interpreted biologically as generating a mutant Y; of the “ances-
tral” sequence X, with some probability of insertion and deletion mutations (controlled by c, a(o),
and a®) and of substitution mutations (controlled by £) (Section 1.2.3). A latent variable W; in
the MuE determines which positions in the regressor X; — intuitively, which sites in the “ancestral”
sequence — generate which positions in Y;, and can be interpreted as defining a pairwise alignment
between X; and Y;. The latent variables W7, . .., Wy define a multiple sequence alignment of the
dataset Y7, ..., Yy (Section 1.4.2). Intuitively, the MuE “adds in”, through a generative process,
the same mutations that MSA algorithms are intended to “filter out” of the data via preprocessing.
The MuE is a hidden Markov model (HMM) with block-structured emission and transition ma-

trices. Let Ap denote the D — 1 dimensional simplex, Ap := {v : v € RP vy > 0, Zfl):l Vg =

1.

Definition 1.2.x (MuE). MuE(z, ¢, £,a(?), a®) is an HMM with K = 2M + 1 latent states.

The initial probability of each latent state is given by a®) € A, the latent state transition matrix is
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a®) € (Ag)X, and the emission matrix is & € (Ap)X. The matrices have block structure

x AWML 4(12)
I = A al®) =

¢ AL 422)
wherex € (Ap)M, c € (Ap)M*L, ¢ e (Ap)P, ALY € RMXM | 454 A(22) ¢ RIMADX(MA+1),

The transition matrix must satisfy Condition 1.2.2.

Condition 1.2.2 (Biological latent alignments). Entries of ALV A2 ARY 4pnd A22) helow

the main diagonal must be zero. Entries of AV and AN on the main diagonal must also be zero.

Condition 1.2.2, an upper triangular restriction, is illustrated in Figure 1.2A and justified in
depth in Section 1.4.2. We use w to denote a latent state path taken by the HMM, while W; de-
notes the specific latent state path taken when generating sequence Y; given X; following ¥; ~

MuE(X;, ¢, £, a9, a®).

1.2.3 BIOLOGICAL INTERPRETATION OF THE MUE

To describe the biological interpretation of the MuE and its parameters, we consider examples of
different latent paths w = (wy, ..., wr,) through state space and the sequences Y ~ pymyue(y|z, w)
that these paths will generate (Figure 1.2B). Assume to start that D = Band{ = I, where
Ipisthe B x B identity matrix, and consider the limiting case where x is a one-hot encoding of a

sequence (in Figure 1.2B, the DNA sequence TACGC). We consider three example w values:
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1. w=(1,2,..., M) (no mutation). The generated Y will be an exact copy of z,ie. Y = zif

Y is represented as a one-hot encoding (Figure 1.2B top).

2. w=(1,...,m—1,m+1,..., M) (deletion). The generated Y’ will be missing the mth

letterof z,ie. Y = (1,..., Zm—1,Tm+1, - - ., Trsr) (Figure 1.2B middle).

3. w=(1,....m,M+m+1,m+1,..., M) (insertion). The generated Y will have an
additional letter inserted after the mth letter of x, with a probability over letters determined
by emi1,ie Y = (21,...,2m, S, Tmt1, ..., 20m) where S ~ Categorical(¢r41)

(Figure 1.2B bottom).

Condition 1.2.2 guarantees that the states k € {1,..., M} corresponding to x are each visited at
most once and in sequential order. Paths suchas {1,...,m,m, ..., M} (repeat)and {1, ..., m +
1,m,..., M} (backtracking) are not allowed under Condition 1.2.2. More general matrices ¢ €

(Ap)P allow for substitution mutations, with the probability of converting from letter d to letter b
given by £4 5. For example, ifw = (1,..., M), then Y ~ Categorical(x - £), thatis Y is a mutant
of = with substitution probabilities determined by £ and no insertion or deletion mutations.

MuE observation models directly generalize models that use MSA preprocessing in the special
case where the dataset sequences are all the same length and the MSA algorithm does not add any
gap symbols (that is, when fysa (+) is the identity). Assume D = B, and consider the “no mutation
limit” where / = Ip, ago) =1,and Ag:}g“ = 1forallm € {1,..., M — 1}. In this case we find,

for samples Y of length M, that Y ~ MuE(z, ¢, £, a(®), a®) simplifies to Y ~ Categorical(z).

Thus Equation 1.2 and Equation 1.1 become equivalent. In practice, we typically select priors on

40



the MuE to favor the no mutation limit, since it serves as a null hypothesis.

1.2.4 INFERENCE

The marginal likelihood of the MuE with the latent state variable of the HMM integrated out,
pvue(y]z, ¢, 0, a0 a®), s analytically tractable via the HMM forward algorithm and differen-
tiable. The standard forward algorithm requires O(L) sequential matrix multiplications, where L
is the length of the sequence (typically a few hundred amino acids in our setting), but it can also be
parallelized to achieve O(log L) time**7>***. Using the MuE marginal likelihood allows inference
with automatic differentiation variational inference, stochastic gradient MCMC, and related scal-
able approximate Bayesian inference algorithms (Section A.4.1)'#7*5¢. We have made available an
implementation of the MuE distribution as part of the probabilistic programming language Pyro,
making it straightforward to explore different MuE observation models and inference methods

(https://docs.pyro.ai/en/dev/contrib.mue.html, Section A.4.2)*3.

1.3 RELATED WORK

Methods that use MSA preprocessing. MSA preprocessing is widely used as a starting point

for biological sequence data analysis, perhaps most commonly in combination with other non-
probabilistic analysis methods. One very common class of probabilistic methods that nearly always
use MSA preprocessing is phylogenetic models, which are central to evolutionary biology and ge-
nomic epidemiology, and widely used in nearly every other area of biology ?75. Another is fitness

models, including Potts models and variational autoencoder models, which are used to infer the
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structure of proteins and RNA, predict the functional effects of clinical variants, design new pro-
teins, etc. 10811079224

Standard methods that avoid MSA preprocessing. Although MSA preprocessing is problem-
atic from the perspective of probabilistic modeling, the use of probabilistic models to infer multiple
sequence alignments — that is, in order to accomplish the preprocessing — is standard. Perhaps the
most widely used such method is the profile HMM, which, besides being used to infer multiple se-
quence alignments, is also at the core of modern sequence database search methods and is used to
define sequence families, among many other applications“”>'3>7%, In Section 1.4.2 we show that
the MuE distribution generalizes a variety of popular methods including the profile HMM. While
connections between various methods have been described before, the generalization oftered by
the MuE is both unified and comprehensive, delimiting the extent of the model class '7. Note also
that some of these models can be trained by interpreting an MSA as a point estimate of the latent
alignment variable; this is distinct from the more common usage of MSA preprocessing described in
Section 1.4.1 and is not subject to the same pathologies. The most closely related method to MuE
observation models is the hidden Potts model *%7; we go further by providing a generalized approach
to building and inferring similar models.

Natural language processing methods There has been intense recent interest in applying ad-
vances from natural language processing to biological sequences®'7*35?. The MuE is a type of latent
alignment model, a key model class in natural language processing; Deng et al. >* detail the close

relationship between latent alignment and popular attention network methods. MuE observation

models differ from standard latent alignment models in that (1) rather than regress on an observed
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Figure 1.3: The multiple sequence alignment of the initial dataset Y7, Y5 and Y3 can change as more data, Y}, is added.

sequence (e.g. a sentence in a language to be translated), the model regresses on a latent sequence X,
and (2) the MuE is structured such that its latent alignment variable is interpretable as a biological
alignment, not an alignment in the more generic sense used in natural language processing (Sec-
tions 1.4.2 and 1.4.3). Note that while the MuE itself is a relatively simple latent alignment model
(an HMM), complex neural networks can be used to generate the latent sequence X;; from a deep

learning perspective, the MuE can be thought of as a biologically interpretable final layer.

1.4 THEORY

1.4.1 PATHOLOGIES IN MSA PREPROCESSING

MSA preprocessing is typically applied to static sequence datasets and used for parameter inference
problems; its statistical pathologies emerge when when we attempt to predict unobserved or future
sequences. To explain these pathologies, we focus on the i.i.d. case.” Consider the following model-

ing assumption, which is ubiquitous in statistics:

Assumption 1.4.1 (Lid. data and model). Lez po(z) be a probability distribution defined over a

space X, i.e. po(x) € P(X) where P(X) is the set of all probability distributions over X. We (1)

TNote that phylogenetic models, although not usually represented as i.i.d., are typically exchangeable and
so possess an i.i.d. representation by de Finetti’s theorem ***.
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assume that we observe independently and identically distributed samples X1, Xo, ... ~ po(z).
In order to describe this process, we introduce a model M = {q(z|0) : 0 € ©}. We(2)assume

q(z|0) € P(X) forall 6 € ©.

Now consider models that use MSA preprocessing and take the following form, of which Equa-

tion 1.1isa special case:

Preprocess: {YMSA,I; ey YMSA,N} = fMSA({Y17 e ,YN}),

i
Model: Ysa i ~ p(ymsa);

where p(ymsa) € P((B U {—1})7). If we attempt to employ Assumption 1.4.1 to describe the
preprocessed data Yasa 1, - - -, YMsa, N We see that it is violated. Part 1 of Assumption 1.4.1 fails
because the preprocessed data cannot consist of independent observations: if a datapoint Y41

is added to the dataset, then past data, i.e. Ymsa,1, - - -, Ymsa,n, can be altered (Figure 1.3). For
instance, the new sequence may provide additional evidence to the MSA algorithm that sites in
previously observed sequences are related to one another. Part 2 of Assumption 1.4.1 fails because
the model is not defined over a space that encompasses future data: if a datapoint Yy 11 is added
to the dataset, the value of J may change (Figure 1.3). For instance, the new sequence might be
longer than any seen before. These failures occur on real sequence datasets, for typical values of
N (Figure A.2). Practically, the fact that MSA models violate Assumption 1.4.1 makes rigorous
likelihood-based evaluation of their generalization capacity untrustworthy. If we do not know what

space future data lives in, or how past data will be altered with future measurements, it is hard to
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trust that the average log likelihood of our model on a held out test set is genuinely reflective of
future model performance. More technically, the violation of Assumption 1.4.1 causes standard
justifications for the use of Bayes factors, heldout likelihood, prequential evaluation, etc. to fail, see
e.g. Dawid #?, Vapnik *7", Dawid *°.

Using MSA preprocessing also fails to account for uncertainty in the alignment**>¢'. The goal
of an MSA algorithm is to infer related sites among a set of sequences, but the resulting MSA is only

a point estimate of this quantity.

1.4.2 INFERRING ALIGNMENTS

In this section we connect the MuE distribution to previously proposed probabilistic and non-
probabilistic methods for inferring biological sequence alignments including MSAs, and describe
how MuE observation models can be used to infer related sites and MSAs themselves. We start by
more formally describing a biological pairwise alignment between two sequences X and Y, and
then establish a connection with the latent state variable W in the MuE. Pairwise alignments serve as
a diagrammatic representation of how two sequences X and Y may be related via insertion, deletion

and substitution mutations.

Definition 1.4.2 (Biological pairwise alignment). Let X andY be sequences of length M and L
respectively. A pairwise alignment Aof X and Y with J columns is a matrix [A® | AW]T, where
A@ € (B U {=})’ isa column vector of length J consisting of the letters of X, in order, and in-
terspersed with gap symbols; similarly for AW). The alignment A must satisfy the condition that for

everyj €{1,...,J} €l'l‘b€}"./4§~x) eB or_A;y) c Bor both.
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Let j; be the column of the alignment A in which the [th letter of Y falls, i.c. A%/) = Y for
l € {1,...,L}. Let g; indicate whether the column j; in A contains a gap, i.e. g; := l](.A;-f) =-),
where [(-) is the indicator function which takes value 1 when the expression is true and o otherwise.
Given X and Y, the sets {j1,...,jr} and {g1, ..., g1} together uniquely define an alignment A

(Remark A.2.1). We can define a map from the latent state path W to a pairwise alignment A of X

and Y.

Definition 1.4.3 (From latent states to biological alignments). Given W ~ pyup(w|X,Y), ler
g =MW, > M)andjy = W, — Mg, + Zf,_:ll g, forl € {1,..., L}. Notethat this map is

invertible.

Under this definition, when g; = 0, the letter Y] is generated based on a letter Xy, in the MuE,
and Y7 and X, are placed in the same column of the pairwise alignment A; when g; = 1, however,
Y does not depend on X at all (it depends on c instead) and A§f) has the gap symbol (Figure 1.2C).

A 200 of probabilistic and non-probabilistic methods have been proposed for inferring biological
sequence alignments from data. Here we show that many of the most widely used methods can be

unified as special case examples of the MuE which use Definition 1.4.3 to convert from W to A.*

Proposition 1.4.4 (Unified). For different choices of parameters c, £, a9, and a®), (1) the Thorne-
Kishino-Felsenstein model®'7, (z) the profile HMM, and (3) the conditional distribution of a sequence

Y given a sequence X under the pair HMM are all special cases of the distribution

¥So far we have not specified a model for the length L of the sequence Y. In the following proposition, we
assume that there is some probability of the latent Markov chain terminating after each step I, and that this
probability depends on the current state ;.
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MuE(X, ¢, £, a0, a®), with a state-specific probability of the Markov chain terminating at each
step. For another choice of parameters, the maximum a posteriori estimator i := argmax, pmut(Y | X, w)

corresponds to the Needleman-Wunsch alignment.

See Section A.2.2 for a proof. In the context of the profile HMM, point estimates of the latent
alignment variables W1, . . ., W associated with each observed sequence Y7, . .., Yy are used to
construct a multiple sequence alignment of the dataset by effectively merging pairwise alignments;
sites in each Y; generated by the same position in X are considered related, and placed in the same
column. The same logic and algorithm can be applied to MuE observation models to define an
MSA based on W7y, ..., Wi (Figure 1.2D; Section A.2.3).

The MuE offers not only a unified but also a comprehensive framework in the sense that HMMs
which fail to satisfy Constraint 1.2.2 cannot be interpreted, using Definition 1.4.3, as biological

alignments (proofin Section A.2.4):

Proposition 1.4.5 (Comprehensive). Consider the setup of Definition 1.4.3 and assume each latent
statek € {1,..., K} of the MuE is Markov accessible under ) and aV) (meaning that it can be
reached with non-zero probability). Condition 1.2.2 is both necessary and sufficient to guarantee that

with probability 1, W defines a valid pairwise alignment of X andY via Definition 1.4.3.

1.4.3 COMPARISON TO NATURAL LANGUAGE MODELS

Latent alignment models are used in natural language processing, often in combination with hard

attention methods for inference>*. We can compare the MuE directly with a classic latent alignment
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Figure 1.4: Predictive performance on a randomly heldout test set. Dotted line marks theoretically expected perfor-
mance of the substitution matrix BLOSUM®62 as a reference point (Section A.5).

model for statistical translation. The Vogel et al. 276 model takes the form of a MuE model where X
and Y are sentences in different languages, except that Condition 1.2.2 is violated (Section A.2.5).
As a result latent alignments are allowed to “double back” and rearrange the ordering of words in the

regressor sentence X to generate Y.

1.5 EXPERIMENTS

1.5.1 PREDICTIVE PERFORMANCE

We have seen that models that use MSA preprocessing cannot be rigorously evaluated for their abil-
ity to predict sequences. In this section we empirically compare the predictive performance of MuE
observation models to a standard model that possesses the same latent alignment structure, the pro-

file HMM (pHMM) (Proposition 1.4.4).

Survey We started by examining five datasets of related protein sequences, ranging in size from
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Table 1.1: Heldout perplexity on patient immune repertoire samples (each with 6,000 to 20,000 sequences). MS: multiple
sclerosis. HC: healthy control. HC 1 consists of B cell receptors, the rest T cell receptors.

Dataset HC1 HC2 HC3 MS1 MS2 MS3

pHMM 429 3.59 3.56 3.59 3.47 3.54
ICAMuE 2.87 2.33 2.34 2.45 2.19 2.26

1,000 to 10,000 sequences (Section A.6.1). Four were taken from non-redundant sequence databases:
sequences similar to dihydrofolate reductase (DHFR), serine recombinase (PINE), cyclin dependent
kinase inhibitor 1B (CDKN1B) and the human papillomavirus E6 protein (VEG)''>2¢%:25¢, The
fifth dataset consisted of human T cell receptor (TCR) sequences from a healthy donor, obtained
using single cell sequencing.

We extended probabilistic PCA and VAE models using the MuE observation distribution; we
refer to these models as “FactorMuE” and “LatentNeuralMuE” respectively (model architectures
are detailed in Section A.3). We used stochastic variational inference, estimating the ELBO gradient
using automatic differentiation, the reparameterization trick, and an inference network, and opti-
mizing with Adam "#7739213:73% 'We evaluated model performance on a randomly held out 10% of
sequences, quantified in terms of per residue (that is, per letter) perplexity (Section A.s). The results
show that FactorMuE models offer a consistent improvement over the standard pHMM model in
every dataset, with an average change in perplexity of —1.50 and log Bayes factor > 103 across all
datasets (Figure 1.4; Section A.6.1). Meanwhile, the more complex LatentNeuralMuE model also
improves over the pHMM in each dataset and overall (average perplexity change —0.42), but under-

performs relative to the simpler FactorMuE model.
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Patient immune repertoires We next explored further the application of MuE observation
models to patient immune repertoire sequencing data, including both B and T cell receptors, taken
from patients with autoimmune disease (multiple sclerosis) and healthy controls (Section A.6.2)*7.
Understanding immune receptor repertoires is of crucial biomedical importance, but MSAs are con-
sidered highly untrustworthy when applied to this kind of data (see e.g. Figure A.2). We extended
another continuous model, an independent component analysis (ICA) model, with a MuE ob-
servation distribution (“ICAMuE”; Section A.3.4). On a heldout 20% of data we find substantial
improvements in perplexity over the pHMM across all six datasets (Table 1.1).

Disordered proteins Roughly ~50% of the human proteome contains regions classified as dis-
ordered, but common bioinformatic pipelines are often considered highly untrustworthy when
applied to disordered proteins because of uncertain MSAs. We examined 56 datasets, each consist-
ing of sequences evolutionarily related to a disordered region of a human protein, that had been

261

discarded in an MSA-based sequence modeling study***. The study had sought in part to deter-
mine whether epistatic correlation occurred between amino acids at aligned sites (columns of the
MSA), but was stymied in these particular datasets by highly uncertain MSAs. In a pHMM, condi-
tional on a latent alignment W, the probability of observing a particular amino acid at a particular
position in Y; is independent of all other positions. In MuE observation models such as the Factor-
MuE, LatentNeuralMuE and ICAMuE, however, pg induces correlation between positions in Y;
conditional on W;*'5. To infer whether there is indeed epistatic correlation in a dataset, therefore,

we can perform model selection, comparing a MuE observation model and a pHMM. Note that

our approximate Bayesian inference procedure (for both models) integrates over all possible latent
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Figure 1.5: (A) lllustration of the TCRﬂ genomic locus; the TCRa locus is analogous, with C., in place of C’g and no D seg-
ments (based on Abbas et al. >, Figure 8.7). (B) Inferred latent space representation of the TCR dataset, colored according
to supervised annotations. Left: C, and C'g chains. Middle: V types, Vs, . . . Vaq (detailed legend in Figure A.7). Right:
J subtypes, J1,17“_,2,7 (detailed legend in Figure A.7). (C) V (green), J (yellow) and constant C (gray) regions of the TCR/3
chain in the reference structure PDB:2BNR, as well as V-J junction nucleotides (red) (Figure A.7). (D) Projections v of
latent space vectors (left, in orange) into sequence space. Transparent areas correspond to the portion of the sequence
that is not measured in the experiment. Arrows indicate peaks in 1.

alignments, and that the pHMM is nested inside the MuE observation models in the sense of nested
model selection 5°. We found that on 19 datasets an ICAMuE outperformed a pHMM at predicting
a heldout 20% of sequences, finding evidence of epistatic correlation despite high alignment uncer-

tainty; among these 19 datasets, the median perplexity decrease was 1.3 (Table A.2, Section A.6.3).

1.5.2 LEARNING CoMPLEX BroLoGy

We examined further what the FactorMuE model had learned from a dataset of TCR sequences. T

cell receptors are made up of two separate amino acid chains, & and 3, which each develop accord-
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ing to a complex process of genome rearrangement termed V(D)] recombination, in which different
V, D and ] segments in the genome are, with some randomness and additional mutations, joined
together with a constant region to produce a complete sequence (Figure 1.5A). We cross-referenced
the latent representations of each sequence recorded in the dataset against supervised annotations
of its segment types (Section A.7). We found that the latent space is divided evenly in two, with
one side containing TCR o sequences and one side TCR 3 sequences (Figure 1.5B left). Each side
contains clusters, which correspond with the type of V segment found in each TCR sequence (Fig-
ure 1.5B middle). The shorter ] segments are found uniformly distributed across their correspond-
ing cv or (3 half, reflecting their ability to recombine with different V segments (Figure 1.5 B right).
See Section A.7 for further results.

We next examined features learned by the FactorMuE model. In MuE observation models, we
can separate out variation at conserved positions from variation produced by insertions and dele-
tions by holding the latent alignment variable W fixed. In particular, we calculated

B 1/2
. . 2
v = [Z (E[Y2p|ref, 21] — E[Y7p|tiefs 20]) (1.3)
b=1

where the expectation is with respect to the variational approximation to the posterior, zg and 21
are the head and tail of a vector in the latent space, Wy is the maximum a posteriori estimate of Wiyes
based on a reference sequence Y, and l € {1,..., L} where Ly is the length of Yir. We plotted
the vector v on a TCR crystal structure for the reference sequence, and compared to a supervised an-
notation of the constant, V, D and ] segments of the reference sequence (Figure 1.5 CD). Consistent

with the annotation of the latent representation, the vector normal to the hyperplane separating
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Figure 1.6: (A) Predictive performance measured by heldout per residue perplexity; models are trained on data from
1968-2013, tested on 2014-2020. (B) Magnitude of the shift in amino acid preference over time v, for the RegressMuE,
projected onto a reference HA1 structure (PDB:4O5N). The full hemagglutinin protein is shown on the left. (C) Classical
epitope regions of the HA1 protein. (D) Inferred latent representation from a FactorMuE model, with sequences colored
by the time at which the sample was collected (Section A.8). (E) Y-axis: orthogonal projection of the latent representation
of each sequence onto the least squares fit line relating 21 and 2. X-axis: time at which each sample was collected. Two
clusters of outliers are marked by T and 1.

TCRa from TCR} chains in the latent space (vector 1 in Figure 1.5D) primarily alters the sequence
of the constant region, while the orthogonal vector (vector 2 in Figure 1.5D) primarily determines
the sequence of the V segment. Along vector 2, the region of largest variation (the largest peak in

v;) was the buried C-terminal end of the V segment, corresponding to the start of the CDR 3 region,
the key specificity-determining region of the receptor. Interestingly, even along vector 1 we observe
high values of v in the V segment, suggesting that there are systematic and heterogeneous differ-
ences between the V segment sequence distribution used in TCRa chains and in TCR 3 chains (see

Section A.7 for further analysis).
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1.5.3 EVOLUTIONARY FORECASTING

We explored a novel application of generative probabilistic sequence models, evolutionary fore-
casting, which takes advantage of the capacity of MuE observation models to predict future se-
quences. Influenza A is responsible for an estimated 500,000 deaths a year and is an ongoing pan-
demic threat"*#. It is also a model organism for understanding the dynamics of rapidly evolving
pathogens, and forecasting its evolution is crucial in preparing vaccines and designing therapeu-
tics '®*5°. Previous forecasting methods have focused on predicting the relative fitness of existing

strains in future years 33"

, or the antigenic properties of newly emerged strains '***3. We instead
predict the full amino acid sequence of the HA1 protein, the primary site of interaction with the
immune system ***. From the GISAID database we constructed a training set of influenza A(H3N2)
HAT sequences collected from patient samples from 1968 through 2013, and evaluated our predic-
tions on sequences collected from 2014 through October 2019 (420 out of 2,042 sequences held
out, 21% of the dataset) (Section A.8)?*°. Insertions and deletions are considered rare, though not
absent, in patient samples, so this dataset also offers an opportunity to evaluate MuE observation
models in a distinct regime from that considered previously in Section 1.5.1.

As abenchmark we again used the pHMM, which can capture the observation that there exist
key highly variable sites in the HA1 protein, an underlying motivation behind previous prediction
methods such as Bush etal. *'. We then incorporated sequence collection time as a covariate in new

MuE observation models, using a linear regression model (“RegressMuE”) and a neural network

(“NeuralMuE”) with MuE observation distributions (Section A.3). The pHMM achieves a per
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residue perplexity of 1.32 and the RegressMuE improves this to 1.24 (log Bayes factor > 103; Fig-

ure 1.6A). This per residue perplexity difference corresponds to a factor of ~10*°

improvement in
per sequence perplexity. The NeuralMuE has similar per residue perplexity (1.26) to the Regress-
MuE.

Next we investigated in detail what the model can tell us about how HA 1 proteins have changed
over time. We computed the magnitude of the shift in amino acid preference from 1968 to 2019
inferred by the model, with the latent MuE alignment variable kept fixed (quantified as v, defined
analogously to Equation 1.3 with times ¢ and ¢1 replacing latent representations 2y and z1) (Figure
1.6B; Section A.8). We found that sites with a large shift are often associated with antigenicity, con-
sistent with the hypothesis that immune evasion is a key driver of influenza evolution. Residues that
make up the classical epitope regions A-E of influenza show significantly larger shifts as compared
to residues outside these regions (mean v of 0.54 in epitopes A-E versus 0.09 in non-epitope sites,
one sided Mann-Whitney U test p < 10718; Figures 1.6C and A.12)>*%'%4, The same observation
holds for residues identified as key determinants of immune escape in recent high-throughput muta-
tional antigenic profiling experiments (mean v of 0.80 in sites with antigenic selection versus 0.24
elsewhere, one sided Mann-Whitney U test p < 10~%; Section A.8)'5*.

The latent space representation of the influenza HA1 dataset learned by the FactorMuE model
shows the data falling approximately along a line (Figure 1.6D; Section A.8). The position of a
sequence along this line is linearly proportional to the time at which the sequence was collected,

though this information was not included in the model (correlation coefficient p = 0.94; Fig-

ure 1.6E) "*?. Two clusters of outliers violate the proportionality rule. The first (marked by ) origi-
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nated from mis-annotated entries in the GISAID database (Section A.8). The second cluster (marked
by 1) appears in the early 2010s, but the latent representation of these sequences is close to that of se-
quences from the mid-1990s to early 2000s. Among this cluster of sequences, the ones that have
been fully annotated were all collected from an outbreak in the United States of A(H3N2)v triple-
reassortant viruses containing matrix protein genes from pandemic A(H1N1)pdmog. In 1998,
A(H3N2)-derived viruses jumped from humans to swine, causing a large outbreak among swine,
before recombining with other strains to produce this A(H3N2)v outbreak among humans in the

20108 128241

. The epidemiological history is consistent with our unsupervised latent representation,
which shows that the cluster of outliers appearing in 2010-2013 most closely matches human sam-

ples last seen around 2000.

1.6 DiscussioN

MSAs are a powerful tool for analyzing biological sequences, but MSA preprocessing leads to sta-
tistical pathologies in generative models. MuE observation models offer a direct alternative to MSA
preprocessing that does not abandon the underlying biological ideas that have made MSAs so suc-
cessful. We hope that the MuE will enable rigorous application of a wide variety of new models and

methodologies to biological sequence data.
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A Scalable Nonparametric Model

Generative probabilistic modeling of biological sequences has widespread existing and potential
use across biology and biomedicine, particularly given advances in high-throughput sequencing,
synthesis and editing. However, we still lack methods with nucleotide resolution that are tractable
at the scale of whole genomes and that can achieve high predictive accuracy in theory and practice.

In this article we propose a new generative sequence model, the Bayesian embedded autoregressive
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(BEAR) model, which uses a parametric autoregressive model to specify a conjugate prior over a
nonparametric Bayesian Markov model. We explore, theoretically and empirically, applications of
BEAR models to a variety of statistical problems including density estimation, robust parameter
estimation, goodness-of-fit tests, and two-sample tests. We prove rigorous asymptotic consistency re-
sults including nonparametric posterior concentration rates. We scale inference in BEAR models to
datasets containing tens of billions of nucleotides. On genomic, transcriptomic, and metagenomic
sequence data we show that BEAR models provide large increases in predictive performance as com-
pared to parametric autoregressive models, among other results. BEAR models offer a flexible and
scalable framework, with theoretical guarantees, for building and critiquing generative models at the
whole genome scale.

This chapter presents work with Alan N. Amin and Debora S. Marks, published at Neural Infor-
mation Processing Systems (2021) **. E.N.W. conceived and guided the research, contributed to the
theoretical and empirical results, and wrote the paper; A.N.A. contributed equally to E.N.W. overall,
in particular contributing the bulk of the theoretical and empirical results; D.S.M. supervised the

research at all stages.

2.1 INTRODUCTION

Measuring and making DNA is central to modern biology and biomedicine. Generative proba-
bilistic modeling offers a framework for learning from sequencing data and forming experimen-

tally testable predictions of unobserved or future sequences that can be synthesized in the labo-
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ratory(’7’I 19224 Existing approaches to genome modeling typically preprocess the data to build a

203,92 However, most modes of

matrix of genetic variants such as single nucleotide polymorphisms
sequence variation are more complex. Structural variation occurs widely within individuals (e.g. in
cancer), between individuals (e.g. in domesticated plant populations) and between species (e.g. in
the human microbiome), and methods for detecting and classifying structural variants are heuristic
and designed only for predefined types of sequence variation such as repeats*77*# 8,161,45,183 Ideally,
we would be able to directly model genome sequencing data and/or assembled genome sequences.
However, building generative models that work with raw nucleotides, not matrices of alleles, raises
the extreme statistical challenges of having enough flexzblility to account for genomic complexity,
interpretability to reach scientific conclusions, and scalability to train on billions of nucleotides.
Given the relevance of genetic analysis to human health, models should also possess strong theoreti-
cal guarantees.

Autoregressive (AR) models are a natural starting point for generative genome modeling, since
they (1) have been successfully applied to biological sequences, as well as many other types of non-
biological sequential data, (2) can be designed to have interpretable parameters, and (3) can be scaled

to big datasets with very long sequences 35>

. However, since AR models are parametric models,
they will in general sufter from misspecification; as we show empirically in Section 2.6, for genomic
datasets misspecification can be a serious practical limitation not only for simple AR models but
even for deep neural networks.

As an alternative strategy for building generative probabilistic models at the genome scale, we

propose in Section 2.2 the nonparametric “Bayesian embedded autoregressive” (BEAR) model.
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BEAR models are Bayesian Markov models, with a prior on the lag and conjugate Dirichlet priors
on the transition probabilities. The hyperparameters of the Dirichlet prior are controlled by an
“embedded” AR model with parameters 6 and an overall concentration hyperparameter h, both of
which can be optimized via empirical Bayes. In Section 2.3 we show that BEAR models can cap-
ture arbitrary data-generating distributions, and establish asymptotic consistency guarantees and
convergence rates for nonparametric density estimation. In Section 2.4, we show that the optimal
provides a diagnostic for whether or not the embedded AR model is misspecified and if so by how
much, alerting the practitioner when the parameter estimates  are untrustworthy. Besides estima-
tion problems, BEAR models can also be used to construct goodness-of-fit tests and two-sample
tests, thanks to their analytic marginal likelihoods, and we prove consistency results for these tests in
Section 2.5. Finally we apply BEAR models at large scale, to genomic datasets with tens of billions
of nucleotides, including whole genome, whole transcriptome, and metagenomic sequencing data;
we find that BEAR models can have greatly improved performance over AR models (Section 2.6).
Crucial to our theoretical and empirical analysis is the statistical setting: we assume that the data
X1, ..., XN consists of finite but possibly variable length strings (with small alphabets) drawn
i.i.d. from some underlying distribution p*, and study the behavior of estimators and testsas N —
o0o. This setup differs from common theoretical analyses of sequence models outside of biology,
which typically consider the limit as the length of an individual sequence goes to infinity *>. In biol-
ogy, however, we observe finite sequences recorded from many individual species, organisms, cells,
molecules, etc. and want to generalize to unseen sequences, making N — oo the appropriate large

data limit.
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Figure 2.1: Overview of the BEAR model. (A) BEAR models employ a Dirichlet prior on Markov transition probabilities
that is centered at the prediction of an AR model. (B) De Bruijn graphs showing BEAR transitions with non-zero probabil-
ity under an example data-generating distribution. As the lag L increases, the model has higher resolution.

2.2 BAYESIAN EMBEDDED AUTOREGRESSIVE MODELS

We first briefly review autoregressive (AR) models as applied to sequences of discrete characters. Let
f(0) denote an autoregressive function with parameter 6 and let L denote the lag of the autoregres-

sive model; then the AR model generates data as

Xi|Xi—r:i—1 ~ Categorical(fx, ,., ,(6)), (2.1)

where ¢ indexes position in the sequence X and X;_r.;_1 consists of the previous L letters in the
sequence. Since sequence length as well as nucleotide or amino acid content is relevant to biolog-
ical applications, we use a start symbol () at the beginning and a stop symbol $ at the end of each
sequence; letters X; are sampled sequentially starting from the start symbol and continuing until a
stop symbol is drawn.

We propose the Bayesian embedded autoregressive (BEAR) model, a Bayesian Markov model
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that embeds an AR model into its prior. The BEAR model takes the form,

1
L~n(), v~ Dirichlet(ﬁfk(e)) for all &,

Xi|Xi—p:i—1 ~ Categorical(vx, ;. ,)s

where (1) is a prior on the lag with support up to infinity, . > 0 is a concentration hyperpa-
rameter, and £ is a length L kmer. The BEAR model has three key properties (Fig. 2.1). First, the
unrestricted transition parameter v and lag L allow the model to capture exact conditional dis-
tributions of p* to arbitrarily high order: p*(X;|X;_1) at L = 1, then p*(X;|X;_2, X;—1) at

L = 2, etc.. This property allows the BEAR model to be used for nonparametric density estimation
(Section 2.3). Second, in the limit where h — 0, the BEAR model reduces to the embedded AR
model (Eqn. 2.1). The optimal h provides a measurement of the amount of misspecification in the
AR model (Section 2.4). Third, the choice of the conjugate Dirichlet prior allows the conditional
marginals p((X,,)2_ | L, h, 0) to be computed analytically, and (since L is one-dimensional) the
total marginal likelihood p((X,,)2_;|h, 6) to be estimated tractably. This allows BEAR models to
be used for hypothesis testing (Section 2..5).

There are a variety of ways of performing inference in BEAR models, but for most applications
we will focus on empirical Bayes methods that optimize point estimates of L, h and 6. Let #(k, b)
denote the number of times the length L kmer £ is seen followed by the letter or stop symbol b in
the dataset (X,,)2_,. Using a high-performance kmer counter optimized for nucleotide data, KMC,

we can compute the count matrix # (-, -) for all observed kmers k& in terabyte-scale datasets, even
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Figure 2.2: BEAR models detect and avoid misspecification without sacrificing small dataset performance. (A) Estimated
KL divergence between simulated data-generating distribution p* and model posterior predictive distribution, as a
function of dataset size V. Five independent simulations were run; thin lines correspond to individual simulations, thick
lines to the average across simulations. (B) The h misspecification diagnostic as a function of dataset size, for varying 5*.
Dataset sizes at which h is close to convergence for 5* = 0.6 (right) and 8* = 1.0 (left) are marked with vertical lines.

when the matrix does not fit in main memory (Section B.8.2) '#*. To optimize h and 6, we take

advantage of the fact that the log conditional marginal likelihood can be written as a sum over ob-

served kmers,

INOD %fkbw» Hbr(%fkbw) + #(k, b))

log (X)L 0 6) = Y log|
k:#k>0

1, D(5 fien(8)) Ty 7 frn (0

~—

+ ##(k, b

This decomposition lets us construct unbiased stochastic estimates of the gradient with respect to

h and 6 by subsampling rows of the count matrix (Section B.8.1). Empirical Bayes in the BEAR

model therefore costs little extra time as compared to standard stochastic gradient-based optimiza-

tion of the original AR model. Code is available at https: //github.com/debbiemarkslab/

BEAR.
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2.2.1 TOY EXAMPLE

We next briefly illustrate the properties and advantages of the BEAR model in simulation. We gen-
erated samples from an AR model in which fj(#) depends on £ linearly as a function of both in-
dividual positions and pairwise interactions between positions, with the strength of the pairwise
interaction weighted by a parameter 8 (Section B.7.1). We first fit (using maximum likelihood) a
linear AR model that lacks pairwise terms and is thus misspecified when 8* > 0. Since the AR
model is misspecified, it does not asymptotically approach the true data-generating distribution p*
(Fig. 2.2A, gray). We next computed the posterior of a vanilla BEAR model without the embed-
ded AR in its prior, instead using the Jeffreys prior vy, ~j;q Dirichlet(1/2,...,1/2). The vanilla
BEAR model asymptotically approaches the true data generating distribution, since it is a nonpara-
metric model; however, it underperforms the AR model in the low data regime (Fig. 2.2A, black).
Finally, we fit a BEAR model with the misspecified linear AR model embedded, using our empirical
Bayes procedure. The BEAR model performs just as well as its embedded AR model in the low data
regime, just as well as the vanilla model in the high data regime, and better than both at intermediate
values (Fig. 2.2A, blue and yellow).

When the AR model is well-specified, the empirical Bayes estimates of the parameters 6 under
the BEAR model match the maximum likelihood estimates of & under the AR model nearly exactly
(Fig. B.7). When the AR model is misspecified, however, the BEAR model provides a warning: the
empirical Bayes estimate of h converges to a non-zero value, rather than zero (Fig. 2.2B). This warn-

ing emerges early: h converges well before the vanilla model starts outperforming the misspecified

64



AR model.

2.2.2 RELATED WORK

The key idea behind BEAR models is to nonparametrically perturb a parametric model 77, follow-
ing a similar strategy to the Polya tree method proposed by Berger & Guglielmi*'. As in Berger &
Guglielmi *', we use Dirichlet priors centered at the parametric model’s predictions, and construct
tractable goodness-of-fit tests by exploiting Dirichlet-categorical conjugacy. BEAR models extend
these ideas from one-dimensional continuous data to finite-length sequences of discrete characters.
Markov and AR models have a long history and wide range of applications in biological sequence

186,83,211

analysis . Compression methods, in particular, often rely on accurate density estimation and

use Markov or AR models to achieve it®»

198,202237 We establish theoretical guarantees for density
estimation with fully Bayesian Markov models (Section 2.3). AR models used for compression, like
other AR models, can be embedded into BEAR models for improved statistical performance and to
measure misspecification.

BEAR models are closely linked to non-generative genome analysis methods. Assembly algo-
rithms and variant callers often analyze paths in the de Bruijn graph of a sequence dataset; in the
limit h — oo, samples from the posterior predictive distribution of the BEAR model, conditional
on L, correspond to paths through the L-mer de Bruijn graph of the data*#***. Comparisons be-
tween genomes and other sequences are often made on the basis of kmer counts; our two-sample
11,62,277

test provides a generative perspective on this idea

BEAR models are also connected to ideas in natural language processing, where kmers are re-
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ferred to as ngrams. Under the vanilla BEAR model, the mean of the posterior predictive distribu-
tion conditional on L corresponds to an ngram additive smoothing model *°. Comparisons between
datasets using their ngram counts are also common in model evaluation metrics such as the BLEU

score 9%,

2.3 DENSITY ESTIMATION

The density estimation problem is that of estimating p* given data (X,,)2_; drawn i.i.d. from p*.
Density estimation is particularly crucial for biological sequence analysis due to its connections to

fitness estimation **%*3°

. State-of-the-art mutation eftect prediction methods and clinical variant
interpretation methods rely on density estimates of evolutionary sequence data*'$*°. Density es-
timation with generative models is particularly useful for protein design, as samples from accurate
density estimates are likely to be functional and can be synthesized in the laboratory**#*35. Despite
all these applications, existing density estimation methods for biological sequences lack theoretical
guarantees on their accuracy and are often limited in their scale, being restricted to relatively short
sequences***. Here, we show that the posterior distribution of the BEAR model is consistent and
will concentrate on p* as N — 00, regardless of what p* actually is, so long as p* generates finite
length sequences almost surely (a.s.).

We first study the expressiveness of BEAR models. Let M, be the set of Markov models p,, with

transition probabilities v and lag L that generate finite length strings a.s.. Note that M1 C My C

.. .. Define the union M = U2 ; M. We can compare M to the set of distributions over finite
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strings .S, of which p* is a member. In Section B.2 we prove that,

Summary of Propositions B.2.1-B.2.4 Not all possible distributions over S are in M. However,
M is dense on the space of probability distributions over S with the total variation metric.

The implication of this result is that although BEAR models cannot exactly match arbitrary
data-generating distributions, they can approximate p* arbitrarily well as L increases. This makes
asymptotic consistency possible.

We now show that the posterior of the BEAR will in fact asymptotically concentrate on the true
p*, i.e. itis consistent. For tractability, we assume in this section that the prior is fixed (we do not
use empirical Bayes). The result relies on the tools for understanding convergence rates of posteriors
developed in Ghosal et al. *7. The most important assumption is that p* is subexponential, meaning
that for some t > 0, Ep« exp(t|X|) < 0o where | X| is the sequence length. Let TI(+|(X;,)2_ ;)
denote the posterior over sequence distributions. Let B(p*, ¢) denote a ball of radius J centered at
p*, using the Hellinger distance.

Summary of Theorem B.6.16 Given M > 0 large enough and e € (0, 1) small enough, we
have I1( B(p*, MN_%E) (Xn)N_)) — 1in probability.

A proof is in Section B.6 and simulations in Section B.7.2. This result states that the posterior
distribution of the model converges to a delta function at the true distribution p* regardless of what
p* is. It also provides a rate of convergence: in a parametric model, the uncertainty would shrink
as N~ 3 , but here the rate is slower, IV 7%6, a price paid for the nonparametric model’s expressiv-

ity 13410087 The proof includes a variety of new theoretical constructions and algorithms that are

used to approximate subexponential sequence distributions.
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2.4 ROBUST PARAMETER ESTIMATION

To derive a biological understanding of mutational processes, evolutionary history, functional con-
straints, etc. from sequence data, researchers must estimate model parameters (not just density).
However, parameter estimates cannot in general be trusted when models are misspecified **5. To
reach robust scientific conclusions, therefore, parameter estimates should ideally come with a warn-
ing about whether or not the model is misspecified and some measurement of the degree of misspec-
ification. Here, we study in BEAR models the asymptotic behavior of empirical Bayes estimates of
the AR parameter 0, as well as the hyperparameter h, showing that i diagnoses misspecification in
the embedded AR model.

Our analysis builds off the study of empirical Bayes consistency in Petrone et al. 196 which showed
that empirical Bayes will, in general, maximize the prior probability of the true data-generating
parameter value. Extending this theory to BEAR models is nontrivial, since in BEAR models the
standard Laplace approximation to the marginal likelihood can fail. For theoretical tractability, as
in many analyses of similar models, we fix L at some arbitrary and large value '*°. Define p*() =
argminpveMLKL(p* ||pv) as the closest model in M, to p*, and define v* such that p,~ = p*L)
(note p*&) — p*as L — o0). We say that the AR model is misspecified “at resolution L” if f
cannot approximate p* () ie. if there does not exist some sequence of parameter values O such
thatp Flxn) p*L) as N — 00; otherwise, the AR model is well-specified at resolution L. Now
we can study empirical Bayes estimates of h and 0, denoted h and 0.

Summary of Propositions B.4.5-B.4.10 Ler (hn)_1 and (0N )F—; be sequences maximiz-
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ing the BEAR marginal likelihood p((Xn)N_||L, h,0) foreach N. If the model is well-specified at
resolution L, then hy N d—e forevery e > 0 and p Fon) = p*(L) in distribution, with both se-
quences converging in probability. On the other hand, if the model is misspecified at resolution L, then
h is eventually bounded below by some positive (non-zero) number a.s..

Proofs are in Section B.4 and simulations in Section B.7.1. The implication of this result is that
when the AR model is well-specified, hy converges to zero (at a rate that is a power of the dataset
size) and 6y converges to the parameter value 0* at which the AR model matches the data (Corol-
lary B.4.6). On the other hand, when the AR model is misspecified, /5 does not converge to zero;

heuristically, we find instead that v is approximately proportional to a divergence between p*L)

and the AR model,

hy o Y (KL(fk(GN)IIUZ)HOg(N) > fk,b(eN))7 (2.4)

k€accr, (p*) bﬁéSHPPL )k

where accr, (p*) = {k|p*(#k > 0) > 0} is the set of kmers with non-zero probability and
supp, (p*)|k = {b|p*(#(k,b) > 0) > 0} is the set of transitions from k with non-zero proba-
bility. In summary: when fitting a BEAR model by empirical Bayes, you get, along with a parameter
estimate 0, a value h y which tells you the amount (from zero to infinity) of misspecification in the

AR model. If Ay is close to zero, you can trust the estimate 0.
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2.5 HYPOTHESIS TESTING

2.5.1 (GOODNESS-OF-FIT TEST

A major outstanding challenge in biological sequence analysis is to build models based on natu-
ral sequence data that are accurate enough to generate novel functional sequences 164 A crucial
component of the problem is model evaluation: while relative model performance may be com-
pared on the basis of likelihood, absolute performance — whether or not the model in fact pro-
vides an accurate description of the data — is usually addressed solely on the basis of limited num-
bers of summary statistics, such as average amino acid hydrophobicity or sequence length *35**4,

Given a dataset (X, )V

n—1 ~ p*iid., agoodness-of-fit test asks whether or not the data distri-
bution p* matches a model distribution p. It takes into account all possible distributions p* in-
cluding those that differ from p in a manner that cannot be captured by finitely many summary

*

statistics. We propose a goodness-of-fit test that compares the null hypothesis Ho : p* = pto
the alternative H1 : p* # P using the Bayes factor BF = p((X,,)_,|h, 0)/P(X1.,), where
p((Xn)N_11h,0) = 31 p((Xn)Y_|L, h,0)7(L) is the marginal likelihood under the BEAR
model. Note that practically, the sum over L is straightforward to approximate by truncation, and
that the test can be computed in time linear in the amount of data.

We now prove the consistency of the test. As in comparable theoretical analyses of tests based on

Polya trees, for theoretical tractability we truncate the prior, setting m(L) = 0 for L larger than

some arbitrary L but (L) > 0 for L < L. We treat § and h > 0 as fixed.

70



Summary of Proposition B.s.x If  is at least as dlose to p* as p* 1) is, as measured by xr(p*||-),
then BE — 0 in probability as N — oo. On the other hand, if p*") is closer than p, then BF — oc in
probability. A proofis in Section B.s5.1 and simulations in Section B.7.3.

An important practical limitation on nonparametric hypothesis testing is low power: since so
many alternative distributions must be considered, the null hypothesis can rarely be rejected. How-
ever, Proposition B.s.1 holds for the Bayes factor BF(L, h, ) = p((X,,)2_1|L, h,0)/D((X,)2_4)
with any choice of L, h > 0, and 6. Thus in practice to increase power we can maximize the value
of BF(L, h, 0) as a function of L, h, and/or 8 (note that this approach is heuristic, since we have
not proven the consistency of the maximized Bayes factor). Berger & Guglielmi*' provide extensive
methodological guidance on using analogous tests constructed with Polya trees. Based on their rec-
ommendations, we suggest first choosing ¢ such that p g is as close as possible to p, then plotting
the Bayes factor as a function of h and/or L to identify the maximum value and confirm that any
conclusion is robust to changes in h and/or L.

Another challenge in nonparametric hypothesis testing is that it can be difficult to understand
how exactly a test reached its conclusion. To identify which sequences provided the most evidence
for or against the null hypothesis, we suggest examining the BEAR Bayes factor for each individual
sequence conditional on the rest of the dataset, in analogy to the witness function used in kernel-

based tests 5159,
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2.5.2 T'WO-SAMPLE TEST

A two-sample test asks whether or not two datasets (X,,)N_; and (X/,)N | are drawn from the
same distribution. Efforts to compare different sequence datasets are widespread in biology: for in-
stance, researchers often wish to determine whether two microbiome samples, taken under different
conditions or at different timepoints, are the same up to sampling noise '°'. Two-sample tests can
also be used to evaluate generative sequence models that lack tractable likelihoods (for which the
goodness-of-fit test proposed above does not apply) such as energy-based models or implicit models
like GANSs and biophysical simulators 955, Assume (X,,)N_; ~ py and (X/)N; ~ poiid..
Our BEAR test compares the null hypothesis o : p1 = pa2 to the alternative 1 : p1 # p2 using
the Bayes factor

BF = p((Xn)nCi b, 0)p((X7)0C1 1R, 0)/p((Xa)nrs (X7)0C4 1R, 0)-

n=1»

As in the goodness-of-fit case, the test can be computed approximately in time linear in the amount
of data, and the same advice on increasing power and identifying important sequences holds here
too.

We next prove consistency, again truncating the prior at L and fixing h and 6.

Summary of Proposition B.s.3 If ng) = ng)

,then BF — 0as N — 00 in probability.
Otherwise, if ng) % ng), then BF — 00 in probability. A proof is in Section B.s.2 and simulations

in Section B.7.3.
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Table 2.1: Heldout perplexity. Whole genome sequencing data: YSD1: A Salmonella phage. A. th.: Arabidopsis thaliana, a
plant (datasets represent different individuals). Single cell RNA sequencing data: PBMC: peripheral blood mononuclear
cells, taken from a healthy donor. HL: Hodgkin’s lymphoma tumor cells. GBM: glioblastoma tumor cells. Metagenomic
sequencing data: HC: non-CD and non-UC controls. CD: Crohn’s disease. UC: ulcerative colitis. Full assembled genomes:
Bact.: Bacteria. Models Van.: Vanilla (Jeffreys prior). Lin.: Linear. CNN: convolutional neural network. Ref.: reference
genome/transcriptome model.

Dataset AR Lin. AR CNN AR Ref. BEAR Van. BEAR Lin. BEAR CNN BEAR Ref.

YSD1  3.953 3.873 1.266 1.165 1.144 1.144 1.145
A th. 1 3.956 3.947 2.686 1.567 1.432 1.432 1.411
A th. 2 3.953 3.949 1.982 1.650 1.463 1.462 1.441
A th. 3 3.998 3.952 2.340 1.834 1.728 1.727 1.733
PBMC 3.991 3.974 2.097 1.402 1.372 1.372 1.374
HL 3.959 3.930 2.141 1.409 1.378 1.378 1.379
GBM 4.137 4.137 2.366 1.442 1.406 1.406 1.406
HC  3.966 3.946 - 1.652 1.465 1.464 -
CD  3.992 3.985 - 1.760 1.524 1.524 -
uC 3.989 3.986 - 1.644 1.481 1.481 -
Bact. 3.831  3.794 - 3.774 3.774 3.774 -

2.6 RESULTS

2.6.1 PREDICTING SEQUENCES

We sought to evaluate BEAR models as compared to AR models on the task of predicting real nu-
cleotide (nt) sequences. We considered eleven datasets of four different types: whole genome se-
quencing read data, single cell RNA sequencing read data (including from patient tumors), metage-
nomic sequencing read data (including from patient fecal samples) and full bacterial genomes from
across the tree of life (Section B.9). Datasets ranged in total size from ~ 107 — 10'° ntand in indi-

vidual sequence length from ~ 102 — 10° nt (Table B.1). 25% of data was randomly held out for
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testing, in the form of entire sequences (reads, genomes, etc., see Table B.2); our goal was to evaluate
BEAR models as density estimators, so we did not use masking (a common holdout strategy in natu-
ral language processing). We considered a linear AR model and a deep convolutional neural network
(CNN) AR model with > 10X more parameters, both of which are common models used across a
range of applications; we also designed a biologically-structured AR model which makes predictions
based on a reference genome and a Jukes-Cantor mutation model (Section B.10.1)*37°*°*, We then
embedded each AR model to create a corresponding BEAR model. The BEAR models improve
over the AR models in nucleotide prediction according to both perplexity (Table 2.1) and accuracy
(Table B.3) in all datasets, even when the model lag L is held fixed for comparison (Section B.10.3).
In 10 out of 11 datasets, BEAR models increase nucleotide prediction accuracy from near chance
values of 30 — 35% (in the case of the linear and CNN models) to 78 — 95%, bringing genome-scale
models into the realm of potential practical use (Table B.3). The training time for BEAR models
is essentially identical to that of AR models, aside from the time required to build the transition
count matrix, which need only be done once before training all models (Fig. B.13). Remarkably,
the optimal lag I chosen by empirical Bayes is often quite short, less than 20 nt (Table B.4). The
improvements offered by BEAR models that use an embedded AR model over the vanilla BEAR
model are modest for datasets of this size; however, sequencing experiments are often designed to
collect enough data for downstream analyses. We found in an example that, if sequencing coverage
was 3 instead of 100, the improvement in prediction accuracy would have been greater than 10
percentage points instead of 0.1 (Section B.1o.4; Fig. B.14).

Measuring misspecification When conventional deep neural network methods fail to provide
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Table 2.2: Diagnostic /. Abbreviations as in Table 2.1.

Dataset Lin. CNN Ref.

YSD1 5.528 5.461 4.183
A.th. 1 2765 2.756 2.990
A th. 2 2.643 2.633 2.326
A.th. 3 3.969 3.964 1.598
PBMC 4.167 4.145 3.762
HL 4.050 4.038 3.581
GBM 4.172 4.154 3.238
HC 4.668 4.651 -
CD 3.096 3.094 -
UC  3.843 3.835 -

Bact. oc.010 0.003 -

strong predictive performance, popular wisdom often ascribes the failure to too much model flexi-
bility or not enough training data, especially in scientific applications. Examining the i misspecifica-
tion diagnostic in the BEAR models described above, we see that this is not the case here (Table 2.2).
The large values of h suggest that where the CNN fails it is not because of too much flexibility but
rather too little: the model is not flexible enough to encompass the true data distribution, so it suf-
fers from misspecification. Meanwhile, the reference-based model has only two learned parameters,
but is less misspecified than the CNN in all but one dataset. This too runs counter to popular wis-
dom in machine learning, which often assumes that when principled, low-flexibility scientific mod-

els outperform deep neural networks it is thanks to their low variance in the small data regime.
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Figure 2.3: Generation, visualization and testing. (A) Sample extrapolations, colored to denote distinct paths through the
L-mer de Bruijn graph. (B) Distribution of the perplexity of the next Markov transition under the BEAR model, for each
position of the sampled extrapolations, with the per position average shown in black (Section B.11). (C) Log probability

of each read in the HL dataset under the BEAR model and a model built from the reference transcriptome. Reads are
colored by whether or not they map to the reference. (D) Latent representations of the reads highlighted in C, visualized
using tSNE, with clusters annotated as likely coming from mitochondria, the sequencing adapter, or transcripts of the
gene JUND (Section B.12). (E) Goodness-of-fit test Bayes factor as a function of hyperparameter h. (F) Two-sample test
Bayes factor as a function of lag L. Black line compares simulated data to simulated data; dashed lines compare subsam-
pled real data to subsampled real data; solid lines compare real data to simulated data. (G) Log probability of each read
under the real data BEAR model minus the log probability under the simulated data BEAR model (Section B.13).
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2.6.2 GENERATING SAMPLES

BEAR models are generative and can be used to sample new sequences. We sampled extrapolations
from the end of a read sequence recorded in a plant (4. thaliana) whole genome sequencing exper-
iment, and compared to an alternative non-probabilistic extrapolation method that is widely used
in biology, local assembly (Fig. 2.3A; Section B.11). In this example the assembly algorithm SPAdes
returns four possible assemblies, a relatively large number compared to other reads in the dataset

(Fig. 2.3A stars)'°

. Samples from the BEAR model include these four possibilities, but also many
more, some with higher probability. The distribution over possible nucleotide choices under the
BEAR model is much wider than the number of assemblies would suggest: it has a perplexity of 1.4
per position (on average across samples) at the beginning of the extrapolation, and a perplexity of

2.7 at so nucleotides (Fig. 2.3B). These observations suggest that SPAdes, which does not provide a

measurement of uncertainty, may not be capturing the full range of possible sequences.

2.6.3 VISUALIZING DATA

Methods for learning local representations or features of biological sequences can be powerful

tools for visualization and semisupervised learning*. One approach to extracting such represen-
tations is to learn a generative model ¢(X71, . .., X41) of kmers, for instance using a variational
autoencoder. While such models are not autoregressive, the small size of the DNA alphabet makes it
tractable to estimate the conditional ¢(X1+1|X7.1,) by Bayes’ rule, and this conditional can then be

embedded into a BEAR model. We applied this strategy to probabilistic PCA. We visualized in low
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dimensions the inferred latent representation for a model trained on a single cell RNA sequencing
dataset (HL), and were able to assign annotations to clusters, including those containing unmapped
reads (Fig. 2.3CD; Section B.12). The BEAR model however raises the warning that the model is

misspecified (h = 4.836), suggesting there may be richer latent structure yet to discover.

2.6.4 TESTING HYPOTHESES

The question of when and how microbiomes change is widespread, but has in the past relied on
summary statistics of sequencing datasets *°". Schreiber et al. % studied changes in patient urine
microbiomes before and after kidney transplant, and performed both unbiased metagenomic se-
quencing and diagnostic quantitative polymerase chain reaction (qPCR) for a specific virus as-
sociated with complications (JC polyomavirus). They found evidence of donor-to-recipient viral
transmission in 5 cases out of 14. We applied the BEAR two-sample test to patients’ metagenomic
sequencing data before and after transplantation, using the vanilla Jeffreys prior and integrating
over lags, in order to detect changes; the test rejects the null hypothesis in all 5 cases where there was
transmission, and accepts the null hypothesis in all but one of the remaining 9 cases (Table B.6; Sec-
tion B.13.1). These results show, in a small example, that the two-sample test has sufficient power to
detect microbiome changes in real data, and can be consistent with more specific tests.

We next applied BEAR hypothesis tests to evaluate generative models. We evaluated the reference-
based AR model described above using the BEAR goodness-of-fit test. The test identifies consid-
erable evidence (log Bayes factor > 10%) for misspecification in each 4. thaliana whole genome se-

quencing dataset, and this conclusion is robust to a wide range of h values (Fig. 2.3E; Section B.13.2).
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Next, we evaluated a detailed simulation model (ART) that is intended to generate likely reads of a
given reference genome'''. The model lacks tractable likelihoods, so we use the BEAR two-sample
test. When integrating over all lags, the test accepts the null hypothesis, suggesting that the simula-
tion model is accurate; if we examine the test results for individual lags L to increase power, how-
ever, we can see some evidence of differences (Fig. 2.3F; Section B.13.2). Note that as L increases,
there is a tradeoff: tests with larger lag can detect more subtle differences between the two distribu-
tions, but have less statistical power since they must consider a larger set of possible distributions.
Thus the Bayes factor first increases and then decreases with lag, reaching a peak at intermediate
values where there is the most evidence of difference. To understand in detail the source of the de-
tected differences between the data and the simulation model, we examined the conditional Bayes
factor for individual reads, discovering clusters of reads that are poorly explained by the simulation
model (Fig. 2.3G). One group mapped to chloroplasts, an organelle with its own genome that is
variable in copy number; reads mapping to centromeres, an area of the plant genome for which the
reference genome is considered unreliable, were also poorly explained by the simulation model. In
one dataset we found a cluster of outliers that did not map to 4. thaliana at all, and instead mapped
to a common soil bacteria, Baczllus cereus, presumably a contaminant in the experiment (Fig. 2.3G,
left). These results illustrate how BEAR hypothesis tests can be used not only for testing but also for

detailed model criticism.
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2.7 DiscussioN

In this article we proposed the nonparametric BEAR model, studied its theoretical properties, and
developed algorithms and implementations for terabyte-scale inference. BEAR models substantially
outperform standard AR models on a variety of datasets, and come with extensive theoretical guar-
antees, including for density estimation, misspecification detection, and hypothesis testing. BEAR
models are closely connected to non-probabilistic genome analysis methods, such as de Bruijn graph
assembly, but provide an alternative that is uncertainty-aware. Note, however, that BEAR models
do not explicitly account for paired-end read information, or other sources of long-distance infor-
mation; this is an important area for future work. While there has been little previous empirical or
theoretical work in the machine learning literature on generative models of full genomic, transcrip-

tomic or metagenomic sequences, we hope BEAR models provide a useful starting point.
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Variational Synthesis

Generative probabilistic models of biological sequences have widespread existing and potential ap-
plications in analyzing, predicting and designing proteins, RNA and genomes. To test the predic-
tions of such a model experimentally, the standard approach is to draw samples, and then synthesize
each sample individually in the laboratory. However, often orders of magnitude more sequences

can be experimentally assayed than can be affordably synthesized individually. In this article, we pro-
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pose instead to use stochastic synthesis methods, such as mixed nucleotides or trimers. We describe
a black-box algorithm for optimizing stochastic synthesis protocols to produce approximate samples
from any target generative model. We establish theoretical bounds on the method’s performance,
and validate it in simulation using held-out sequence-to-function predictors trained on real exper-
imental data. We show that using optimized stochastic synthesis protocols in place of individual
synthesis can increase the number of hits in protein engineering efforts by orders of magnitude, e.g.
from zero to a thousand.

This chapter presents work done in collaboration with Alan N. Amin, Will Grathwohl, Daniel
Kassler, Jean Disset and Debora S. Marks, published at the International Conference on Artificial
Intelligence and Statistics (2022) *%*. EIN.W. conceived the research, performed the research and
wrote the paper. A.N.A. and ].D. contributed code, and A.N.A contributed to the theoretical re-
sults. W.G. and D.K. contributed to preliminary experiments. D.S.M. supervised the research at all

stages.

3.1 INTRODUCTION

Large-scale nucleic acid sequencing and synthesis is integral to modern biology and biomedicine,
from biotechnology to epidemiology to neuroscience to agriculture to evolutionary biology and
beyond. Generative probabilistic modeling offers a rigorous framework for analyzing large scale se-
quencing data and forming predictions of new sequences that can be synthesized in the laboratory.

Generative models have been used, for instance, to infer underlying structural and functional con-
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straints on protein evolution, to predict pathogen sequences that may emerge in the future, and to

168,110.284224 T order to assay

predict novel enzyme sequences with desired functional properties
the properties of predicted sequences and discover novel functional sequences, samples from genera-
tive models must be synthesized in the laboratory at scale. Large libraries are particularly important
for protein engineering applications, where they are screened for hits with rare properties, e.g. a par-
ticular catalytic or binding activity.

Unfortunately, synthesizing large numbers of samples from generative sequence models is chal-
lenging. The standard approach, which we refer to as “Monte Carlo (MC) synthesis”, is to (1) sam-
ple from the model computationally, and then (2) synthesize each sample individually >>42351%4, In
practice, however, MC synthesis is limited by cost: despite recent advances in synthesis technology,
gene-length libraries typically do not exceed 10* unique sequences'#5. Far larger libraries, on the
order of 10 — 103, can be screened in many high-throughput assays. The set of likely sequences
predicted by state-of-the-art generative models is often vastly larger still: a protein model with per-
residue perplexity of 2 across sequences of length 100 predicts effectively 2190~ 1030 sequences.
Thus MC synthesis often will come nowhere near comprehensive exploration of a model’s predic-
tions.

In principal, combinatorial and stochastic synthesis methods — such as error prone PCR and
mixed nucleotides — offer an alternative approach capable of producing much larger numbers of
unique sequences for the same cost. However, the sequences produced by these methods are ran-

dom, and so it is unclear how to use stochastic synthesis to gain insight into the predictions of a

given generative sequence model.
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Figure 3.1: The standard synthesis approach for generative sequence models (Monte Carlo synthesis) is to sample se-
quences in silico and synthesize samples individually in vitro. The proposed approach (variational synthesis) is to optimize
the experimental parameters of a stochastic synthesis protocol in silico and then run the protocol in vitro or in vivo to
produce a larger number of samples.

In this article, we describe an experimental design method — “variational synthesis” — that lever-
ages stochastic DNA synthesis to overcome the limitations of MC synthesis. The basic idea is to
optimize the parameters of the laboratory synthesis protocol to produce samples from a distribution
close to the distribution of the target generative model. Variational synthesis is a rigorous approach
to building ultra-large scale libraries based on generative sequence models, and can dramatically ac-

celerate the discovery of novel functional sequences.

3.2 METHOD

We consider an arbitrary target generative model that describes a probability distribution p(x) over
sequences x. We are interested in assaying samples from the model experimentally. The standard

method, MC synthesis, is to (1) draw samples X1, ..., X, ~ piid. computationally and then
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(2) synthesize each sequence in the laboratory, deterministically. This approach is limited by the
number of sequences Ny that can be affordably synthesized deterministically, typically on the order
of 10% or less for gene-length sequences.

As an alternative, we propose “variational synthesis” (Figure 3.1): (1) write down a probabilistic
model gg () of sequences produced by a stochastic synthesis protocol with experimental parameters
0, (2) minimize a divergence between gy and p to find gp« ~ pand (3) run the stochastic synthesis
protocol in the laboratory, producing samples X7, ..., X, ~ gg+ i.i.d.. This approach is limited by
the number of sequences /V; that can be affordably screened, where in general N1 can be orders of
magnitude larger than Ny, e.g. 10% — 10, The increase in samples comes at the cost of accuracy,

since g+ may not exactly match p.

3.2.1 STOCHASTIC SYNTHESIS MODELS

The first step of variational synthesis is to write down models gy of stochastic synthesis proto-
cols. We focus on five key technologies: (1) enzymatic mutagenesis, e.g. error-prone PCR or Or-
thorep****'°, (2) mixed nucleotide synthesis, often referred to as “degenerate codon libraries” in the
context of proteins'*'74, (3) mixed trimer synthesis '*®*3517%, (4) combinatorial variant libraries >+
and (s5) combinatorial assembly*°. We focus on models of protein sequences; models of DNA or
RNA are simpler.

We describe stochastic synthesis models gy using a four-step generative process (Figure 3.2): (1)
sample one of M “templates” from each of K “pools”, (2) join the templates together, (3) sample

codons independently at each position of the combined templates and (4) translate the DNA se-
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quence into protein. For example, consider the protocol of combinatorial assembly plus error prone
PCR: we start with a library of oligos, join (assemble) a random sample of oligos into a larger se-
quence, and then mutagenize the sequence. Abstractly, we refer to the distribution over codons
obtained by mutagenizing a particular oligo as a “template”. Techniques such as mixed nucleotides
can produce alternative distributions over codons, described by different “templates”. Mathemat-
ically, let uj, (5, by by) denote the probability of generating codon (b1, b2, b3) at the jth position

of template z in pool k. Let T be the translation matrix, defined as T(y, 3, 5,)¢ = 1 if the codon
(b1, b2, b3) codes for the amino acid d and T(p, p, p,)a = 0 otherwise. (For instance, T{g 7, 4)v = 1

since the codon G'T" A codes for the amino acid V'.) The complete model (Figure 3.2) is

Zi ~ Pw,
C; = concatenate(U1z,,, - - -y UK Z;5 )
H; ~ Categorical(C;),

Xi = Hz -117

where the “concatenate” operation stacks matrices vertically, and the categorical distribution pro-
duces one-hot encoded samples based on the probabilities in each row. Here, Z; is the vector of
templates used for sequence %, drawn from an underlying distribution p,,, while Cj is a matrix con-
taining the codon probabilities for each site along sequence 7 and Hj; is a one-hot encoding of the
codons in sequence % (Table C.1 provides a complete notation reference).

Different synthesis technologies impose different constraints on p,,, corresponding to different
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Figure 3.2: Overview of the synthesis model (Equation 3.1). From each of K pools we draw one of M templates, u,,
according to the random vector Z;. We concatenate the templates to form a matrix of codon probabilities C;. Then
codons are sampled at each position to form H;, which is finally translated into a protein sequence X;.

assembly methods, and different constraints on u, corresponding to different codon diversification
methods. (The biochemical basis for these different mathematical constraints is described further in
Section C.1.) We consider two possible constraints on p,,:

1. Fixed assembly Z;; ~ Categorical(w) and Z; := ... := Zjk : ;1. Here we assume that
there are M templates in each pool, and that the choice of template from the first pool dictates the
choice from all the others. The experimentalist can choose the probability vector w € Ay, where
A denotes the M — 1 simplex; chemically, w is controlled by the relative concentration of each
template. In this case, the synthesis model (Equation 3.1) is a mixture model.

2. Combinatorial assembly: Z;;, ~ Categorical(wy,) forall k € {1,..., K}. In this case each
template from each pool is drawn independently. The experimentalist can choose the probability
vectors wy, € Ay for each pool.

We describe constraints on the codon probabilities of each template in terms of spaces U/, where
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the experimentalist can choose any uy,; € U forallk, z,j. Weuse v @ v’ to denote the outer
product of two vectors v and v'. Overloading notation, for two sets of vectors S and S’, we use
S ® S’ to denote the set of outer products of their members, thatis S ® S := {v ®@ V' : v €
Sand v’ € S'}. We consider the following constraints:

1. Arbitrary codon mixtures: i{ = Agy. In this case, the experimentalist can choose any prob-
ability distribution over the 64 codons at each position in each template.” Combinatorial variant
libraries have this constraint; it is the most flexible of the codon probability constraints we consider.

2. Finite codon mixtures: Y = {v1,...,v4} wherev, € Agy forall a. In this case, the
experimentalist must first fix a library of A different codon mixtures, and then, for each position in
each template, choose one of these mixtures v, to use. Mixed trimer synthesis protocols often have
this constraint; in this case, v, is determined by the relative concentration of each trimer in mixture
a.

3. Finite nucleotide mixtures: Y = {v1,...,v4} ® {v1,...,v4} @ {v1,...,v4} where
Vg € Ay forall a. In this case, the experimentalist must first fix a library of A different nucleotide
mixtures, and then, for each position in each codon in each template, choose one of these mixtures
to use. Mixed nucleotide synthesis protocols often have this constraint; in this case, v, is determined
by the relative concentration of each nucleotide in mixture a

4. Enzymatic mutagenesis: i = {S7eq,...,STes}®@{S7ey,...,5Tes}@{STe1,...,Ses}

where S is a substitution matrix, S7 is a matrix exponential, and e; is the length 4 vector of all zeros

"We index the 64 codons either using either tuples (A, A, A), ..., (T,T,T) orintegers 1, . . ., 64, de-

pending on convenience.
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except a one at position j. The substitution matrix .S is an intrinsic property of the chosen muta-
genic enzyme (i.e. the particular error prone polymerase); in general, it has positive non-zero entries,
linearly independent columns, and the sum of each column is 1. The number of rounds of mutage-
nesis 7 € {1,2, ...} can be controlled experimentally.

Once an assembly technology (fixed or combinatorial) and codon diversification technology
(arbitrary codon, finite codon, finite nucleotide or enzymatic) are chosen, the parameters 6 of the
synthesis model g (Equation 3.1) that must be optimized consist of: w (the template probabilities),
u (the codon probabilities), v (if we are using finite nucleotide or codon mixtures) and 7 (if we are

using enzymatic mutagenesis).

3.2.2 BLACK-Box OPTIMIZATION

The second step of variational synthesis is to optimize the synthesis protocol, such that gg« ~ p. For
some target/synthesis pairs — for instance, when the target is a regression model with a MuE output

and fixed latent alignment284

, and the synthesis method uses fixed assembly and arbitrary codon
mixtures — we can analytically and exactly match g+ to p (Supplement C.2.1). In most cases, how-
ever, an exact match between the target distribution and the synthesis distribution is impossible, and
an analytic minimum intractable. We therefore propose an approximate optimization procedure.
The primary desiderata are that it should be (1) black-box, in the sense that it can be applied to ar-
bitrary target distributions p so long as p can be tractably sampled from, (2) scalable to large library

sizes, since gp may for instance be a mixture model with 1000 or more components and (3) able to

handle large numbers of discrete parameters, since U can be finite.
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We propose to minimize the Kullback-Leibler (KL) divergence between the target model and
the synthesis model, estimating 6* := argmin, KL(p||gg) by (1) drawing samples from the target
model X1, ..., Xz ~ piid. and (2) maximizing the log likelihood of the samples under gy using
a stochastic expectation-maximization (EM) algorithm *3. This approach only relies on samples
from p, so can be applied whenever MC synthesis can be applied; in particular, it does not require
access to likelihoods of p, allowing p to be an implicit model (e.g. a GAN). EM does not require
access to derivatives of gy () with respect to 0, and can easily handle categorical parameters. Finally,
since the stochastic EM algorithm relies only on minibatches of data, the method is highly scalable.
Sections C.2.2 and C.2.3 detail the algorithm and provide advice on training, including the choice
of N. Code is provided at https://github.com/debbiemarkslab/variational-synthesis.

Often the target p describes a distribution over variable-length sequences. One way to account
for this, in the case of protein sequences, is to compute the likelihood of each sequence followed by
a stop codon, treating the remainder of the DNA sequence as missing data when fitting gg (Sup-
plement C.2.4). Alternatively, a restriction site could be appended, and the remainder of the DNA
sequence again treated as missing data; after synthesis, the sequences could be digested to the appro-
priate length. Our optimization procedure can thus be applied to p that produce variable-length

sequences, so long as the length distribution is bounded.
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3.3 RELATED WORK

Optimal design methods for stochastic synthesis have a long history, but existing techniques are in
general non-probabilistic — they do not work with explicit target distributions p or synthesis distri-
butions gp — and, practically, cannot be applied to produce samples from an arbitrary generative
model p. Methods such as LibDesign '7# and SwiftLib '*° optimize degenerate codon libraries to
match the per-position amino acid frequencies in a multiple sequence alignment, while limiting
the total size of the library. SwiftLib has for instance been used to design massive libraries of mini-
protein sensors and therapeutics *>'4°. OCoM '?* applies similar ideas to handle pairwise correla-
tions. The recent DeCoDe method *** designs degenerate codon libraries to produce as many mem-
bers of a set of target sequences as possible, while limiting the total size of the library; it can be inter-
preted probabilistically as attempting to maximize the overlap in support between a synthesis distri-
bution gg and a target distribution p, while regularizing the size of the support of gg (Section C.3.1).
Meanwhile, SCHEMA and R ASPP>7%73 are used to optimize combinatorial assembly protocols
based on protein structure, and have been applied to engineer new optogenetic tools*°; when the
target model p is a Potts model that accurately reflects protein structure, variational synthesis will
prefer similar solutions (Section C.3.2). Note that these existing non-probabilistic stochastic synthe-
sis design tools are often used to construct libraries of diversified sequences in the context of directed
evolution experiments, and we expect variational synthesis to also be applicable in the same context.
Batched stochastic Bayesian optimization**# is comparable to variational synthesis in that it is

a rigorous and probabilistic approach to stochastic synthesis optimization. Unlike variational syn-
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thesis, it is focused on optimizing a reward function, rather than drawing samples from a generative
sequence model. It is also not black-box, relying on the particular structure of the reward function
(a Gaussian process) and focusing on just one stochastic synthesis method.

Stochastic synthesis models related to those proposed in Section 3.2.1 have been used in the past
for inference from observational data, rather than experimental design. For instance, Tomezsko

et al. 2

use a mixture model of sequences to infer RNA structural diversity from dimethyl sulfate
mutational profiling data.

Variational synthesis is inspired by variational inference (VI)*”. Both minimize a divergence be-
tween a simple approximating distribution and a target distribution (a posterior in the case of VI).
Both can take advantage of the expressiveness of mixture models to achieve close matches to the
target distribution '7597*°>_ Both can be contrasted with older methods for exact sampling from a
target distribution (Markov chain Monte Carlo in the case of VI, Monte Carlo synthesis in the case
of variational synthesis); both trade accuracy for scale, enabling large numbers of approximate sam-
ples to be drawn (computationally in the case of VI, physically in the case of variational synthesis).

Both can be black-box, enabling automatic sampling for a large class of target distributions %47,

3.4 THEORY

3.4.1 APPROXIMATION ERROR

In this section, we analyze the downstream consequences of using variational synthesis in place

of MC synthesis. After synthesizing (approximate) samples from p, the sequences will be experi-
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mentally characterized using a high-throughput assay, described by a function f, which provides
measurements f(X1),..., f(Xx) of each synthesized sequence. The assay may measure bind-

ing strength, enzymatic activity, fluorescence, etc.. f is assumed to be unknown before perform-
ing the experiment. We consider two distinct goals. The first goal is to estimate the average value
Ex~p[f(X)]. For instance, we may want to estimate the average drug resistance of future pathogen
sequences predicted by p. Second, we may be interested in discovering a large number of sequences
with a desired property, i.e. we want to maximize Y.~ | f(X;) where f(z) = 1if the sequence has
the property and f(x) = 0 otherwise. E.g. if we want to engineer a new plastic-degrading protein,
we want to find as many sequences as possible with high degradation rates.

Estimating [ x [ f(X)]. MC synthesis and variational synthesis lead to two distinct estimators
for I := Ex~,[f(X)], and in this section we compare their performance theoretically. In particular,
the MC synthesis estimator is [@ .= NLO vazol (X;) where X1,...,Xn, ~ p,while the
variational synthesis estimator is 1(?) := N% SN F(X;) where X1, .., XN, ~ gg+. We have no
a priori knowledge of f, so to compare estimators we evaluate worst-case performance over a family
of functions F. In practice, nearly all experimental assays have limited dynamic range; we therefore

take F to be the set of bounded functions,  := {f : maxgex | f(2)| < fmax}> where X is the set

of protein sequences of length less than or equal to L.

Proposition 3.4.1. The worst-case mean absolute deviation of the exact synthesis estimator satisfies

L sup B[ — 1] <

L ( 2)
fmax feF \/ﬁo >
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The worst-case mean absolute deviation of the stochastic synthesis estimator satisfies

1 - 1 /1
— sup E[|I® — [ < + 1/ =kL(p||qo~)- 3.3

The proof, which can be found in Section C.4.2, uses the integral probability metric representa-

tion of total variation along with Pinsker’s inequality. This result describes a bias-variance tradeoff:
using variational synthesis in place of MC synthesis leads to less variance (since N1 > NNp) but intro-
duces bias if gp» does not exactly match p. Our optimization procedure (Section 3.2.2) minimizes
bias by minimizing KL(p||qg).

If we have access to paired sequencing data, for instance if the hits of a high-throughput screen
are deep-sequenced, we can remove the bias in the variational synthesis estimator via importance-
weighting. We analyze this approach in Section C.4.3.

Maximizing >~ ; f(X;). How many more hits can we expect to discover when using varia-
tional synthesis as opposed to MC synthesis? To address this question, we take f : X +— {0,1},
and compare the total number of hits when using variational synthesis, N1 I (), to the number of

hits when using MC synthesis, Nof (@),

Corollary 3.4.2. The expected increase in hits when using variational instead of MC synthesis satis-

fres

E[NI® — No[@] >

(1= 3xetollar) ) Ni = VAT = 1N — VG,
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See Section C.4.4 for a proof. In general Ny is much larger than N, so the determining factor as
to whether variational synthesis outperforms MC synthesis is whether gg- is a sufficiently close ap-
proximation to p, i.e. whether /3xL(p||gg+) < I.Ifso, the payoff from using variational synthesis
can be substantial: to first order, the number of hits increases linearly with the number of sequences

N7. Our optimization procedure maximizes the lower bound on the number of hits by minimizing

xL(p|lgp)-

3.4.2 PERFORMANCE LIMITS

We have seen that the success of variational synthesis is determined by how closely gg can match
the target p. In this section, we analyze how closely the stochastic synthesis models described in
Section 3.2.1 can match arbitrary target distributions p.

Limits on fixed assembly. We start by showing that synthesis protocols that use fixed assembly,
and do not use enzymatic mutagenesis, can match any target distribution p arbitrarily well. We use
qo(x|2) as shorthand for gp(z|Zi1 = z), the synthesis model distribution conditioned on the
choice of template (mixture component). Let P(X’) denote the set of probability distributions over
X. Let supp(go(x|z)) denote the support of the distribution gp(z|2), i.e. thesetofallz € X such

that gg(z|z) > 0.

Proposition 3.4.3. When using either arbitrary codon mixtures, finite codon mixtures (with
A > 21), or finite nucleotide mixtures (with A > 4): for any p € P(X) and n > 0 there exists some

M and 0 such that (1) kL(pl|qp) < 1 and (2)supp(qo(z|2)) = X forall z € {1,..., M}. When
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using enzymatic mutagenesis: there exists some p € P(X) and n > 0 such that for all M and 0, we

have kL(p||qe) > n.

See Section C.4.5 for a proof. The result says that as long as we are not using enzymatic mutage-
nesis, the target distribution p can be arbitrarily well approximated without resorting to individual
synthesis (that is, without setting gy (|2) to be a delta function). Fundamentally, the problem with
enzymatic mutagenesis is its discreteness: a sequence can be mutated at minimum once, so there is
a minimum non-zero codon probability, given by the properties of the enzyme. This sets a limit on
the “resolution” of p that can be matched by the synthesis procedure.

Limits on combinatorial assembly. We next show that any synthesis protocols using combina-
torial assembly cannot closely match arbitrary targets p even in the limit that the library size M goes

to infinity. The result holds for any choice of /.

Proposition 3.4.4. When using combinatorial assembly, so long as K > 1, there existsp € P(X)

and 1 > 0.such that for all M and 0, we have kL (p||qp) > 1.

See Section C.4.6 for a proof. The key problem with combinatorial assembly is that it forces
templates to be independent of one another; it therefore cannot match probability distributions p

which have correlations between regions covered by each template.

In practice, despite the mathematical idealization of our models, all synthesis technologies have a min-
imum non-zero codon probability, set by engineering constraints. The key question is really how low this
number is comparatively.
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3.5 RESULTS

3.5.1 MATCHING EVvOLUTIONARY ENZYME MODELS

We next evaluated the ability of variational synthesis to produce approximate samples from target
protein models trained on real data. As a first target, we chose a Potts model trained on dihydrofo-
late reductase (DHFR) sequences from across evolution; DHFR is an enzyme crucial for nucleic
acid synthesis. Potts models of protein sequences have been studied extensively, and MC synthe-
sis from Potts models can produce functional sequences**#. We optimized each of our proposed
stochastic synthesis models, setting hyperparameters based on commercially-available technologies
(Section C.s5.2). We compared our proposed variational synthesis approach to a baseline heuristic
library diversification strategy of MC synthesis plus mutagenesis: (1) draw samples from p and then
(2) apply five rounds of mutagenesis with ePCR (Section C.s.3). To evaluate how well each synthe-
sis model matched the target distribution we estimated its per residue perplexity (Section C.s.4).
However, perplexity only provides a measurement of the relative quality of different synthesis proce-
dures, rather than an absolute measurement of whether they match the data distribution. We there-
fore applied a Bayesian two-sample test for biological sequences — the BEAR test'* — to determine
whether gg+ in fact matches p, based on 100,000 samples from each (Section C.5.5).

All variational synthesis methods dramatically outperform the baseline (Figure 3.3A), and some
are capable of matching the target p closely, passing the two-sample test (Figure 3.3B). Two key de-

terminants of the performance of the stochastic synthesis model are (1) the expressivity of the codon
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Figure 3.3: Perplexity (A) and two-sample test Bayes factor (B) of different codon diversification methods, with fixed as-
sembly, applied to a target Potts DHFR model. Positive Bayes factors support the hypothesis that the synthesis and target
distributions match. (C) Perplexity of combinatorial versus fixed assembly, applied to Potts DHFR model. (D) Perplexity of
synthesis models with fixed assembly applied to unaligned DHFR sequences. Error estimates for each plot are described
in detail in Section C.5.7.

diversification method — that is, the size of the set of allowed ¢/ — and (2) the number of templates
M (Section C.s5.2). Performance in terms of perplexity shows an improvement with increasingly
large U and increasing M. Note that due to current technology costs, when using codon mixtures,
M must in general be small (e.g. < 10) as compared to enzymatic mutagenesis or nucleotide mix-
tures (where M can be on the order of 1000). Nonetheless, using arbitrary codon mixtures with
M = 1 templates outperforms the alternative technologies with M = 1000 templates.

The advantages of combinatorial assembly over fixed assembly vary depending on the codon

diversification technology. Combinatorial assembly improves perplexity when using enzymatic
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mutagenesis, but has little effect when using arbitrary codon mixtures (Figure 3.3C and Figure C.3),
while introducing error in the covariance matrix of gg+ (Figure C.4).

We next explored the application of variational synthesis to target distributions over variable-
length sequences (the DHFR Potts model was trained on aligned sequences and generates fixed-
length sequences). We optimized synthesis models directly on the same evolutionary data used to
train the DHFR Potts model (with gaps removed); the target here is the true evolutionary data-
generating process, and unknown (Section C.s5.1). Enzymatic mutagenesis with large M outper-
forms arbitrary codon mixtures with small M in this case (Figures 3.3D and C.s). The best synthe-

sis technology can thus depend on the target.

3.5.2 SYNTHESIZING FLUORESCENT PROTEINS

Next we sought to determine if variational synthesis can increase the number of discoveries in down-
stream assays, as compared to MC synthesis. To simulate the results of realistic experimental assays,
we used sequence-to-function predictors trained on large-scale experimental studies. We started with
green fluorescent protein (GFP), predicting fluorescence using a transformer-based semi-supervised
method trained on a GFP deep mutational scan dataset and evolutionary protein data>****?. We
classified as hits sequences with predicted fluorescence above the functionality threshold specified by
Sarkisyan et al. *2¢ (Section C.5.6). To construct a target p, we trained an unsupervised sequence

284 _ on evolution-

model — an ICA model with MuE output, proposed in Weinstein & Marks
arily related GFP sequences, and then fixed the latent alignment variable of the MuE to generate

sequences (Section C.s5.1). Using a fixed latent alignment ensures that the fluorescence predictor,
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Figure 3.4: Perplexity (A) and two-sample test Bayes factor (B) for different synthesis methods applied to a target GFP
model. (C) Hit rate for discovering functional sequences. (D) Expected number of unique hitsina N7 = 106 library for
variational synthesis, as compared to MC synthesis witha Ny = 103 library (Section C.5.6). (E-H) Same as (A-D) for a
target TCR model. Error estimates for each plot are described in detail in Section C.5.7.

which was only trained on fixed-length sequences, can be confidently applied. Note that the fluores-
cence predictor was not used to construct p itself, so we can fairly evaluate variational synthesis in
the setting where the experimental results are not known ahead of time. In general, the fluorescence
predictions are quite sensitive to the input sequence — a single amino acid change can abolish fluores-
cence - so generating new fluorescent sequences is nontrivial (Figure C.6). Only 1.3% of sequences
sampled from p are hits, with fluorescence above the threshold specified by Sarkisyan et al. >*¢.
Stochastic synthesis models with arbitrary codon mixtures and fixed assembly have low perplexi-
ties, and can pass the two-sample test with large Bayes factors at M > 10; other methods struggle,

including the baseline method (Figure 3.4AB). Samples from arbitrary codon models at M = 10

show average fluorescence similar to p (Figure C.8), and the fraction of samples that are hits is only
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about half that of MC synthesis, 0.5% (Figure 3.4C). Meanwhile, alternative stochastic synthesis
methods show hit rates below 0.05%.

Variational synthesis leads to a decrease in hit rate relative to MC synthesis, but this can be more
than compensated for by the increase in the number of synthesized samples. If, for instance, N1 =
10% sequences generated via variational synthesis are assayed, as opposed to Ny = 103 sequences
generated via MC synthesis, an estimated 3600 unique functional sequences will be discovered
using variational synthesis as opposed to 10 for MC synthesis (Figure 3.4D; Section C.5.6). Vari-
ational synthesis can thus provide orders-of-magnitude increases in the number of hits in protein

engineering applications, with the number of hits increasing with larger values of N1 and/or M.

3.5.3 SYNTHESIZING ANTIGEN-BINDING PROTEINS

Next we sought to evaluate the advantages of variational synthesis over MC synthesis in an applica-
tion area important for human health. Understanding T cell receptor (TCR ) sequences and their
binding properties is crucial for understanding the immune response to infection or cancer, and en-
gineering new TCRs with desired binding properties is crucial for immunotherapies '>*. We trained
a model of TCR sequences from a healthy donor — an ICA model with MuE output — and fixed

the latent alignment variable in the MuE to define p (Section C.s.1). As a held-out sequence-to-
function predictor, we used Tcellmatch”” to predict binding to an influenza epitope (Section C.s.6).
The predictor is highly sensitive to the input sequence — a single amino acid change can abolish
binding — making this a challenging problem for variational synthesis (Figure C.10). Only 0.6% of

samples from the target p are hits.
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Synthesis models with arbitrary codon mixtures and fixed assembly achieve low perplexities and
can pass the two-sample test with large Bayes factors (Figure 3.4EF). Variational synthesis with this
model achieves hit rates similar to MC synthesis (Figure 3.4G). MC synthesis with Ng = 103 gener-
ates just 6 hits on average across independent libraries; given stochasticity, it is not unlikely to see no
hits at all in a given library. Variational synthesis with N1 = 10%and M = 10 generates an expected
2400 unique hits (Figure 3.4H). Similar results hold for additional epitopes, from other viruses (Sec-
tion C.s5.8). These results suggest that variational synthesis can dramatically accelerate the discovery
of new TCRs that bind specific antigens, relying only on unsupervised sequence models and not
large-scale supervised sequence-to-function training data.

Close matches between gg+ and p turn out to be unnecessary for reaching high hit rates in this
example. When using arbitrary codon mixtures or finite codon mixtures with M = 1, or even
using finite nucleotide mixtures with M = 100, the two-sample test detects significant differences
between g+ and p (Figure 3.4F), but nonetheless variational synthesis achieves substantially more

hits than MC synthesis (Figure 3.4H).

3.6 DiscussioN

Variational synthesis trades accuracy for scale, producing large numbers of approximate samples
from a target model rather than small numbers of exact samples, as in MC synthesis. When accuracy
is high enough — when gg- is sufficiently close to p — the payoft can be enormous, as the number of

hits increases linearly with the number of assayed sequences V1. Given that many high-throughput
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screens can reach 1019 sequences or more, while individual gene synthesis rarely goes beyond Ny =
10%, using variational synthesis may make the difference between zero hits and a million.

We have shown through detailed simulations that such large payoffs are plausible for real, thera-
peutically important protein design targets, using commercially available stochastic synthesis tech-
nology. Going forward, implementing variational synthesis experimentally is thus a matter of order-
ing and assaying commercially-made libraries based on gg-.

The key limitations of our variational synthesis methods — and opportunities for future work —
stem from the challenges of matching synthesis and target distributions. First, our synthesis mod-
els (Section 3.2.1) are idealizations based on manufacturers’ descriptions of the distribution of se-
quences their methods produce, but do not take into account possible errors, biases or limitations in
the real procedure (Section C.1). Developing more accurate gy models, based on e.g. deep sequenc-
ing data, may be an important area for future work. Second, our methods for judging whether gg=
is sufficiently close to p are limited. Empirically, while the BEAR two-sample test appears to be ex-
cellent at distinguishing among good and bad fixed assembly models in the examples we studied, it
struggles to detect the errors caused by combinatorial assembly, even when they are large enough
to abolish function (Figure C.9). Theoretically, tighter bounds than that in Proposition 3.4.1 can
be proved with total variation or Wasserstein distance in place of KL, but optimizing these alterna-
tive divergences directly is a challenge (Section C.4.2). For sequence-to-function predictors to be
more reliable in evaluating variational synthesis methods, they must be robust to covariate shift,
since switching from p to gg- is, precisely, a covariate shift. Third, while our black-box optimization

method allows for arbitrary target distributions p, it may be more effective in many cases to work
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with p for which an exactly matching gy« can be found analytically (Section C.2.1). Recent progress
on mixture models as a competitor to deep generative neural network models make this approach
especially promising*'#.

Variational synthesis changes the calculus of what makes a successful generative sequence model
and what makes a successful synthesis technology. If just 1% of the sequences sampled from an
initial model A were functional, and s0% of sequences sampled from a proposed model B were
functional, model B would be considered a major advance; however, if we could accurately match
a stochastic synthesis protocol to model A and not to model B, then model A could easily lead to
orders of magnitude more hits in practice. Meanwhile, the traditional goal of the DNA synthesis
community has been large-scale individual synthesis. From a probabilistic perspective, however, it
hardly makes sense to focus exclusively on methods to sample from mixtures of point masses. The
recent development of methods to synthesize samples from much more flexible mixture models
represents a major advance outside the traditional paradigm.

Variational synthesis bridges the gap between generative sequence models and stochastic synthesis
technologies, providing a rigorous approach to experimental design. We are optimistic that it will

help translate powerful new generative sequence models into laboratory discoveries.
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Non-identifiability and Misspecification in

Models of Fitness

Understanding the consequences of mutation for molecular fitness and function is a fundamental
problem in biology. Recently, generative probabilistic models have emerged as a powerful tool for

estimating fitness from evolutionary sequence data, with accuracy sufficient to predict both labora-
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tory measurements of function and disease risk in humans, and to design novel functional proteins.
Existing techniques rest on an assumed relationship between density estimation and fitness estima-
tion, a relationship that we interrogate in this article. We prove that fitness is not identifiable from
observational sequence data alone, placing fundamental limits on our ability to disentangle fitness
landscapes from phylogenetic history. We show on real datasets that perfect density estimation in
the limit of infinite data would, with high confidence, result in poor fitness estimation; the misspec-
ification of current models is a blessing, rather than a curse, when it comes to fitness estimation.
Our results challenge the conventional wisdom that bigger models trained on bigger datasets will
inevitably lead to better fitness estimation, and suggest novel estimation strategies going forward.
This chapter presents work done in collaboration with Alan N. Amin, Jonathan Frazer and Deb-
ora S. Marks, and is currently in submission***. E.N.W. conceived the research, derived the theoret-
ical results, contributed to the empirical results and wrote the paper. A.N.A. contributed equally
to E.N.W. overall, and in particular contributed to the conception of the research and the theoret-
ical results, and obtained the empirical results. J.F. contributed to the early conceptualization and

preliminary experiments. D.S.M. supervised the research at all stages.

4.1  INTRODUCTION

The past decades have witnessed a tremendous increase in the scale of genome sequence data avail-
able from across life. Recently, methods for estimating molecular fitness using generative sequence

models have seen widespread success at translating this evolutionary data into predictions of the
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functional consequences of mutation. Such models have been shown to accurately predict the

110,215,

outcomes of experimental assays of protein function 173, and have been applied to infer 3D

16828 and to design novel proteins **5>*+1¢5. The models have also

structures of RNA and protein
been used to predict whether human mutations are pathogenic, directly informing the diagnosis

of genetic disease*°. In this paper, we investigate how and why generative sequence models fit to
evolutionary sequence data are successful at estimating molecular fitness, and how they might be
improved and generalized going forward.

Existing approaches to fitness estimation with generative sequence models rest on an assumed re-
lationship between density estimation and fitness estimation. Given a dataset of sequences X1, ..., Xn,
assumed to be drawn i.i.d. from some underlying distribution py, fitness models proceed by (1) fit-
ting a probabilistic model gp to X1. and (2) using the inferred density log g;(x) = logpo(x) as
an estimate of the fitness f(x) of a sequence z; this estimate in turn is used to predict other covari-
ates such as whether the mutated sequence is pathogenic ''>*'5%. Innovation in fitness models has
come out of a trend of building increasingly flexible models fit to increasing amounts of data: simple
models that treat each column of a sequence alignment independently were improved by energy-
based models that accounted for epistasis *'°, which in turn were improved by deep variational au-

*'5, which in turn were improved by deep autoregressive alignment-free models *3 515,173

toencoders
Naively, one might assume that these improvements have come from obtaining better and better es-

timates of the data distribution pg, and improvements will continue with bigger models and bigger

datasets. In this article, we argue that this presumption is incorrect.
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4.1.1 TECHNICAL SUMMARY

First, we show that that the true data distribution pg may not reflect fitness, and argue instead that
we should be focused on estimating another distribution that does, p™° (the “stationary distribu-
tion”, to be defined below). In particular, we demonstrate that phylogenetic effects — i.e. the his-
tory of how current sequences evolved over time — can “distort” the observed data, leading to a
situation where pg # p™° (Sec. 4.2). Second, we show in this situation that p° and fitness f are
non-identifiable: even with infinite data, there always exists some alternative fitness function f that
explains the same data just as well as f. This sets fundamental limits on what we can learn about
fitness from evolutionary data (Sec. 4.3). Third, although exact estimation of p>° is impossible, we
show that it is still possible to get closer to p> than py, that is, to find a better estimator of fitness
than the true data density pg. This can be done by fitting to data a parametric generative sequence
model M = {gp : 0 € O} thatis (approximately) well-specified with respect to p™° (i.e. p>° € M)
but misspecified with respect to the data distribution pg (i.e. po ¢ M), thus illustrating the po-
tential blessings of misspecification (Sec. 4.4). Fourth, we construct a hypothesis test to determine
whether these blessings of misspecification occur on real data, with existing fitness estimation mod-
els; here, we rely on a Bayesian nonparametric sequence model to construct a credible set for pg

(Sec. 4.6). Fifth, we apply our test to over 100 separate sequence datasets and fitness estimation tasks,
to conclude that existing fitness estimation models systematically outperform the true data distribu-
tion py at estimating fitness (Sec. 4.7). The takeaway is that better fitness estimation (i.e. better p™

estimation) will not come from better density estimation (i.e. better py estimation); bigger models
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Figure 4.1: Example JFPM for N = 3 observed sequences. (A) An example phylogeny H. (B) Generative process for
sequences at each node of the phylogeny.

and bigger datasets are not enough. Instead, better fitness estimation can come from developing

models that describe p> better but the data density pg worse.

4.2 MODELS OF FITNESS AND PHYLOGENY

In this section we show how pg may not accurately reflect the true fitness landscape, by develop-

ing a generative model of sequence evolution that takes into account both fitness and phylogeny.
The model is general: it allows for arbitrarily complex epistatic fitness landscapes, and recovers stan-
dard generative phylogenetic and fitness models as special cases. Our concerns about the effects of
phylogeny on fitness estimation are motivated by the widespread use — and trust — of phylogenetic
models for evolutionary sequence data (phylogenetic models are far more widely applied than fit-
ness models) 9457475 Although often inferred from the very same datasets, standard fitness models
and standard phylogeny models make conflicting assumptions, which our general framework makes

explicit.
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4.2.1 JOINT FITNESS AND PHYLOGENY MODELS

We define “joint fitness and phylogeny models (JFPMs)” using two elements: a description of how
individual species (or populations or individuals) change over time, which depends on fitness f, and
a description of the species’ relationship to one another, a phylogeny H. To describe the dynamics
of individual species, let P7 (x, 2¢) denote the probability of sequence xg evolving into sequence

x after time 73 in particular, P” (z, zo) is assumed to be the transition probability of an irreducible
continuous-time Markov chain defined over sequence space X'. For example, under neutral evolu-
tion (i.e. without selection based on fitness), P7 (x, o) may follow a Jukes-Cantor model75. With
selection, for simple population genetics models (e.g. Moran or Wright processes), Sella & Hirsh *3°

demonstrate under general conditions that for any o,

Pz, 20) %5 5 = — exp(Bf(2)) (41)
where f(x) is the log fitness of the sequence z and 5 > 0 is a constant (Appx. D.1). The im-
plication of Eqn. 4.1 is that the stationary distribution of the evolutionary dynamics follows a
Boltzmann distribution, with energy proportional to the log fitness of the sequence. Estimating
P is of interest because it provides a direct estimate of log fitness, up to a linear transform, since
f(z) = B 1(logp™(x) + log Z). (N.b. in the remainder of the paper, when we say “estimate
fitness” we mean, implicitly, “estimate log fitness up to a linear transform™.)

The sequences we observe, however, do not necessarily come from the stationary distribution. In-
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stead, they are correlated with one another according to their evolutionary history. This is described
by a phylogeny H = (V, E, T') consisting of a directed and rooted full binary tree with edges £ and
nodes V, along with time labels for the nodes, T' : V' — R (Fig. 4.1A). Each node v is associated
with a sequence X, drawn as X,, ~ PAt (x, Xy, ), where X, is the sequence of the parent node,
v is the child node, and At = T'(vg) — T'(v1) is the length of the edge between them (Fig. 4.1B).
The root sequence is drawn from p°. The observed datapoints X1, ..., X correspond to the leaf
nodes. In general we will assume all leaves are observed at effectively the same time, the present day

T =0.

4.2.2 SIMPLIFYING ASSUMPTIONS

Standard probabilistic phylogenetic models ignore fitness and assume

Assumption 4.2.1 (Pure phylogeny models (PMs)).  There is no difference in fitness among se-

guences, t.e. f(z) = C.

Example models that fit this form include most of those used in BEAST®’, MrBayes''#, RaxML*%,
etc. Standard probeabilistic fitness models, on the other hand, ignore phylogenetic history and as-

sume that the stationary distribution has been reached,

Assumption 4.2.2 (Pure fitness models (FMs)). Lez ; be the distance in time between observed

sequence X; and its parent node. Take T; — 00 for all i, which implies that

Xiif@l%exp(ﬁf(:z)) forie {1,2,...}. (4-2)
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Figure 4.2: Samples from an OUT. (A) Above: Stationary distribution p°° and kernel density estimates of the distribution
of samples pg from an OUT model for increasing N . Below: A subset of the phylogeny. (B) Same as (A) for an independent
sample of H.

The key implication of this assumption is that density estimation and fitness estimation are
linked: the data follows X1, ..., XN ~jiqa Po = p°°,and so if we can estimate py we can esti-
mate the fitness. Example models include EVMutation '°, DeepSequence *'3, EVE®°, etc. Note
although Assumptions 4.2.1 and 4.2.2 do not conflict directly, conclusions made based on them

conflict in practice: PMs typically infer finite and different lengths for branches (i.e. 7; < 00), while

FM:s typically infer differences in fitness (i.c. f(x) # C'), even when applied to the same dataset.

4.2.3 1D EXAMPLE

If Asm. 4.2.2 does zot hold, then there is no reason for the distribution of observed sequences
X1, Xo,. .. tofollow p>°. We illustrate this with the most widely used example of a JEPM that does
not use Assumptions 4.2.1 or 4.2.2: an Ornstein-Uhlenbeck tree (OUT) model 753 In this model,

X is continuous, i.e. X € R, and evolves on a quadratic fitness landscape of the form f(z) o<
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(x — p1)? + C according to the dynamics P™ (z, zo) = Normal (xge_%T + p,0(1 — e*T)>. The
stationary distribution p* is Normal(u, o). One can show (Appx. D.2.1) that for any phylogeny

H,

Proposition 4.2.3 (OUT observations). The distribution of observed genotypes X1.n is drawn from

a multivariate normal distribution with mean ply and covariance ¥ where

5, = o exp(—%tij(n)))for ije{l,...,N}, (43)

and t;;(H) is the total time of the shortest path between leaves i and j along the phylogeny H.

We drew samples from the OUT with a Kingman coalescent prior on H (Bertoin **, Def. 2.1)
and plotted their density (Fig. 4.2A). Evenas N — 00, the distribution of samples does not fol-
low p°°. Moreover, rerunning the process with a new sample from the prior yields a very different

distribution of samples (Fig. 4.2B).

4.3 NON-IDENTIFIABILITY

In this section we investigate whether, given infinite sequence data, it is possible to infer fitness f
without Asm. 4.2.2, and conversely, whether it is possible to infer phylogeny H without Asm. 4.2.1.
That is, we are interested in whether fitness and phylogeny are identifiable in JEPMs. We conclude
they are not: given infinite data generated with any f and H, there exists some alternative fand H,

where H satisfies Asm. 4.2.2, that explains the data equally well.
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Naively, this result may be surprising: in FMs, each sequence is drawn independently, i.e.
X; 1 X[H, f, while in JEPMs and PMs there is (in general) correlation between sequences, i.c.
X; L X;[H, f. One might then hope that examining correlations between sequences would enable
us to infer whether Asm. 4.2..2 holds. However, we can show that these correlations are uninforma-

tive due to a symmetry in phylogenetic models, exchangeability.

Assumption 4.3.1 (Exchangeability). Let m(X1, Xo, .. .) denote the marginal probability of
an infinite set of sequences X1, Xo, . . . integrating over all phylogenies, i.e. m(X1, Xo,...) =

 p(X1, Xo, ... H)p(H)dH. Then, for any permutation T of the integers,

m(X1, Xa,...) = m(Xray, Xr2)s - ) (4-4)

Exchangeability says that if we had observed the sequences in a different order, it would not
change their probability. In general, models of sequences observed at the same time (i.e. the present
day, T' = 0) satisfy exchangeability; for instance, models with a Kingman coalescent prior are ex-
changeable>*". Exchangeability implies that fitness and phylogeny are not identifiable. In partic-
ular, even if X1, Xo, ... are generated from a JFPM with a finite branch length phylogeny H, we
can describe the same data just as well using a model with an infinite branch length phylogeny H (an

FM):

Theorem 4.3.2 (Non-identifiability). Assume X1, Xo, ... satisfy Assumption 4.3.1. Then with
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probability 1 there exists some function f such that

iid 1 x .
X ~po= Eexp(ﬂlogf(:x)) forie {1,2,...}.
Proof. Applying de Finetti’s Theorem (Kallenberg *?, Thm. 11.10), there almost surely exists a
random measure G such thatfori € {1,2,...}, X; Y G. Let pc(z) be the pmf of G (we assume

a is a finite discrete sequence; we can also work with continuous genotypes assuming the pdf pg ()

exists). Set f(x) = [pa(x)]Y/?. O

This result says that the observed sequences from an exchangeable JFPM, X1, Xo, .. ., are pre-
cisely i.i.d. samples from some pg. Although in the standard tree representation X; )L X;|H, f,
there must be some alternative description of the same process where X; 1L X;|H, f. Fitness and
phylogeny are thus non-identifiable: data generated from a JEPM with fitness f and phylogeny H
can be described just as well using f and H, and vice versa.

The biological intuition behind Thm. 4.3.2 is that if two sequences are similar to each other and
distant from a third, they may be similar either because they are closely related (i.e. the distance 7 to
the most recent common ancestor is small) or because they are in a local maxima of the fitness land-
scape. Without further assumptions, we cannot tell the difference between these two explanations.
The machine learning intuition is that evolution, as described by a JEPM, is in effect a Markov chain
Monte Carlo process whose stationary distribution gives the fitness. However, the samples we ob-
serve may not be fully independent: each pair of samples was initialized from the same point (the

most recent common ancestor), and the burn-in since that point may not be sufficiently long. With-
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out independent samples, our estimate of the stationary distribution will be biased.

4.3.1 FITNESS INFERENCE AS HYPERPARAMETER INFERENCE

While general, Thm. 4.3.2 is not constructive, and does not tell us what the distribution pg actually
is, or how exactly it differs from p®°. Thm. 4.3.2 leaves unclear how much we need to know to learn
the fitness landscape: could we infer fitness f if we knew the parametric form of p>°, i.e. if we had
some model M and knew that p*° € M? What if we also knew the underlying phylogeny H? In
the long branch limit (Asm. 4.2.2), fitness is identifiable if H is known; if M is also known, learning
fitness is a matter of inferring model parameters. In the limit where all the branch lengths in the
phylogeny are zero, the distribution of observations from a JFPM reduces to X1 ~ po and X =
Xo = X3 = .... Here fitness is non-identifiable even if H and M are known; learning fitness is a
matter of learning from a single sample. In the realistic intermediate branch length case, if H and M
are known, we will show that learning fitness is essentially a matter of hyperparameter rather than
parameter inference.

We demonstrate this last claim by approximating OUTs as Gaussian process latent variable mod-
els (GPLVMs), finding that fitness only appears as a hyperparameter of the GP. The GPLVM:s have
latent variables Z1, Zo, . . . that lie on the hyperbolic plane H, and use the Gaussian process kernel
k(-,-) = exp(—d(:,-)), where d(-, -) is a distance metric over H. Let W (-, -) be the Wasserstein

metric for distributions over infinite matrices, i.e. over R®*°°, using the sup norm on matrices.

Theorem 4.3.3 (GPLVM approximation of OUT). Assume a prior over phylogenies H that is ex-

changeable in its leaves and where the minimum time between any pair of nodes is greater thann > 0
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with probability 1. Define the leaf distance matrix vij = log(1 t;;(H)). Forany € > 0, there exists

a.s. a GPLVM of the form,

G~g, s ~ GaussianProcess( /1, 02145(-7 9),

Z% G forie{1,2,.. ), (45)

where G is a random measure over H, such that Wi (p(v), p(?)) < € where 0 = log(d(Z;, Z;)).

IfWi(p(v),p(©7)) = 0, the OUT and GPLVM produce identical distributions over X1, X, . ..

The proof'is in Appx. D.2.2, and uses the embedding of Sarkar **5. This result says that, by
embedding phylogenies H in a metric space, we can approximate an OUT arbitrarily well with a
GPLVM,; as the Wasserstein bound gets smaller, the distribution of covariance matrices of the two
models get closer. In the GPLVM, the observations are conditionally independent, X; 1 Xj|s, G,
in line with Thm. 4.3.2. The phylogeny H enters the GPLVM only through the latent space em-
bedding Z1, Za, . . .. Learning phylogeny, given the fitness landscape, is thus essentially a matter
of inferring latent variables*'>>>7. The fitness landscape enters the GPLVM only through the prior
on the Gaussian process (i.e. through 1 and o). Inferring fitness given phylogeny is thus essentially
a matter of inferring hyperparameters. This is both good and bad news for fitness inference. On
the one hand, hyperparameters are often learned in practice, and doing so can yield substantially

better predictions, so we should be able learn something about 1 and o given data (Williams &
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Figure 4.3: Alternative explanations for the success of fitness estimation methods. (A) Setup in which hypothesis 1 would
hold true. (B) Setup in which hypothesis 2 would hold true. (C) Biological intuition for the blessings of misspecification
(Hypothesis 2).
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Rasmussen **%, Chap. 5). On the other hand, hyperparameters are in general (though not always)
non-identifiable, and therefore so is fitness *°7. Ho & Ané '°+ describe non-identifiability conditions
for the OUT in particular. We conclude that even when H and M are known, fitness inference in

JFPMs is fundamentally challenging.

4.4 BLESSINGS OF MISSPECIFICATION

We have demonstrated that phylogenetic effects can produce a data distribution pg that is not equal
to the stationary distribution p°°, and exact inference of p*° is in general impossible even with in-
finite data. Nonetheless, the practical success of fitness estimation methods suggest it is possible to
at least approximate p°° from observational sequence data. Recall that existing methods proceed by
fitting a probabilistic model gy € M = {gp : 0 € O} todata X;.y, typically via maximum
likelihood estimation or approximate Bayesian inference, and then using the predicted log density
log g4(x) as an estimate of the fitness of a sequence . Why does this approach provide empirically
successful estimates of p°°? In this section we consider two hypotheses, either of which may hold

true in theory. In Secs. 4.6-4.7 we develop and apply tests to evaluate them on real data.
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Hypothesis #1 (informal). Fitness estimation methods succeed by finding q; = po, since for all
practical purposes on real data, py = p™.

This hypothesis would make sense if Asm. 4.2.2 held, i.e. branch lengths were long enough in
real datasets for P7i (x, z) to be close to its stationary distribution. Under this explanation, better
density estimators have been, and will continue to be, better fitness estimators. We should focus on
developing models M that are well-specified with respect to the data, i.e. pg € M (Fig. 4.3A).

Hypothesis #2 (informal). Fitness estimation methods succeed by using models M that are mis-
specified with respect to po, i.e. po ¢ M. The inferred model qy is then closer to p> than po itself.

To show this hypothesis is plausible, we prove that it is guaranteed to hold under general con-
ditions. We study the projection of py onto M via the Kullback-Leibler (KL) divergence, gg« =
argmin,_ \( KL(po||gg). The KL projection is relevant because maximum likelihood estimation
minimizes the approximate KL divergence between the data and the model, and the posterior in
Bayesian inference asymptotically concentrates around the maximum likelihood estimator '7°.

We thus expect the fit model g4 to be close to g+, and get closer with N. Assume that M is “log-
convex”, meaning that forany 0,0’ € © and 0 < r < 1, there exists some 6" such that gg» (z) =

q0()"qe ()1 7"/ X, q0(x)"qer (2) 1775 examples of log-convex models include the Potts model, as

well as all other exponential family models.

Theorem 4.4.1 (Blessings of misspecification). Assume that the model M is log-convex and well-

specified with respect to the stationary distribution, i.e. p>° € M. Assume qo~ exists and is unigue.

119



Then, if the model is misspecified with respect to the data distribution, i.e. pg ¢ M, we bave

xr(qe+|p™) < xL(pollqe+) + Kz(qe~|Ip™) < xZ(po||p™). (4.6)

But if the model is well-specified, i.e. py € M, we have

kr(go+ ||p™) = xr(po||p™)- (4.7)

Proof. For part 1, apply Thm. 1 from Csiszar & Matus *°. For part 2, note that gg« = pp when

po € M. ]

In words, the model projection g, is closer to p® than pg so long as as the model M is misspec-
ified with respect to pg (Fig. 4.3B). To understand the biological intuition behind this result, con-
sider a situation where two neutral mutations with no effect on fitness occur successively at different
sites (Fig. 4.3C). Due to phylogenetic correlation, there is no observed sequence 2™ in which the
second mutation is present but not the first, so an accurate density estimator will find po(z*) ~ 0.
However, if we can guess correctly that the fitness landscape is independent across sites, then fitting
a site-wise independent model M will imply the mutation is allowed, gy (z*) > 0, correctly infer-
ring p>°(z*) > 0.

Under Hypothesis 2, progress in the field of fitness estimation has zot come from building better
density estimators (Hypothesis 1), but rather from an iterative process of (1) hypothesizing, based

partly on biophysical knowledge, models that are (approximately) well-specified with respect to p*
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but not too flexible, such that py ¢ M and then (2) comparing their density estimates against exper-
imental fitness measurements. We will show that on real data, Hypothesis 1 can often be rejected in

favor of Hypothesis 2.

4.5 RELATED WORK

Efforts to account for the effects of phylogeny in fitness estimation have a long history '+. Prac-
tical generative sequence models that explicitly account for both epistatic fitness landscapes and
phylogeny have long been sought, but stymied primarily by computational challenges *****°. In
their place, a variety of non-generative (and often heuristic) methods for correcting for phylogeny
have been proposed, including data reweighting schemes 168,220 Jata segmentation schemes*3, post-

295 simulation based sta-

inference parameter adjustmentsés, covariance matrix denoising methods
tistical testing>'®, and more. In this article, we show that deconvolving fitness and phylogeny is not
just computationally hard, but also in general statistically impossible: fitness and phylogeny are non-
identifiable. We further show that use of a misspecified parametric model can on its own (without
further corrections) partially adjust for phylogenetic effects.

Our results also intersect with the literature on robust statistics: we can think of the observed
data distribution pg as a “distorted” version of the true distribution of interest p>°. However, in
typical robust inference frameworks (e.g. Huber’s epsilon contamination model), the observed

distribution differs from the true distribution by the addition of outliers’ 13,240 Tp our setup, on the

other hand, inliers are deleted, as phylogenetic correlations can mean the effective support of p is
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smaller than that of p>° (Fig. 4.2).

4.6 DIAGNOSTIC METHOD

In this section, we develop diagnostic methods to discriminate between Hypothesis 1 and Hypoth-
esis 2 (Sec. 4.4) based on observational sequence data and experimental fitness measurements, and
validate these diagnostics in simulation. Recall that under Hypothesis 2, the estimate g, from a para-
metric fitness model is a better estimate of fitness than the true data density pg, while under Hypoth-
esis 1, po is better. Discriminating these two hypotheses on real data is nontrivial because we do not
have access to pg. Ideally, then, a diagnostic test would evaluate the probability that the true density
Ppo outperforms g, at predicting fitness, taking into account uncertainty in what pg could actually
be, given the data. To accomplish this, we compute a posterior over pg using a Bayesian nonparamet-
ric sequence model. In particular, we apply the Bayesian embedded autoregressive (BEAR) model,

which can be scaled to terabytes of data and satisfies posterior consistency (Amin et al. '*, Thm. 35):

Theorem 4.6.1 (Summary of BEAR posterior consistency). Assume pg is subexponential, i.e. for
somet > 0, Exp, [exp(t| X|)] < oo, where | X| is the length of sequence X. Assume the conditions
on the prior detailed in Amin et al. . If X1, Xo, ... ~ pqg t.i.d, then for M > O sufficiently large

and € € (0,1/2) sufficiently small,

N—oo

Hpear (B(po, MN™€)| X1.n) —— 1

in probability, where B(p, ) is a Hellinger ball of radius 1 centered at p, and Hgpar (-| X1.n) is the
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Figure 4.4: The BEAR diagnostic applied to simulated data. (A) Scenario 1. Spearman correlation between the maximum
likelihood SWI model and the true fitness S ¢ (g, ), compared to the BEAR posterior distribution over Sy (p). Quantiles

and 95% credible interval are shown with the green box and whisker plot. Points above (below) the whiskers correspond
to SWI models that significantly outperform (underperform) the true data distribution. (B) Same as A, for Scenario 2. (C)

Perplexity on heldout data of the BEAR and the SWI models in Scenario 2. Thick line corresponds to the average over 10
individual simulations (thin lines). (D) Same as C, comparing the KL divergence to p°°.

BEAR posterior.

Crucially, this result implies that the BEAR posterior will converge to eftectively any value of po,
no matter what py is (unlike a parametric model’s posterior). Moreover, BEAR quantifies uncer-
tainty in its estimates, giving the range of possible values of pg that are consistent with the evidence.

We construct our diagnostic test by comparing the fitness estimation performance of g, to the
range of possible performances of pg estimated by BEAR. Let S¢(p) be a scalar score evaluating
how accurately a density p predicts fitness f. In practice, Sy will be based on experimental and clini-
cal measurements of quantities directly related to fitness.

Diagnostic test (Test Hypothesis 1 vs. Hypothesis 2.) Hypothesis 1 Hi1 = Sy(qz) < Sy(po).

Hypothesis 2 Ha : Sy(qy) > Sy(po). Accept Hypothesis 2 at significance level o > 0 of

Mpear (Sg(gp) > Sp(p)|X1n) > 1 —a. (4.8)
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Accept Hypothesis 1 at significance level o if

Hpear (Sr(qp) < Sp(p)| X1n) > 1—a. (4.9)

So long as S¢(p) is a well-behaved function of p (in particular, so long as Sy is continuous in a
neighborhood of pg with respect to the topology of convergence in total variation), Thm. 4.6.1
implies that this diagnostic test will be asymptotically consistent, in the sense that it converges to the

correct hypothesis in probability.

4.6.1  SIMULATIONS

We next evaluate the performance of our diagnostic test on simulated data. We considered two sce-
narios, the first in which Hypothesis 1 holds, and the second in which Hypothesis 2 holds. In both,
we let M be a site-wise independent (SWI) model, in which each position of the sequence is drawn
independently, i.e. X; ~ Categorical(v;) forl € {1,...,|X|}. The parameter v; is in the simplex
Ap, where B + 1 is the alphabet size. (Further details in Appx. D.3.) In Scenario 1, the true data are
generated according to a Potts model and pg = p°. In this scenario, the SWI model is misspecified,
and misspecification is bad: using a more flexible model will produce an asymptotically more accu-
rate estimate of p°°. We find that our diagnostic test asymptotically correctly accepts Hypothesis 1,
in line with Thm. 4.6.1 (Figs. 4.4A and D.3A). In Scenario 2, the true data are generated according
to a JEPM with finite branch lengths, and p> € M while py ¢ M. The mutational dynamics

PT7 follow the Sella & Hirsh **° process. The phylogeny H is drawn from a Kingman coalescent. In
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this scenario, the SWI model is again misspecified, but misspecification is good: while the nonpara-
metric BEAR model can achieve better density estimates than the SWI model (Fig. 4.4C), the SWI
model outperforms BEAR at fitness estimation (Figs. 4.4D and D.4). We find that our diagnostic
test correctly accepts Hypothesis 2 (Figs. 4.4B and D.3B).

A possible point of concern is that the test is poorly calibrated from a frequentist perspective,
and in the low N regime accepts Hypothesis 2 in Scenario 1 more than 100a% of the time when
the data is resampled from pg (Fig. D.sA). This behavior is common in nonparametric Bayesian
tests, and not necessarily a problem: the test is still valid from a purely Bayesian perspective. Nev-
ertheless, on real data we will check that we are close to the large N regime by (1) checking that the
BEAR posterior predictive is at least as close to pp as g; is (as measured by perplexity on held out
data; Figs. 4.4C and D.sB) and (2) examining the plot of the BEAR posterior over Sy (p) as a func-

tion of NV (as in Fig. 4.4AB), to check that it has converged.

4.7 EMPIRICAL RESULTS

We now evaluate whether existing fitness estimation methods outperform the true data density po,

i.e. whether we can reject Hypothesis 1 in favor of Hypothesis 2 on real data.

4.7.1  TASKs

We consider two key prediction tasks where fitness models are applied in practice. The first task is to
predict whether variants of a protein are functional, according to an experimental assay of protein

function; the metric S¢(-) is the Spearman correlation between p(x) and the assay result’'®. There
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Figure 4.5: Fitness estimation models systematically outperform the data distribution. (A) Results for the first prediction
task, predicting functional measurements in experimental assays. Quantiles and 95% credible interval of the BEAR poste-
rior are shown with the green box and whisker plot. Points above (below) the whiskers correspond to fitness estimation
models that significantly outperform (underperform) the true data distribution. (B) Results for the second prediction task,
predicting variant pathogenicity in human genes. (C) Convergence of the BEAR posterior with datapoints [V, for an exam-
ple assay (3-lactamase). (D) Same as C, for another example assay (TIM barrel). (E) BEAR posterior Spearman (black and
green) versus BEAR log likelihood (gray), interpolating between parametric and nonparametric regimes (low and high h),
for an example assay (another 3-lactamase assay). Peak Spearman indicated with vertical green line, peak log likelihood
with gray. (F) Same as E, for another example assay (GAL4 DNA-binding domain).
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are typically ~1000s of measurements per assay. The second task is to predict whether a variant of a
protein observed in humans causes disease, according to clinical annotations; the metric S (+) is the
area under the ROC curve when p(z) is used to predict whether or not a variant is pathogenic *°.
There are typically only a handful of labels for each gene. For the first task, we considered 37 differ-
ent assays across 32 different protein families, and for the second task, 97 genes across 87 protein
families; for each protein family, we assembled datasets of evolutionarily related sequences, follow-
ing previous work. Note that across the 37 assays and 97 genes, the data used for Sy comes from
different experiments and different clinical evidence, often collected by different laboratories or

doctors. As a consequence, our overall conclusions should be robust to the choice of Sy.

4.7.2 MODELS

We considered three existing fitness estimation models: a site-wise independent model (SWI), a
Bayesian variational autoencoder (EVE®°, which is similar to DeepSequence*'5), and a deep autore-
gressive model (Wavenet)***. Note that SWI and EVE, unlike Wavenet, require aligned sequences as

training data. Details in Appx. D.4.

4.7.3 RESULTS

Applied to the first prediction task, our diagnostic test accepts Hypothesis 2 at significance level
a = 0.025in 35/37 assays (95%) for SWI, 33/37 assays (89%) for EVE, and 36/37 assays (97%) for
Wavenet (Fig. 4.5A). Applied to the second prediction task, our diagnostic test accepts Hypothesis

2 at significance level @ = 0.025 in 31/97 genes (32%) for SWI and 46/97 genes (47%) for EVE
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(Fig. 4.5B). Thus, fitness estimation models are capable of outperforming the true data distribution
po. We found evidence for Hypothesis 1 in only a handful of examples: on the first task, Hypoth-
esis 1 was accepted at significance level @« = 0.025 in o/37 assays for SWI, 3/37 assays (8%) for
EVE, and o/37 assays for Wavenet, while on the second task, Hypothesis 1 was accepted for 5/97
genes (5%) for SWIand 4/97 genes (4%) for EVE. We confirmed that the diagnostic test was in the
large N regime: BEAR outperformed Wavenet at density estimation, providing better predictive
performance on 27/37 assays (73%) and similar performance on the remaining 1o assays (Fig. D.6).”
Example plots of the BEAR posterior’s convergence with N on the first prediction task showed con-
vergence to values of Sy well below that for parametric fitness estimation models (Figs. 4.5C and
D.7-D.8). Overall, we conclude that there is strong evidence that existing fitness estimation methods
reliably outperform the true data distribution pg across a range of datasets and tasks.

To study the tradeoffs between density estimation and fitness estimation in more depth, we
smoothly and nonparametrically relaxed a parametric autoregressive (AR) model (Appx. D.4.4).
We embedded the AR model (a convolutional neural network) into a BEAR model, and fit the
BEAR model with empirical Bayes. We found evidence that the AR model was misspecified on ev-
ery dataset, following the methodology of Amin et al. '*: the optimal / selected by empirical Bayes
was on the order of 1 — 10 in each dataset. Now, in the limit as the hyperparameter h — 0, the
BEAR model collapses to its embedded AR model; so by scanning A from low to high values we can

interpolate between the parametric and nonparametric regime. We find a smooth tradeoff between

S¢(p) and the likelihood of the data under the BEAR model, with higher i corresponding to better

"Note that we cannot do this comparison for SWI or EVE since they are alignment-based *+.
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density estimation but worse fitness estimation (Fig. 4.5EF and D.9). This relationship held across
many datasets: the diagnostic test, evaluated against the AR model (the A — 0 limit), accepts Hy-
pothesis 2 in 28/37 assays (76%), but Hypothesis 1 in only 6/37 (16%) (Fig. D.10). These results

confirm that making a model well-specified (relaxing from a parametric to a nonparametric model)

can bring improved density estimation at the cost of worse fitness estimation.

4.8 DiscussioN

In this article, we have argued that better density estimation does not necessarily lead to better fit-
ness estimation. Our results changes the outlook for the future of fitness estimation: the common
narrative that progress is inevitable through ever bigger models trained on ever bigger datasets ap-
pears to be false. Instead, progress will likely demand more fundamental methodological advances.
One future direction is to improve the current strategy of fitting misspecified models. For in-
stance, it may be worthwhile to explore models that are /ess flexible than existing models and worse at
density estimation, since they can increase the gap between KL(gp+||p™°) and KL(po|[p>°) (Thm. 4.4.1).
Another option is to improve the geometry of the model: while exponential family models are guar-
anteed to be log-convex (and thus can satisfy Thm. 4.4.1), we have no such guarantee for variational
autoencoders or other neural network methods. Finally, uncertainty quantification is crucial for
applications such as those in clinical genetics, but challenging in misspecified models*>**77>"'7. An-
other future direction is to construct scalable JFPM models and carefully handle non-identifiability.

Recent progress on amortized variational inference for phylogenetic models is promising*”°. Non-
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identifiability is more challenging, and may require new assumptions and/or new methods of sensi-
tivity analysis to infer the full set of fitness landscapes consistent with the data.

Finally, although this article has focused on technological applications of fitness models in solving
prediction problems, fitness models also have implications for our fundamental understanding of
evolution. Pure phylogeny models and pure fitness models present very different pictures of the past
history of life: in PMs, similarities and differences among genetic sequences are determined primar-
ily by history and ancestry (Asm. 4.2.1), while in FMs they are primarily determined by functional
constraints (Asm. 4.2.2). PMs and FMs also present very different implications for the future of
life: in PMs, the diversity of sequences seen in nature will likely expand dramatically going forward,
while in FMs, the landscape of functional sequences has already been well-explored. Our results em-
phasize that where and to what extent each model offers an accurate picture of reality remains an

open question.
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Bayesian Data Selection

Insights into complex, high-dimensional data can be obtained by discovering features of the data
that match or do not match a model of interest. To formalize this task, we introduce the “data se-
lection” problem: finding a lower-dimensional statistic—such as a subset of variables—that is well
fit by a given parametric model of interest. A fully Bayesian approach to data selection would be

to parametrically model the value of the statistic, nonparametrically model the remaining “back-
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ground” components of the data, and perform standard Bayesian model selection for the choice of
statistic. However, fitting a nonparametric model to high-dimensional data tends to be highly ineffi-
cient, statistically and computationally. We propose a novel score for performing both data selection
and model selection, the “Stein volume criterion”, that takes the form of a generalized marginal like-
lihood with a kernelized Stein discrepancy in place of the Kullback-Leibler divergence. The Stein
volume criterion does not require one to fit or even specify a nonparametric background model,
making it straightforward to compute — in many cases it is as simple as fitting the parametric model
of interest with an alternative objective function. We prove that the Stein volume criterion is con-
sistent for both data selection and model selection, and we establish consistency and asymptotic
normality (Bernstein—von Mises) of the corresponding generalized posterior on parameters. We val-
idate our method in simulation and apply it to the analysis of single-cell RNA sequencing datasets
using probabilistic principal components analysis and a spin glass model of gene regulation.

This chapter presents work with Jeffrey W. Miller, and is currently in submission**5. EIN.W. and
JW.M. conceived the idea; EIN.W. performed the research, under the supervision of ] W.M.; EIN.W.

and ] W.M. wrote the paper.

5.1 INTRODUCTION

Scientists often seek to understand complex phenomena by developing working models for various
special cases and subsets. Thus, when faced with a large complex dataset, a natural question to ask

is where and when a given working model applies. We formalize this question statistically by saying
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that given a high-dimensional dataset, we want to identify a lower-dimensional statistic—such as a
subset of variables—that follows a parametric model of interest (the working model). We refer to
this problem as “data selection”, in counterpoint to model selection, since it requires selecting the
aspect of the data to which a given model applies.

For example, early studies of single-cell RNA expression showed that the expression of individ-
ual genes was often bistable, which suggests that the system of cellular gene expression might be
described with the theory of interacting bistable systems, or spin glasses, with each gene a separate
spin and each cell a separate observation. While it seems implausible that such a model would hold
in full generality, it is quite possible that there are subsets of genes for which the spin glass model
is a reasonable approximation to reality. Finding such subsets of genes is a data selection problem.

In general, a good data selection method would enable one to (a) discover interesting phenomena
in complex datasets, (b) identify precisely where naive application of the working model to the full
dataset goes wrong, and (c) evaluate the robustness of inferences made with the working model.

Perhaps the most natural Bayesian approach to data selection is to employ a semi-parametric joint
model, using the parametric model of interest for the low-dimensional statistic (the “foreground”)
and using a flexible nonparametric model to explain all other aspects of the data (the “background”).
Then, to infer where the foreground model applies, one would perform standard Bayesian model
selection across different choices of the foreground statistic. However, this is computationally chal-
lenging due to the need to integrate over the nonparametric model for each choice of foreground
statistic, making this approach quite difficult in practice. A natural frequentist approach to data

selection would be to perform a goodness-of-fit test for each choice of foreground statistic. How-
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ever, this still requires specifying an alternative hypothesis, even if the alternative is nonparametric,
and ensuring comparability between alternatives used for difterent choices of foreground statistics
is nontrivial. Moreover, developing goodness-of-fit tests for composite hypotheses or hierarchical
models is often difficult in practice.

In this article, we propose a new score—for both data selection and model selection—that is
similar to the marginal likelihood of a semi-parametric model but does not require one to specify
a background model, let alone integrate over it. The basic idea is to employ a generalized marginal
likelihood where we replace the foreground model likelihood by an exponentiated divergence with
nice properties, and replace the background model’s marginal likelihood with a simple volume cor-
rection factor. For the choice of divergence, we use a kernelized Stein discrepancy (KSD) since it
enables us to provide statistical guarantees and is easy to estimate compared to other divergences
— for instance, the Kullback-Leibler divergence involves a problematic entropy term that cannot
simply be dropped. The background model volume correction arises roughly as follows: if the back-
ground model is well-specified, then asymptotically, its divergence from the empirical distribution
converges to zero and all that remains of the background model’s contribution is the volume of its
effective parameter space. Consequently, it is not necessary to specify the background model, only
its effective dimension. To facilitate computation further, we develop a Laplace approximation for
the foreground model’s contribution to our proposed score.

This article makes a number of novel contributions. We introduce the data selection problem
in broad generality, and provide a thorough asymptotic analysis. We propose a novel model/data

selection score, which we refer to as the Stein volume criterion, that takes the form of a generalized
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marginal likelihood using a KSD. We provide new theoretical results for this generalized marginal
likelihood and its associated posterior, complementing and building upon recent work on the fre-
quentist properties of minimum KSD estimators ‘7. Finally, we provide first-of-a-kind empirical
data selection analyses with two models that are frequently used in single-cell RNA sequencing anal-
ysis.

The article is organized as follows. In Section 5.2, we introduce the data selection problem and
our proposed method. In Section 5.3 we study the asymptotic properties of Bayesian data selection
methods and compare to model selection. Section 5.4 provides a review of related work and Sec-
tion s.s illustrates the method on a toy example. In Section 5.6, we prove (a) consistency results for
both data selection and model selection, (b) a Laplace approximation for the proposed score, and
(c) a Bernstein—von Mises theorem for the corresponding generalized posterior. In Section 5.7, we
apply our method to probabilistic principal components analysis (pPCA), assess its performance in
simulations, and demonstrate it on single-cell RNA sequencing (scRNAseq) data. In Section 5.8,
we apply our method to a spin glass model of gene expression, also demonstrated on an scRNAseq

dataset. Section 5.9 concludes with a brief discussion.

5.2 METHOD

Suppose the data XM ... X(M) € X are independent and identically distributed (i.i.d.), where
X C R% Suppose the true data-generating distribution Py has density po(z) with respect to

Lebesgue measure, and let {g(z|0) : § € O} be a parametric model of interest, where © C R™.
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Figure 5.1: A simple example illustrating the data selection problem.

We are interested in evaluating this model when applied to a projection of the data onto a subspace,
Xr C X (the “foreground” space). Specifically, let X 7 := VT X be alinear projectionof X € X
onto Xr, where V' is a matrix with orthonormal columns. Let (2 #|#) denote the distribution of
X7 when X ~ ¢q(x|6), and likewise, let po(x ) be the distribution of X when X ~ pg(x). Even
when the complete model ¢(z|6) is misspecified with respect to po (), it may be that ¢(z £(6) is
well-specified with respect to po (27 ); see Figure 5.1 for a toy example. In such cases, the parametric
model is only partially misspecified — specifically, it is misspecified on the “background” space X,
defined as the orthogonal complement of X'z. Our goal is to find subspaces Xr for which ¢(z £|6)
is correctly specified.

A natural Bayesian solution would be to replace the background component of the assumed
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model, g(zg|zF, 6), with a more flexible component §(x5|xr, ¢53) that is guaranteed to be well-
specified with respect to po (x| £), such as a nonparametric model. The resulting joint model,

which we refer to as the “augmented model”, is then

0~m(0), X¥ 0% qar|0),

¢ ~m5(0), X9 | XY 65 ~ das| XY, ¢s).

The standard Bayesian approach would be to put a prior on the choice of foreground space X'z,
and compute the posterior over the choice of X'7. Computing this posterior boils down to com-
puting the Bayes factor G(X V)| F) /(X (“N)| F') for any given pair of foregrounds JF and 7,
where §(X (M| F) denotes the marginal likelihood of F under the augmented model, that is,
GXONIF) = [ [q(XE10) G(xXg XS, pp)7(0)7p(d5)dOdSp.

However, in general, it is difficult to find a background model that (a) is guaranteed to be well-
specified with respect to po(zg|z £) and (b) can be integrated over in a computationally tractable
way to obtain the posterior on the choice of F. Our proposed method, which we introduce next,

sidesteps these difficulties while still exhibiting similar guarantees.

5.2.1 PROPOSED SCORE FOR DATA SELECTION AND MODEL SELECTION

In this section, we propose a model/data selection score that is simpler to compute than the marginal
likelihood of the augmented model and has similar theoretical guarantees. This score takes the form

of a generalized marginal likelihood with a normalized kernelized Stein discrepancy (NKsD) estimate
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taking the place of the log likelihood. Specifically, our proposed model/data selection score, termed

the “Stein volume criterion” (SVC), is

K= ()" [ exp( — Nswmipoterlaterlon)mo)as 52
where the “temperature” T > 0 is a hyperparameter and m is the effective dimension of the
background model parameter space. NKSD(+||-) is an empirical estimate of the NKsD; see Equa-
tions 5.4 and s.5. The integral in Equation 5.2 can be approximated using techniques discussed
in Section 5.2.3. The hyperparameter 7" can be calibrated by comparing the coverage of the stan-
dard Bayesian posterior to the coverage of the NKsD generalized posterior (Section E.1.1). The
(27t /N)™8/2 factor penalizes higher-complexity background models. In general, we allow m to
grow with IV, particularly when the background model is nonparametric. Crucially, the likelihood
of the background model does not appear in our proposed score, sidestepping the need to fit or even
specify the background model — indeed, the only place that the background model enters into the
SVCis through mp.

Thus, rather than specify a background model and then derive m3, one can simply specify an
appropriate value of mp. Reasonable choices of 15 can be derived by considering the asymptotic
behavior of a Pitman-Yor process mixture model, a common nonparametric model that is a natural
choice for a background model. A Pitman-Yor process mixture model with discount parameter

a € (0,1), concentration parameter § > —q, and D-dimensional component parameters will
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asymptotically have expected effective dimension

INCESY

~ Di
s al'(6 + o)

N® (5-3)

under the prior, where ay ~ by meansthatay /by — 1las N — ooand I'(-) is the gamma
function (Pitman '%%, §3.3). As a default, we recommend setting mp = cgrg V/N, where rj3 is
the dimension of X3 and ¢ is a constant chosen to match Equation 5.3 with v = 1/2. The VN
scaling is particularly nice in terms of asymptotic guarantees; see Section §.3.2.

The SVC uses a novel, normalized version of the ksD between densities p(x) and g(x):

Exyep[(30(X) = 5p(0) (5 (V) = sy (DRI
Ex.y~plk(X,Y)] >

NksD(p(z)||q(z)) =

where k(x,y) € Risan integrally strictly positive definite kernel, s,(z) = V;logg(x),and
sp(x) := Vzlogp(x);see Section 5.6.1 for details. The numerator corresponds to the standard
ksD '5¥. The denominator, which is strictly positive and independent of ¢(x), is a normalization fac-
tor that we have introduced to make the divergence comparable across spaces of different dimension.
See Section E.1.2 for kernel recommendations. Extending the technique of Liu et al. ', we propose
to estimate the normalized KSD using U-statistics:

> itj U(X(i) ) X(j))

I\@(p(x)HQ(QU)) = Zi;ﬁj k;(X(i),X(j))

(s-5)
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where X ~ p(z) iid., the sumsare overall i, j € {1,..., N} such thati # j, and
u(@,y) = sq(x) " sq (W), y) +54(2) T Vyk(z,y)+54(y) " Vak(z,y) +trace(Va V) k(z,y)).

Importantly, Equation 5.5 does not require knowledge of s, (), which is unknown in practice.

§.2.2 COMPARISON WITH THE STANDARD MARGINAL LIKELIHOOD

It is instructive to compare our proposed model/data selection score, the Stein volume criterion, to
the standard marginal likelihood G(X V)| F). In particular, we show that the SVC approximates a
generalized version of the marginal likelihood. To see this, first define H := — [ po(z) log po(z)dz,
the entropy of the complete data distribution, and note that if were H somehow known, then the
Kullback-Leibler (kL) divergence between the augmented model and the data distribution could be

approximated as

- . 1Y Doy ~f v () v
KL(po(2)la(2716) d(zslar. 65)) =~ D log a(X;|0) (X | X[ és) — H.
1=1

Since multiplying the marginal likelihoods by a fixed constant does not affect the Bayes factors,
the following expression could be used instead of the marginal likelihood (X (V)| F) to decide

among foreground subspaces:

~( Y (1:N)
i = | [ e~ NRn(@)la(es16) denlar. ) w(0)ms(oe)dbdos. (5.0
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Now, consider a generalized marginal likelihood where the NKsD replaces the KL:

£ = [ [ew( = Npsm@la(erl6) ateslar, o)) ) r@)ms(os)dbdss.  (57)

We refer to K as the “NKsD marginal likelihood” of the augmented model. Intuitively, we expect
it to behave similarly to the standard marginal likelihood, except that it quantifies the divergence
between the model and data distributions using the NKsD instead of the XL.

However, a key advantage of the NkxsD marginal likelihood is that it admits a simple approxi-
mation via the SVC when the background model is well-specified, unlike the standard marginal
likelihood. For instance, if the foreground and background are independent, thatis, po(z) =
po(zr)po(xp) and §(xplxr, o) = G(z8|¢B), then the theory in Section 5.6 can be extended

to the full augmented model to show that

logh m (5.8)
log X N—oo

where K is the SVC (Equation s.2). Thus, the SVC approximates the NksD marginal likelihood
of the augmented model, suggesting that the SVC may be a convenient alternative to the standard
marginal likelihood. Formally, Section 5.3 shows that the SVC exhibits consistency properties simi-

lar to the standard marginal likelihood, even when po(x) # po(2r)po(zB).
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5.2.3 COMPUTATION

Next, we discuss methods for computing the SVC including exact solutions, Laplace/BIC approxi-
mation, variational approximation, and comparing many possible choices of .

EXACT SOLUTION FOR EXPONENTIAL FAMILIES

When the foreground model is an exponential family, the SVC can be computed analytically. Specif-

ically, in Section E.1.3, we show if ¢(27(0) = Mz 7) exp(0 " t(zx) — #(6)), then

NsD(po(z7)|lg(z710)) = 0T A0+ B0+ C (5-9)

where A, B, and C depend on the data X (1:N) byt not on 6. Therefore, we can place a multivariate

Gaussian prior on 6 and compute the SVC in closed form; see Section E.1.3.

Larrace AND BIC APPROXIMATIONS

The Laplace approximation is a widely-used technique for computing marginal likelihoods. In The-
orem s5.6.9, we establish regularity conditions under which a Laplace approximation to the SVCis

justified by being asymptotically correct. The resulting approximation is

K~

eXp (_¥@(PO($F)HQ($}‘WN))) m(On) (27T>(mf+m5)/2 ( )
~ 5.10

| det £-V3 NxsD(po(27)lg(z7[0n)) Y2 \ N
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where 6y := argmin, NksD(po(zF) | q(x|0)) is the point at which the estimated NKsD is mini-
mized, the “minimum Stein discrepancy estimator” as defined by Barp etal. '7.
We can also make a rougher approximation, analogous to the Bayesian information criterion

(BIC), which does not require one to compute second derivatives of NKSD:

27r> (mF+mp)/2

K=~ exp( — %I\I/KS\I)(Z?O(l'}')HQ(x]:wN))) (

N (s.11)

This approximation is easy to compute, given a minimum Stein discrepancy estimator 6. Like the
SVC, it satisfies all of our consistency desiderata (Section E.2). However, we expect it to perform
worse than the SVC when there is not yet enough data for the Nksp posterior to be highly concen-

trated, that is, when a range of 6 values can plausibly explain the data.

COMPARING MANY FOREGROUNDS USING APPROXIMATE OPTIMA

Often, we would like to evaluate many possible subspaces X7 when performing data selection. Even
when using the Laplace or BIC approximation to the SVC, this can get computationally prohibitive
since we need to re-optimize to find 6y for every F under consideration. Here, we propose a way to
reduce this cost by making a fast linear approximation. Define £;(8) := NksD(po(z 7)lla(xx;10))

for j € {1,2}. Forw € [0, 1], we can linearly interpolate

On(w) = argéninfl(e) + w(l2(0) — 01(0)). (5.12)
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Now, On(0) and O (1) are the minimum Stein discrepancy estimators for F; and Fa, respectively.
Given 6 (0), we can approximate 6y (1) by applying the implicit function theorem and a first-

order Taylor expansion (Section E.1.4):

On (1) ~ On(0) — V1 (0n(0) ' Vola(0n(0)). (5.13)

Note that the derivatives of /; are often easy to compute with automatic differentiation'”. Note
also that when we are comparing one foreground subspace, such as Xz, = X/, to many other
foreground subspaces X'z, the inverse Hessian V€1 (6 (0)) ™! only needs to be computed once.
Thus, Equation 5.13 provides a fast method for computing Laplace or BIC approximations to the

SVC for a large number of candidate foregrounds F.

VARIATIONAL APPROXIMATION

Variational inference is a method for approximating both the posterior distribution and the marginal
likelihood of a probabilistic model. Since the SVC takes the form of a generalized marginal likeli-

hood, we can derive a variational approximation to the SVC. Let ¢ () be an approximating distri-
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bution parameterized by (. By Jensen’s inequality, we have

log [ exp( — 2o () aCe710)))w(0)d6

— log / exp (— 3 N5D(po () (2 710)) ) 7(6)

re(0)do
7<) (5-14)
exp (— 38D (po (27) la(w 716)) ) (0) ‘
= b llog< 7¢(0) )]

= 2 E [ (olar) laar18)] + Er logm(®)] — Erflogre(6)].

Maximizing this lower bound with respect to the variational parameters ¢ provides an approxima-
tion to the SVC, or more precisely, to log K — (mp/2) log(2m /N ). Note that this variational ap-
proximation falls within the framework of generalized variational inference proposed by Knoblauch

etal. ',

5.3 DATA SELECTION AND MODEL SELECTION CONSISTENCY

This section presents our consistency results when comparing two different foreground subspaces
(data selection) or two different foreground models (model selection). The theory supporting these
results is in Sections 5.6 and E.2. We consider four distinct properties that a procedure would ideally
exhibit: data selection consistency, nested data selection consistency, model selection consistency,
and nested model selection consistency; see Section 5.6.4 for precise definitions. We consider six
possible model/data selection scores, and we establish which scores satisfy which properties; see

Table s.1. The SVC and the full marginal likelihood are the only two of the six scores that satisty all
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Table 5.1: Consistency properties satisfied by various model/data selection scores. Only the Stein volume criterion /C and
the full marginal likelihood cj(X(l:N) | F) satisfy all four desiderata. (d.s. = data selection, m.s. = model selection, marg =
marginal, lik = likelihood.)

Consistency property
Score d.s. | nested d.s. | m.s. | nested m.s.
G(X M| F) full marginal likelihood v 4 v v
K@ foreground marg lik, background volume X X v v
K® foreground marg NKSD v X v 4
KC© foreground marg KL, background volume v X v v
K@D foreground NKSD, background volume v v v X
K foreground marg NKSD, background volume | v/ Ve v v

four consistency properties.

The intuition behind Bayesian model selection is often explained in terms of Occam’s razor: a
theory should be as simple as possible but no simpler. Data selection and nested data selection en-
capsulate a complementary intuition: a theory should explain as much of the data as possible but no
more. In other words, when choosing between foreground spaces, a consistent data selection score
will asymptotically prefer the highest-dimensional space on which the model is correctly specified.

As in standard model selection, a practical concern in data selection is robustness. For instance, if
the foreground model is even slightly misspecified on X'z,, then the empty foreground X7, = &
will be asymptotically preferred over X'z, . Since the SVC takes the form of a generalized marginal
likelihood, techniques for improving robustness with the standard marginal likelihood—such as
coarsened posteriors, power posteriors, and BayesBag—could potentially be extended to address this

issue 77118 We leave exploration of such approaches to future work.
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5.3.1 DATA SELECTION CONSISTENCY

First, consider comparisons between different choices of foreground, 1 and F>. When the model
is correctly specified over 1 but not F2, we refer to asymptotic concentration on J as “data selec-
tion consistency” (and vice versa if 5 is correct but not F7). For the standard marginal likelihood

of the augmented model, we have (see Section E.2.2)

1 gxEN|F)  p

— KL(po(27,)ll9(27,102)) — x(po(z7)|la(z A |015)) - (5.15)

where 0, := argminxL(po(z£;)|q(z7;|0)) for j € {1,2}, thatis, 677 is the parameter value
that minimizes the k1. divergence between the projected data distribution po (7 7, ) and the projected
model ¢(z7,|6). Thus, §(X (1:N)| F;) asymptotically concentrates on the F; on which the pro-
jected model can most closely match the data distribution in terms of XL.

In Theorem 5.6.17, we show that under mild regularity conditions, the Stein volume criterion

behaves precisely the same way but with the NksD in place of the KL:

1 ’Cl Py NKSD

1 1 NKSD
ﬁlog,@ o pNEsp(Po(27) [9(27,]05°7)) — Znksp(po(A (@7 10757)) (5.16)

where 075" := argmin Nksp(po(z 7, ) [|¢(x 7;|0)) for j € {1,2}. Therefore, GXENF)and K

both yield data selection consistency. It is important here that the SVC uses a true divergence, rather
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than a divergence up to a data-dependent constant. If we instead used

o\ "MB/2 )
K@ — (N) (XN, (5.17)

which employs the foreground marginal likelihood ¢(X §__1:N)) = [q(X §_-1 N) |0)m(0)df and a

background volume correction, we would get qualitatively different behavior (Section E.2.2):

1 KW

P KL KL
~ log —— kL(po(27,) a(27,105%)) —xL(po (27 )lla(x 7 |055)) + Hr, — Hr, (5.18)
N K:ga) N—o0

where Hr, := — [ po(xr;)logpo(zr;)dxz, is the entropy of po(z7;) for j € {1,2}. Inshort,
the naive score @ is a bad choice: it decides between data subspaces based not just on how well
the parametric foreground model performs, but also on the entropy of the data distribution in each

space. As a result, £ does not exhibit data selection consistency.

5.3.2 NESTED DATA SELECTION CONSISTENCY

When X7, C X, we refer to the problem of deciding between subspaces F and F> as nested
data selection, in counterpoint to nested model selection, where one model is a subset of another7?.
If the model g(x|0) is well-specified over X'z, , then it is guaranteed to be well-specified over any
lower-dimensional sub-subspace X7, C X7, ; in this case, we refer to asymptotic concentration

on J as “nested data selection consistency”. In this situation, KL(po (75, ) || ¢(z 7,(05%)) and

NKSD(po(77; ), ¢(z7,|075")) are both zero for j € {1, 2}, making it necessary to look at higher-
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order terms in Equations s.15 and 5.16. In Section E.2.3, we show that if Xz, C Xz, q(z|0) is
well-specified over X7, the background models are well-specified, and their dimensions mp, and

mp, are constant with respect to IV, then

1 §XENIFR) k1
log V8 (IEX(LN)l}"z; N P2 By —MF — M) (5-19)

where m g is the effective dimension of the parameter space of g(zx;[#). In Theorem 5.6.17, we

show that under mild regularity conditions, the SVC behaves the same way:

1 Ki p 1
IOgN 108 E ﬁ 5(771]:2 +mp, —mF — mBl)' (5.20)

Thus, solong as mr, +mp, > mzr, +mpg, whenever Xz, C X7, the marginal likelihood and the
SVC asymptotically concentrate on the larger foreground J7; hence, they both exhibit nested data
selection consistency. This is a natural assumption since the background model is generally more
flexible—on a per dimension basis—than the foreground model.

The volume correction (27/N)™5/2 in the definition of the SVC is important for nested data

selection consistency (Equation 5.20). An alternative score without that correction,

KO = [exp(— Txw(o(r)llatar 1)) (0)ds (5.21)

exhibits data selection consistency (Equation 5.16 holds for K®)), but not nested data selection

consistency; see Sections E.2.2 and E.2.3. More subtly, the asymptotics of the SVC in the case of
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nested data selection also depend on the variance of U-statistics. To illustrate, consider a score that is

. . —_~ . —_—
similar to the SVC but uses KL instead of NKSD:

9\ mB/2 .
€O . (N) / exp( = N&L(po(e ) a(x16)) ) (6)do (5.22)
where KL(po(z7)||q(z£]0)) == —+ SN log q(Xg) |) — Hr and HF is required to be known.

The score K(©) exhibits data selection consistency, but not nested data selection consistency. The
reason is that the error in estimating the KL is of order 1 / VN by the central limit theorem, and this
source of error dominates the log NV term contributed by the volume correction; see Section E.2.3.
Meanwhile, the error in estimating the NKsD is of order 1 /N when the model is well-specified, due
to the rapid convergence rate of the U-statistic estimator. Thus, in the SVC, this source of error is
dominated by the volume correction; see Theorem 5.6.12.

The nested data selection results we have described so far assume mp does not depend on N, or
atleast mp, —mp, does not depend on N (Theorem 5.6.17). However, in Section s.2.1, we suggest
settingmp = cg rgV' N where ¢z is a constant and 33 is the dimension of X3. With this choice,

the asymptotics of the SVC for nested data selection become (Theorem 5.6.17)

L gl p L s — ) (5:23)
— 109 —— — — . 2

Since g, < rB, when Xz, C XF,, the SVC concentrates on the larger foreground F7, yielding

nested data selection consistency. Going beyond the well-specified case, Theorem 5.6.17 shows that
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Equation s5.23 holds when Nxsp(po(z 7, ) ||¢(z 7, | ﬁ”i”)) = NksD(po(zx,)|lq(zx, |9§‘§SD)) # 0,
that is, when the models are misspecified by the same amount as measured by the Nxsp. Equa-

tion 5.23 holds regardless of whether m 7, is equal to mz,.

5.3.3 MODEL SELECTION AND NESTED MODEL SELECTION CONSISTENCY

Consider comparing different foreground models ¢1 (x#|01) and g2 (x £|02) over the same subspace
X, while using the same background model. We say that a score exhibits “model selection consis-
tency” if it concentrates on the correct model, when one of the models is correctly specified and the
other is not. When the two models are nested and both are correct, a score exhibits “nested model
selection consistency” if it concentrates on the simpler model.

Like the standard marginal likelihood, the SVC exhibits both types of model selection consis-
tency. The standard marginal likelihood satisfies (Section E.2.4)

1, X EVE) gy
N gq~2(X(1:N)y]:) N—o0

kL(po(er)lla2(x71025)) — xu(po(z7)llg(x71675))  (5-24)

where 07, := argminxL(po (2 7)| g (z#[0;)) for j € {1,2}. Analogously, by Theorem s5.6.17,

1 Ki p

1 1
108 1 o sn(poe ) laa(w £l0357)) — vwso(po(e ) AI7E7)  (s:25)

where 035°° := arg min Nxsp(po(zF)| g (x£|0;)) for j € {1,2}. Thus, for both scores, concen-

tration occurs on the model that comes closer to the data distribution in terms of the corresponding
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divergence (KL or NKSD).
For nested model selection, suppose both foreground models are well-specified and mp, = mg,.

Letting mr ; be the parameter dimension of ¢;(x |6;), we have (Section E.2..5)

1 G(XEF) g 1

log N %8 4, (XM F) N’ 22 = ML) (5.26)

In Theorem 5.6.17, we show that the SVC behaves identically:

1 ICl Py 1

g N B Ky N 2172 ) (5.27)

Here, a key role is played by the volume of the foreground parameter space, which quantifies the
foreground model complexity. The SVC accounts for this by integrating over foreground parameter

space. Meanwhile, a naive alternative that ignores the foreground volume,

2 N

€0 = (25) " ap( - Xogns@simuenlaaro)). 29

exhibits model selection consistency (Equation s.25 holds for K@) but not nested model selection
consistency (Section E.2.5). The Laplace and BIC approximations to the SVC (Equations s.10 and

5.11) explicitly correct for the foreground parameter volume without integrating.
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5.4 RELATED WORK

Projection pursuit methods are closely related to data selection in that they attempt to identify “in-
teresting” subspaces of the data. However, projection pursuit uses certain pre-specified objective
functions to optimize over projections, whereas our method allows one to specify a model of inter-
est''?.
Another related line of research is on Bayesian goodness-of-fit (GOF) tests, which compute the
posterior probability that the data comes from a given parametric model versus a flexible alternative
such as a nonparametric model. Our setup differs in that it aims to compare among different semi-
parametric models. Nonetheless, in an effort to address the GOF problem, a number of authors
have developed nonparametric models with tractable marginals*7>**, and using these models as the
background component in an augmented model could in theory solve data selection problems. In
practice, however, such models can only be applied to one-dimensional or few-dimensional data
spaces. In Section 5.7, we show that naively extending the method of Berger & Guglielmi*' to the
multi-dimensional setting has fundamental limitations.

There is a sizeable frequentist literature on GOF testing using discrepancies**'*¢. Our pro-
posed method builds directly on the KSD-based GOF test proposed by Liu et al. '* and Chwialkowski
etal. *'. However, using these methods to draw comparisons between different foreground sub-
spaces is non-trivial, since the set of alternative models considered by the GOF test, though non-
parametric, will be different over data spaces with different dimensionality. Moreover, the Bayesian

aspect of the SVC makes it more straightforward to integrate prior information and employ hierar-
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chical models.
In composite likelihood methods, instead of the standard likelihood, one uses the product of the

conditional likelihoods of selected statistics '5%>7*

. Composite likelihoods have seen widespread use,
often for robustness or computational purposes. However, in composite likelihood methods, the
choice of statistics is fixed before performing inference. In contrast, in data selection the choice of
statistics is a central quantity to be inferred.

Relatedly, our work connects with the literature on robust Bayesian methods. Doksum & Lo 58
propose conditioning on the value of an insufficient statistic, rather than the complete dataset,
when performing inference; also see Lewis et al. '>*. However, making an appropriate choice of
statistic requires one to know which aspects of the model are correct; in contrast, our procedure in-
fers the choice of statistic. The NKsD posterior also falls within the general class of Gibbs posteriors,
which have been studied in the context of robustness, randomized estimators, and generalized belief
updating 299298 120:24,127,177,

Our theoretical results also contribute to the emerging literature on Stein discrepancies'?. Barp
etal. "7 recently proposed minimum kernelized Stein discrepancy estimators and established their
consistency and asymptotic normality. In Section 5.6, we establish a Bayesian counterpart to these
results, showing that the NKsD posterior is asymptotically normal (in the sense of Bernstein—von
Mises) and admits a Laplace approximation. To prove this result, we rely on the recent work of
Miller '7¢ on the asymptotics of generalized posteriors. Since Barp et al. 7 show that the kernel-

ized Stein discrepancy is related to the Hyvirinen divergence in that both are Stein discrepancies,

our work bears an interesting relationship to that of Shao et al. ***, who use a Bayesian version of the
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Hyvirinen divergence to perform model selection with improper priors. They derive a consistency
result analogous to Equation 5.16, however, their model selection score takes the form of a prequen-
tial score, not a Gibbs marginal likelihood as in the SVC, and cannot be used for data selection.

169

In independent recent work, Matsubara et al. '® propose a Gibbs posterior based on the KSD

and derive a Bernstein-von Mises theorem similar to Theorem 5.6.9 using the results of Miller 7.
Their method is not motivated by the Bayesian data selection problem but rather by (1) inference
for energy-based models with intractable normalizing constants and (2) robustness to e-contamination.
Their Bernstein-von Mises theorem differs from ours in that it applies to a V-statistic estimator of
the KSD rather than a U-statistic estimator of the NKSD.

Our linear approximation to the minimum Stein discrepancy estimator (Section 5.2.3) is directly

inspired by the Swiss Army infinitesimal jackknife of Giordano et al. ", which similarly computes

the linear response of an extremum estimator with respect to perturbations of the dataset.

5.5 1TOYEXAMPLE

The purpose of this toy example is to illustrate the behavior of the Stein volume criterion, and com-
pare it to some of the defective alternatives listed in Table 5.1, in a simple setting where all computa-
tions can be done analytically (Section E.1.3). In all of the following experiments, we simulated data
from a bivariate normal distribution: X ... XN iid. ~ N((0,0)T, Zp).

To set up the Stein volume criterion, we set 7' = 5 and we choose a radial basis function ker-

nel, k(z,y) = exp(—3|lz — yl|3), which factors across dimensions. We considered both dataset

155



size-independent values of mp (in particular, mg = 5 rp) and dataset size-dependent values of
mp (in particular, Equation 5.3 witha = 0.5,0 = 1,and D = 0.2, where fractional values of
D correspond to shared parameters across components in the Pitman-Yor mixture model), obtain-
ing very similar results in each case (shown in Figures 5.2 and E.1, respectively). These choices of
mp ensure that, except for at very small IV, the background model has more parameters per data
dimension than each of the foreground models considered below, which have just one. In particular,

mp > 1rpgforall N (in the size-independent case) and for N > 5 (in the size-dependent case).

DATA SELECTION CONSISTENCY

First, we set X to be a diagonal matrix with entries (1, 1/2), thatis, ¥y = diag(1,1/2), and for

z € R?, we consider the model

q(z|0) =N(z | 0,1)
(5-29)
w(0) = N(0](0,0)",101)
where I denotes the identity matrix. This parametric model is misspecified, owing to the incorrect
choice of covariance matrix. We consider two choices of foreground subspace: the first dimension
(defined by the projection matrix Vi, = (1,0)") or the second dimension (projection matrix
Ve, = (0, l)T). The model is only well-specified for F1 (not F2), so a successful data selection
procedure would asymptotically select F7.

In Figure s.2a, we see that the SVC correctly concentrates on 7 as the number of datapoints N

increases, with the log SVC ratio growing linearly in IV, as predicted by Equation 5.16. Meanwhile,
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Figure 5.2: Behavior of the Stein volume criterion /C, the foreground marginal likelihood with a background volume
correction /C("‘), and the foreground marginal nksd IC(b) on toy examples. Here, we set mp = 5 rg. The plots show the
results for 5 randomly generated datasets (thin lines) and the average over 100 random datasets (bold lines).

the naive alternative score K(* (Equation s.17) fails since it depends on the foreground entropies,
while K ©®) (Equation 5.21) succeeds since the volume correction is negligible in this case; see Sec-

tion 5.3.1 and Table 5.1.
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NESTED DATA SELECTION CONSISTENCY

Next, we examine the nested data selection case. We use the same model (Equation 5.29), but we
set X9 = [ so that the model is well-specified even without being projected. We compare the com-
plete data space (X7, = X, projection matrix Vz, = I) to the first dimension alone (projection
matrix V= (1,0)"). Nested data selection consistency demands that the higher-dimensional
data space X7, be preferred asymptotically, since the model is well-specified for both X7, and X7, .
Figure 5.2b shows that this is indeed the case for the Stein volume criterion, with the log SVC ra-
tio growing at alog IV rate when mp is independent of NV, as predicted by Equation s.20. When
mp depends on N via the Pitman-Yor expression, the log SVC ratio grows at a N log IV rate (Fig-
ure E.1b). Meanwhile, Figure 5.2b shows that K® and K®) both fail to exhibit nested data selec-

tion consistency, in accordance with our theory (Section 5.3.2 and Table 5.1).

MODEL SELECTION CONSISTENCY (NESTED AND NON-NESTED)

Finally, we examine model selection and nested model selection consistency. We again set o = 1.
We first compare the (well-specified) model ¢(x]|0) = N (z | 6,1) to the (misspecified) model
q(z]0) = N(x | 0,2I), using the prior 7(0) = N'(0 | (0,0)T,101) for both models. As shown
in Figure 5.2¢, the SVC correctly concentrates on the first model, with the log SVC ratio growing
linearly in IV, as predicted by Equation 5.25. The same asymptotic behavior is exhibited by K@,
which is equivalent to the standard Bayesian marginal likelihood in this setting (Section s.3.3). Fi-

nally, to check nested model selection consistency, we compare two well-specified nested models:

158



q(z) = N(x | (0,0)7,I)and ¢(2|0) = N(x | , I). Figure 5.2d shows that the SVC correctly se-
lects the simpler model (that is, the model with smaller parameter dimension) and the log SVC ratio
grows as log N (Equation s.27). This, too, matches the behavior of the standard Bayesian marginal

likelihood, seen in the plot of K@,

5.6 THEORY

5.6.1 PROPERTIES OF THE NKSD

Suppose X W, XM areiid. samples from a probability measure P on X' C R4 having den-
sity p(z) with respect to the Lebesgue measure. Let L (P) denote the set of measurable functions
[ such that [ || f(2)||p(z)dz < oo where || - || is the Euclidean norm. We impose the following
regularity conditions to use the NKsD to compare P with another probability measure () having
density g(z) with respect to the Lebesgue measure; these are similar to conditions used for the stan-

dard xsD in previous work '5%7.

Condition 5.6.1 (Restrictions on p and q). Assume sp(x) = Vylogp(x)and sq(x) =
V. log q(x) exist and are continunous for all x € X, and assume X is connected and open. Further,

assume sp, 84 € L*(P).

We refer to s, as the Stein score function of p. Note that existence of s, () implies p(x) > 0.
Now, consider akernel k& : X x X — R. The kernel k is said to be integrally strictly positive definite
ifforany g : X — Rsuchthat0 < [, [g(z)|dz < oo, wehave [ [} g(z)k(x,y)g(y)dzdy > 0.

The kernel k is said to belong to the Stein class of P if [, Vg (k(z,y)p(x))dr = 0forally € X.
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Condition 5.6.2 (Restrictions on k). Assume the kernel k is symmetric, bounded, integrally strictly

positive definite, and belongs to the Stein class of P.

The following result shows that the NKSD can be written in a way that does not involve s,,; this is

particularly useful for estimating the Nxsp when P is unknown.

Proposition 5.6.3. If Conditions 5.6.1 and 5.6.2 hold, then the NKsD is finite and

~sp(p(z)|g(x)) = [Ex,pr[u(X,Y)]

T Exyp[k(X,Y)] (530)

where

u(z,y) = sq(x)qu(y)k(:c, Y) —I—Sq(x)TVyk(x,y) —i—sq(y)Tka(x,y) —i—trace(VxVJk(x,y)).

(s-31)
The proofis in Section E.3.1. Next, we show the NKsD satisfies the properties of a divergence.
Proposition 5.6.4. If Conditions 5.6.1 and 5.6.2 hold, then
~xsp(p(r)l|a(z)) 2 0, (532)

with equality if and only if p(x) = q(x) almost everywbere.

The proof is in Section E.3.1. Unlike the standard xsp, but like the XL divergence, the NKSD ex-

hibits subsystem independence *#35*'*: if two distributions P and () have the same independence
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structure, then the total NKSD separates into a sum of individual NxsD terms. This is formalized in

Proposition 5.6.6.

Condition s5.6.5 (Shared independence structure). Lerx = (21,24 )" be a decomposition of a

vector v € R% into two subvectors, ©1 and xo. Assume p(x) and q(z) factor asp(z) = p(z1)p(x2)
and q(x) = q(x1)q(x2), and that the kernel k factors as k(x,y) = ki(x1, y1)ka(x2, y2) where ky

and ky both satisfy Condition 5.6.2.

Proposition 5.6.6 (Subsystem independence). If Conditions 5.6.1, 5.6.2, and 5.6.5 hold, then

axsp(p(z)q(x)) = nrsp(p(e1)llq(21)) + nxsp(p(r2)g(22)) (533)

where the first term on the right-hand side uses kernel k1 and the second term uses ko.

See Section E.3.1 for the proof. Subsystem independence is powerful since it separates the problem
of evaluating the foreground model from that of evaluating the background model. A modified

version applies to the estimator NKsD(p||q) (Equation s.5); see Proposition E.3.1.

5.6.2 BERNSTEIN-VON MISES THEOREM FOR THE NKSD POSTERIOR

In this section, we establish asymptotic properties of the SVC and, more broadly, of its correspond-

ing generalized posterior, which we refer to as the NKsD posterior, defined as

v (6) o exp( — oNESD (po (a7 a(a716)) ) (0). (5:34)
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In particular, in Theorem 5.6.9, we show that the NKsD posterior concentrates and is asymptotically
normal, and we establish that the Laplace approximation to the SVC (Equation 5.10) is asymptoti-
cally correct. These results form a Bayesian counterpart to those of Barp et al. 7, who establish the
consistency and asymptotic normality of minimum XsD estimators. Thus, in both the frequentist
and Bayesian contexts, we can replace the average log likelihood with the negative ksp and obtain
similar key properties. Our results in this section do not depend on whether or not we are working
with a foreground subspace, so we suppress the £ 7 notation.

Let© C R™,andlet {Qp : 0 € O} be a family of probability measures on X' C R having
densities gp () with respect to Lebesgue measure. For notational convenience, we sometimes write
q(20) instead of gg(x). Suppose the data X ... XM arei.i.d. samples from some probability
measure Py on X having density po () with respect to Lebesgue measure. To ensure the NKsD sat-
isfies the properties of a divergence for all gp, and that convergence of NKsD is uniform on compact

subsets of © (Proposition E.3.2), we require the following.

Condition 5.6.7. Assume Conditions 5.6.1 and 5.6.2 hold for po, k, and qq for all 6 € ©. Further,
assume that the kernel k bas continuous and bounded partial derivatives up to and including second

order, and k(x,y) > 0 forallz,y € X.

Now we can set up the generalized posterior. First define

s @ x ()
fN(G) = %@(po(x)”q(x‘g)) _ lZz;ﬁ] ue(X , XU )

T Y k(X®, X @) (5-35)

where ug(x, y) is the u(x, y) function from Equation 5.5 with gg in place of ¢. For the case of N =

162



1, we define f1(#) = 0 by convention. Note that —N fx/(#) plays the role of the log likelihood.

Also define

£(6) = ovesn(po(z) a(x10)) (5:36)

oy = /@ exp(— N fx (6))7(6)d6,

1

mN(0) = - exp(—N fn(0))m(6),

where 7(6) is a prior density on ©. Note that 7 (6)d# is the NKSD posterior and 2y is the corre-
sponding generalized marginal likelihood employed in the SVC. Denote the gradient and Hessian of
by f/(0) = Vof(0)and f"(0) = V2f(0), respectively. To ensure that the NKsD posterior is

well defined and has an isolated maximum, we assume the following condition.

Condition 5.6.8. Suppose © C R™ isa convex set and (a) © is compact or (b) © is open and fn
is convex on © with probability 1 for all N. Assume zn < 00 a.s. for all N. Assume f has a unique

minimizer O, € O, f"(0,) is invertible, m is continuous at 0, and 7w(0,) > 0.

By Proposition 5.6.4, f has a unique minimizer whenever {Qp : 6 € O} is well-specified and
identifiable, that is, when QQp = P for some 6 and 6 — Qg is injective.

In Theorem 5.6.9 below, we establish the following results: (1) the minimum NKSD converges
to the minimum NKsD; (2) 7 concentrates around the minimizer of the NksD; (3) the Laplace
approximation to zy is asymptotically correct; and (4) 7 is asymptotically normal in the sense

of Bernstein—von Mises. The primary regularity conditions we need for this theorem are restraints
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on the derivatives of s, with respect to  (Condition 5.6.10). Our proof of Theorem 5.6.9 relies
on the theory of generalized posteriors developed by Miller '7¢. We use || - || for the Euclidean—
Frobenius norms: for vectors A € RP, ||A|| = (3; A?)'/2; for matrices A € RP*P || A|| =

(i A227j)1/2;for tensors A € RPXDXD || A|| = (X ik Azz,j,k)l/25 and so on.

Theorem 5.6.9. If Conditions 5.6.7, 5.6.8, and 5.6.10 hold, then there is a sequence Oy — 0, a.s.

such that:
1. fn(On) = f(04), fn(On) = 0 forall N sufficiently large, and [ (0n) — f"(04) a.s.,

2. letting Bc(0,) := {60 € R™ : |6 — 0. < €}, we have

/ 7N (0)d0 —=— 1 forall e > 0, (5.37)
Be(0x) N—o0

. exp(—=N fn(0n))m(6s) <2ﬂ—>m/2
o | det " (6,)|1/2 N

almost surely, where an ~ by means that ay /by — 1as N — oo, and

4 letting hyy denote the density of N (0 — On) when 0 is sampled from T, we have that hy

converges to N'(0, f(0.) 1) in total variation, that is,

/ m

B () = N8| 0, f"(6.) )| —=— 0. (5:39)

N—oo

The proofis in Section E.3.2. We write V3s,, to denote the tensor in R¥™*™ in which entry
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(i, 4, k) is 0284, (2):/00;00y. Likewise, V34, denotes the tensor in REX™X™M*™ i which entry

(4,7, k,0) is D3sq, (x);/00;00;,00p. We write N to denote the set of natural numbers.

Condition 5.6.x0 (Stein score regularity). Assume sq,(x) bas continuous third-order partial deriva-
tives with respect to the entries of 0 on ©. Suppose that for any compact, convex subset C C O, there

exist continuous functions go.c, g1, € LY (Py) such that forall € C,z € X,

1546 ()|l < g0,0(),
(5.40)

IVos4,(2)]] < g1.0()-

Further, assume there is an open, convex, bounded set E C O such that 0, € E, E C O, and the sets

1 4
{5 2 IVEse (X)) : N e N0 € B}, (5.41)
i=1
1 :
{5 D IVEse (X)) : N e N0 € B} (5.42)
=1

are bounded with probability 1.

Next, Theorem 5.6.11 shows that in the special case where gy () is an exponential family, many

of the conditions of Theorem 5.6.9 are automatically satisfied.

Theorem 5.6.x1. Suppose {Qqg : 0 € O} isan exponential family with densities of the form

q9(r) = M) exp(0Tt(x) — k(0)) forz € X C RL Assume© = {6 € R™ : |k(0)] < oo},
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and assume © is convex, open, and nonempty. Assume log \(x) and t(x) are continuously differ-
entiable on X, |V log \() || and ||V o t(x)|| are in L*(Py), and the rows of the Jacobian matrix
Vit(x) € R™*4 are lincarly independent with positive probability under Py. Suppose Condi-
tion 5.6.7 holds, f bas a unique minimizer 0, € ©, the prior T is continuons at 0, and w(0) > 0.

Then the assumptions of Theorem 5.6.9 are satisfied for all N sufficiently large.

The proof'is in Section E.3.2.

5.6.3 ASYMPTOTICS OF THE STEIN VOLUME CRITERION

The Laplace approximation to the SVC uses the estimate NKsD and its minimizer 6y, rather than
the true NKsD and its minimizer 6. To establish the consistency properties of the SVC, we need to
understand the relationship between the two. To do so, we adapt a standard approach to perform-

ing such an analysis of the marginal likelihood, for instance, as in Theorem 1 of Dawid *°.

Theorem 5.6.12. Assume the conditions of Theorem 5.6.9 hold, and assume 54, and Ng|,_, 54,

arein L*(Py). Then as N — oo,

In(On) — fxn(6) = Op,(N7Y). (5.43)

Further, if NxsD(po(2)||q(z|60+)) > 0 then

Fn(0) = £(0:) = Op, (N~Y/2), (5-44)

166



whereas if NksD(po(z)||q(z|0+)) = 0 then

fn(0.) = f(6.) = Op,(N7Y). (5-45)

The proof'is in Section E.3.3. Remarkably, Equation 5.45 shows that fx (6,) converges to f(6s)
more rapidly when the model is well-specified, specifically, ata 1/ rate instead of 1/v/N. This is
unusual and is crucial for our results in Section 5.6.4. The standard log likelihood does not exhibit
this rapid convergence; see Section E.2.1. This property of the NksD derives from similar properties
exhibited by the standard xsp (Theorem 4.1 in Liu et al. '5*). Combined with Theorem 5.6.9 (part
3), Theorem s5.6.12 implies that when the model is misspecified, the leading order term of log 2 is

—N f(0.), whereas when the model is well-specified, the leading order term is —% mlog N.

5.6.4 DATA AND MODEL SELECTION CONSISTENCY OF THE SVC

In this section, we establish the asymptotic consistency of the Stein volume criterion (SVC) when
used for data selection, nested data selection, model selection, and nested model selection; see The-
orem 5.6.17. This provides rigorous justification for the claims in Section 5.3. These results are all
in the context of pairwise comparisons between two models or two model projections, M7 and
M. Before proving the results, we formally define the consistency properties discussed in Sec-
tion 5.3. Each property is defined in terms of a pairwise score p(M7, Ms), such as p(My, My) =
log(K1/K2). For simplicity, we assume p(M7, Ma) = —p(Ma, My ); this is satisfied for all of the

cases we consider. Let dim(+) denote the dimension of a real space.
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Definition 5.6.13 (Data selection consistency). Consider foreground model projections M; =
{a(xF;|0) : 0 € ©F forj € {1,2}. Wesay that p satisfies “data selection consistency” if p(My, Ma) —
0o as N — 0o when My is well-specified with respect to po(x F, ) and My is misspecified with respect

to po(T 7).

Definition 5.6.14 (Nested data selection consistency). Consider foreground model projections
Mj = {q(z5;]0) : 0 € O} for j € {1,2}. Wesay that p satisfies “nested data selection consistency”
if p(My, Ma) — coas N — oo when M is well-specified with respect to po(z 5, ), X5, C X,

and dim(Xr,) < dim(Xr,).

Definition 5.6.15 (Model selection consistency). Consider foreground models M; := {q;(xr|0;) :
0; € ©,} for j € {1,2}. Wesay that p satisfies “model selection consistency” if p(My, My) — 00 as

N — 00 when My is well-specified with respect to po(x F) and My is misspecified.

Definition 5.6.16 (Nested model selection consistency). Consider foreground models M; =
{gi(zF|0;) : 0; € ©;} forj € {1,2}. Wesay that p satisfies “nested model selection consistency” if
p(My, My) — coas N — oo when My is well-specified with respect to po(xx), My C Mo, and

dim(@l) < dim(@g).

In each case, p may diverge almost surely (“strong consistency”) or in probability (“weak consis-
tency”). Note that in Definitions 5.6.13—5.6.14, the difference between M7 and My is the choice
of foreground data space F, whereas in Definitions 5.6.15-5.6.16, M1 and M> are over the same

foreground space but employ different model spaces.
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In Theorem 5.6.17, we show that the SVC has the asymptotic properties outlined in Section 5.3.
In combination with the subsystem independence properties of the NKSD (Propositions 5.6.6 and
E.3.1), Theorem 5.6.17 also leads to the conclusion that the SVC approximates the NKSD marginal
likelihood of the augmented model (Equation 5.8). Our proof is similar in spirit to previous results
for model selection with the standard marginal likelihood, notably those of Hong & Preston '
and Huggins & Miller ' 8 but relies on the special properties of the NksD marginal likelihood in
Theorem 5.6.12.
Theorem 5.6.x7. Forj € {1,2}, assume the conditions of Theorem 5.6.12 hold for model M,
defined on Xr,, with density q;(x5,;|0;) for 05 € ©; C R™737. Let Kj n be the Stein volume
criterion for M, with background model penalty mp, = mp,(N), and let

0j» := argminy. ~N&sD(po(Tr;) i (v F,|05)). Then:

1. Ifmp; = o(N/log N) for j € {1,2}, then

1 1 1
o8 E;Z s nxsp(po(e)||a2 (27, 162,0)) — kD (po(@ s, ) (@7 [61.4)-

2. If Nksp(po(z7,)|lq1 (2 7, [01,4)) = NKSD(po(27,)||g2(27,102,4)) = 0and mp, — mp,
does not depend on N, then
1 ’Cl,N Py 1

log N "8 Ky v No §(mf2,2 +mp, —mgF 1 —mpg,).

3. IfN&sp(po(2 7)1 (27,101,4)) = NKsD(po(27,)|g2(2 7,]02,4)), ms, = e, VN, and
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mp, = B,V N, where cg, and cg, are positive and constant in N, then

1 lo ,Cl,N Py 1
VN log N g/ngN N—oo 2

(032 - 631)'

The proofis in Section E.3.4. In particular, assuming the conditions of Theorem 5.6.12, we

obtain the following consistency results in terms of convergence in probability. Let

Dj = NKSD(po(.’L'].‘j)Hq]‘(I']-‘j‘9"*)) forj € {17 2}

* Ifmp, = o(N/log N) then the SVC exhibits data selection consistency and model selection

consistency. This holds by Theorem 5.6.17 (part 1) since Dy > D1 = 0.

e Ifmp, = mp, then the SVC exhibits nested model selection consistency. This holds by

Theorem 5.6.17 (part 2) since D1 = Dy = 0, mp, — mp, = 0,and mr, 2 > mr, 1.

* Consider a nested data selection problem with Xz, C X7, . If (A) mp, — mp, does not
dependon N and mg, 2 + mp, > mz, 1 + mp, or(B)ymp, = ch\/Nand cB, >
cg, > 0, then the SVC exhibits nested data selection consistency. Cases A and B hold by

Theorem 5.6.17 (parts 2 and 3, respectively) since D1 = Dy = 0.

5.7 APPLICATION: PROBABILISTIC PCA

Probabilistic principal components analysis (p)PCA) is a commonly used tool for modeling and visu-
alization. The basic idea is to model the data as linear combinations of k latent factors plus Gaussian

noise. The inferred weights on the factors are frequently used to provide low-dimensional sum-
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maries of the data, while the factors themselves describe major axes of variation in the data. In prac-
tice, pPCA is often applied in settings where it is likely to be misspecified — for instance, the weights
are often clearly non-Gaussian. In this section, we show how data selection can be used to uncover
sources of misspecification and to analyze how this misspecification affects downstream inferences.

The generative model used in pPCA is

ZW ~ N(0, ),
(5-46)
XDz ~ N(HZW vly),

independently fori = 1,..., N, where I}, is the k-dimensional identity matrix, Z () ¢ RFis the

[Rdxk

weight vector for datapoint 4, H € is the unknown matrix of latent factors, and v > 0 is the

variance of the noise. To form a Laplace approximation for the Stein volume criterion, we follow the
approach developed by Minka '7% for the standard marginal likelihood. Specifically, we parameterize
H as

H =U(L —vl)"/? (5.47)

where U is a d x k matrix with orthonormal columns (that is, it lies on the Stiefel manifold) and L is

ak x k diagonal matrix. We use the priors suggested by Minka '79,

U ~ Uniform(U),
Li; ~ InverseGamma(a/2, a/2), (5-48)

v ~ InverseGamma((a/2 + 1)(d — k) — 1, (a/2)(d — k)),
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where U is the set of d x k matrices with orthonormal columns and Lj;; is the ith diagonal entry of
L. We set o« = 0.1 in the following experiments, and we use pymanopt 202 g optimize U over the

Stiefel manifold (Section E.4).

5.7.1 SIMULATIONS

In simulations, we evaluate the ability of the SVC to detect partial misspecification. We setd = 6,

draw the first four dimensions from a pPCA model with £ = 2 and

1 0
-1 1
H = , (5.49)
0 1
1 -1

and generate dimensions s and 6 in such a way that pPCA is misspecified. We consider two misspec-

ified scenarios: scenario A (Figure 5.3a) is that

W ~ Bernoulli(0.5),
(s-50)
X | WO ~ N (0, Zy)
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where Xy0) = (0.05)W<i) I5. Scenario B (Figure 5.3d) is the same but with

1 (—=1)"“0.99
Lo = : (s.51)
(—=1)""0.99 1

Scenario B is more challenging because the marginals of the misspecified dimensions are still Gaus-
sian, and thus, misspecification only comes from the dependence between X5 and Xg. As illus-
trated in Figures 5.3b and 5.3e, both kinds of misspecification are very hard to see in the lower-
dimensional latent representation of the data.

Our method can be used to both (i) detect misspecified subsets of dimensions, and (ii) con-
versely, find a maximal subset of dimensions for which the pPCA model provides a reasonable fit
to the data. We set 7" = 0.05 in the SVC, based on the calibration procedure in Section E.1.1 (Sec-
tion E.4.3). We use the Pitman-Yor mixture model expression for the background model dimension
(Equation 5.3), with = 0.5,60 = 1,and D = 0.2. This value of D ensures that the number of
background model parameters per data dimension is greater than the number of foreground model
parameters per data dimension except for at very small IV, since there are two foreground parame-
ters for each additional data dimension in the pPCA model, and mp > 2rgfor N > 20. We
performed leave-one-out data selection, comparing the foreground space Xz, = X to foreground
spaces X7, for j € {1,...,d}, which exclude the jth dimension of the data. We computed the
log SVC ratio log(K; /Ko) = logK; — log Kg using the BIC approximation to the SVC (Sec-

tion 5.2.3) and the approximate optima technique (Section 5.2.3). We quantify the performance

173



o~ 4 4
S 3 1.0
2, 3
.qé 1 2 50.9
s g
o
2 1 =1
-1 N Sos
O -2 € 0 ° ©
a T el
8- 5 go7
E_4 4 =-17 2
2 -4 -2 0 2 4 R ° o
density -2 ©
20.6
2 —4— SVC
2 -3 —4— Polya Tree
g _a 05
Ara— % -4 -3-2-10 1 2 3 4 200 400 600 800 1000
misspecified dimension 1 latent z; number of samples
(a) Scenario A, misspecified dimen- (b) Scenario A, pPCA latent space. (c) Scenario A, accuracy in detecting
sions. misspecified dimensions.
o~ 4 4
5 N . o
: 3
£ 1 2 0.9
s . e
o
& -1 Qo l § 0.8
§ ) - 2 b —4— SVC
8 -3 -3 . 8 3 —4— Polya Tree
0 © v 0.7
£ 4l _a - -1 . c
0.00 0.25 -4 -2 0 2 ©
0
ensity -2 = 06
5,04
3 o2 -3
g O 0.5
o -4
o) .| “4-3-2-10 1 2 3 4 500 1000 1500 2000
misspecified dimension 1 latent z; number of samples
(d) Scenario B, misspecified dimen- (e) Scenario B, pPCA latent space. (f) Scenario B, accuracy in detecting
sions. misspecified dimensions.
140 = SVC
o —4— Polya Tree
2120
o
[)
g 100
()
g 80
€ 60
2
c 40
©
Q
g 20 ._,/
0

500 1000 1500 2000
number of samples

(g) Mean runtime over 5 repeats.

Figure 5.3: Data selection in the probabilistic PCA model.

of the method in detecting misspecified dimensions in terms of the balanced accuracy, defined as

(TN/N + TP/P)/2 where T'N is the number of true negatives (dimension by dimension), N is
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the number of negatives, T'P is the number of true positives, and P is the number of positives. Ex-
periments were repeated independently five times. Figures 5.3¢ and 5.3f show that as the sample size
increases, the SVC correctly infers that dimensions 1 through 4 should be included and dimensions

s and 6 should be excluded.

5.7.2 COMPARISON WITH A NONPARAMETRIC BACKGROUND MODEL

To benchmark our method, we compare with an alternative approach that uses an explicit aug-
mented model. The Pélya tree is a nonparametric model with a closed-form marginal likelihood
that is tractable for one-dimensional data'>*. We define a flexible background model by sampling

each dimension j of the background space independently as

X ~ PolyaTree(F, F,n), (5.52)

with the Pélya tree constructed as by Berger & Guglielmi " (Section E.4.4). We set F' = N(0, 10),
F = N(0,10),andp = 1000 so that the model is weighted only very weakly towards the base
distribution.

We performed data selection using the marginal likelihood of the Pélya tree augmented model,
computing the marginal of the pPCA foreground model using the approximation of Minka '79.
The accuracy results for data selection are in Figures 5.3¢ and 5.3f. On scenario A (Equation s.50),
the Pélya tree augmented model requires significantly more data to detect which dimensions are mis-

specified. On scenario B (Equation s.51) the Pélya tree augmented model fails entirely, preferring
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the full data space X7, = A& which includes all dimensions (Figure 5.3f). The reason is that the
background model is misspecified due to the assumption of independent dimensions, and thus, the
asymptotic data selection results (Equations 5.15 and 5.19) do not hold. This could be resolved by
using a richer background model that allows for dependence between dimensions, however, com-
puting the marginal likelihood under such a model would be computationally challenging. Even
with the independence assumption, the Pélya tree approach is already substantially slower than the

SVC (Figure 5.3g).

5.7.3 APPLICATION TO PPCA FOR SINGLE-CELL RNA SEQUENCING

Single-cell RNA sequencing (scRNAseq) has emerged as a powerful technology for high-throughput
characterization of individual cells. It provides a snapshot of the transcriptional state of each cell by
measuring the number of RNA transcripts from each gene. PCA is widely used to study scRNAseq
datasets, both as a method for visualizing different cell types in the dataset and as a pre-processing
technique, where the latent embedding is used for downstream tasks like clustering and lineage re-

206,26

construction 2. We applied data selection to answer two practical questions in the application

of probabilistic PCA to scRNAseq data: (1) Where is the pPCA model misspecified? (2) How does

partial misspecification of the pPCA model affect downstream inferences?
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MODEL CRITICISM

Our first goal was to verify that the SVC provides reasonable inferences of partial model misspec-
ification in practice. We examined two different scRNAseq datasets, focusing for illustration on

a dataset from human peripheral blood mononuclear cells taken from a healthy donor, and pre-
processed the data following standard procedures in the field (Section E.4.5). We subsampled each
dataset to 200 genes (selected randomly from among the 2000 most highly expressed) and 2000 cells
(selected randomly) for computational tractability, then mean-subtracted and standardized the vari-
ance of each gene, again following standard practice in the field. The number of latent components
k was set to 3, based on the procedure of Minka '7®. We performed leave-one-out data selection,
comparing the foreground space X'z, := A& to foreground spaces X', that exclude the jth gene.
We computed the log SVC ratio log K; — log K using the BIC approximation to the SVC (Sec-
tion 5.2.3) and the approximate optima technique (Section s.2.3). We used the same setting of T’
and of mp as was used in simulation, resulting in a background model complexity of mp = 2073
for datasets of this size. Based on the SVC criterion, 162 out of 200 genes should be excluded from
the foreground pPCA model, suggesting widespread partial misspecification. Figure 5.4 compares
the histogram of individual genes to their estimated density under the pPCA model inferred for
Xr, = X. Those genes most favored to be excluded (namely, UBE2V2 and IRF8) show extreme
violations of normality, in stark contrast to those genes most favored to be included (MT-COr and
RPL6).

Next, we compared the results of our data selection approach to a more conventional strategy for
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Figure 5.4: (a,b) Histograms of example genes (after pre-processing) selected to be included in the foreground space
based on the log SVC ratio, log IC; — log KCo. The estimated density under the pPCA model is shown in blue. (c,d) His-
tograms of example genes selected to be excluded. Higher ranks (in each title) correspond to larger log SVC ratios.

model criticism. Criticism of partially misspecified models can be challenging in practice because

misspecification of the model over some dimensions of the data can lead to substantial model-data

mismatch in dimensions for which the model is indeed well-specified **°. The standard approach to

model criticism—first fit a model, then identify aspects of the data that the model poorly explains—

can therefore be misleading if our aim is to determine how the model might be improved (e.g., in

the context of “Box’s loop”, Blei *°). In particular, standard approaches such as posterior predictive
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checks will be expected to overstate problems with components of the model that are well-specified
and understate problems with components of the model that are misspecified. Bayesian data selec-
tion circumvents this issue by evaluating augmented models, which replace potentially misspecified
components of the model by well-specified components. To illustrate the difference between these
approaches in practice, we compared the SVC to a closely analogous measurement of error for the

tull foreground model (inferred from X7, = X),

N/\ N/\
log&; —log&p = —fNKSD(po(ZUf]-)HQ(mfj|90,N)) + fNKSD(po(:E)HQ(:EI%,N)) (s-53)

where 0 v := arg min NksSD(po()||¢(x]6)) is the minimum NsD estimator for the foreground
model when including all dimensions. This model criticism score evaluates the amount of model-
data mismatch contributed by the subspace X3, when modeling all data dimensions with the fore-

ground model. For comparison, the BIC approximation to the log SVC ratio is

N/\ N/\
log Kj — log Ko ~ —=Nksb(po(2.7; ) |a(27,0j,5) + 7-NksD(po(2)la(z]00,v))

(s-54)
PRI
2 N
where 0 v := argmin NksD(po(2 £, ) || q(xF,|0)) is the minimum NKsD estimator for the pro-

jected foreground model applied to the restricted dataset, which we approximate as 6y plus the im-
plicit function correction derived in Section s.2.3. Figure .5 illustrates the differences between the
conventional criticism approach (log £; —log &) and the log SVC ratio on an scRNAseq dataset. To

enable direct comparison of the two methods, we focus on the lower order terms of Equation 5.5 4,
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Figure 5.5: Scatterplot comparison and projected marginals of the leave-one-out log SVC ratio, log /Cj — log Ko (with

mpg.;

. = Mx, — Mg;),and the conventional full model criticism score, log &; — log &y, for each gene.

that is, we set mp; = mzx, — my,;. We see that the amount of error contributed by X, , as judged
by the SVC, is often substantially higher than the amount indicated by the conventional criticism
approach, implying that the conventional criticism approach understates the problems caused by
individual genes and, conversely, overstates the problems with the rest of the model.

Using the SVC instead of a standard criticism approach can also help clarify trends in where the
proposed model fails. A prominent concern in scRNAseq data analysis is the common occurrence
of cells that show exactly zero expression of a certain gene *77'*. We found a Spearman correlation
of p = 0.89 between the conventional criticism log £; — log & for a gene j and the fraction of cells
with zero expression of that gene j, suggesting that this is an important source of model-data mis-
match in this scRNAseq dataset, but not necessarily the only source (Figure 5.6a). However, the log

SVC ratio yields a Spearman correlation of p = 0.98, suggesting instead that the amount of model-
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Figure 5.6: (a) Comparison of the conventional criticism score, for each gene j, and the fraction of cells that show zero
expression of that gene j in the raw data. Spearman p = 0.89,p < 0.01. (b) Same as (a) but with the log SVC ratio.
Spearmanp = 0.98,p < 0.01. Inorange are genes that would be included when using a background model with

¢ = 20andinblue are genes that would be excluded. (c) Same as (a) for a dataset taken from a MALT lymphoma
(Section E.4.5). Spearman p = 0.81,p < 0.01. (d) Same as (b) for the MALT lymphoma dataset. Spearman p = 0.99,
p < 0.01.

data mismatch can be entirely explained by the fraction of cells with zero expression (Figure 5.6b).

These observations are repeatable across different scRNAseq datasets (Figure 5.6¢, 5.6d).
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EVALUATING ROBUSTNESS

Data selection can also be used to evaluate the robustness of the foreground model to partial model
misspecification. This is particularly relevant for pPPCA on scRNAseq data, since the inferred latent
embeddings of each cell are often used for downstream tasks such as clustering, lineage reconstruc-
tion, and so on. Misspecification may produce spurious conclusions, or alternatively, misspecifica-
tion may be due to structure in the data that is scientifically interesting. To understand how partial
misspecification of the pPCA model affects the latent representation of cells (and thus, downstream
inferences), we performed data selection with a sequence of background model complexities ¢,
where mp = cp rp (Figure 5.7a). We inferred the pPCA parameters based only on genes that the
SVC selects to include in the foreground subspace. Figures 5.7¢-5.7b visualize how the latent repre-
sentation changes as cz grows and fewer genes are selected. We can observe the representation mor-
phing into a standard normal distribution, as we would expect in the case where the pPCA model is
well-specified. However, the relative spatial organization of cells in the latent space remains fairly sta-
ble, suggesting that this aspect of the latent embedding is robust to partial misspecification. We can
conclude that, at least in this example, misspecification strongly contributes to the non-Gaussian

shape of the latent representation of the dataset, but not to the distinction between subpopulations.

5.8 ArrLICATION: GLASS MODEL OF GENE REGULATION

A central goal in the study of gene expression is to discover how individual genes regulate one an-

other other’s expression. Early studies of single cell gene expression noted the prevalence of genes
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Figure 5.7: (a) Histogram of log SVC ratios log KC; — log Kq for all 200 genes in the dataset (withmp, = mz, —

m ;). Dotted lines show the value of the volume correction term in the SVC for different choices of background model
complexity cg; for each choice, genes with log /Cj — log Ko values above the dotted line would be excluded from

the foreground subspace based on the SVC. (b) Posterior mean of the first two latent variables (21 and 22), with the

pPCA model applied to the genes selected with a background model complexity of cg = 10 (keeping 23 genes in the
foreground). (c-e) Same as (b), but with cg = 20 (keeping 38 genes), cg = 40 (keeping 87 genes) and cg = 60 (keeping
all 200 genes). In (a)-(d), the points are colored using the 21 value when cg = 60.

that were bistable in their expression level *3**#°. This suggests a simple physical analogy: if indi-

vidual gene expression is a two-state system, we might study gene regulation with the theory of in-
teracting two-state systems, namely spin glasses. We can consider for instance a standard model of
this type in which each cell 4 is described by a vector of spins z; = (21, .. ., 2q) | drawn from an

Ising model, specifying whether each gene j € {1, ..., d} is “on” or “off”. In reality, gene expres-
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sion lies on a continuum, so we use a continuous relaxation of the Ising model and parameterize
each spin using a logistic function, setting z;;1 (25, £, 7) = 1/(1 + exp(—7(xs; — p))) and
Zijo(@ij, b, T) = 1 — 2i51(245, p, 7). Here, x5 is the observed expression level of gene j in cell 4,
the unknown parameter y controls the threshold for whether the expression of a gene is “on” (such
that 2;; &~ (1,0) ") or “off” (such that z;; =~ (0,1) ), and the unknown parameter 7 > 0 controls

the sharpness of the threshold. The complete model is then given by

X~ p(ai|H, T, 7)

eXp<ZH Zij xz]aT :u + Z ‘7:1]’7— M)Jjj"zij'(xij"T’ ,LL))

Z
H,Jpr 3’>j

where Zp 7, - is the unknown normalizing constant of the model, and the vectors H; € R? and
matrices Jj ;1 € R2*2 are unknown parameters. This model is motivated by experimental observa-
tions and is closely related to RN Aseq analysis methods that have been successfully applied in the

past8z,81,ss,37,l5,68,137,1 19,181,170

. However, from a biological perspective we can expect that serious
problems may occur when applying the model naively to an scRNAseq dataset. Genes need not
exhibit bistable expression: it is straightforward in theory to write down models of gene regulation
that do not have just one or two steady states—gene expression may fall on a continuum, or oscillate,
or have three stable states—and many alternative patterns have been well-documented empirically ©
Interactions between genes may also be more complex than the model assumes, involving for in-

stance three-way dependencies between genes. All of these biological concerns can potentially pro-

duce severe violations of the proposed two-state glass model’s assumptions. Data selection provides
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a method for discovering where the proposed model applies.

Applying standard Bayesian inference to the glass model is intractable, since the normalizing
constant is unknown (it is an energy-based model). However, the normalizing constant does not
affect the SVC, so we can still perform data selection. We used a variational approximation to the
SVC (Section 5.2.3). We placed a Gaussian prior on H and a Laplace prior on each entry of J to
encourage sparsity in the pairwise gene interactions; we also used Gaussian priors for p and 7 af-
ter applying an appropriate transform to remove constraints (Section E.s.1). Following the logic
of stochastic variational inference, we optimized the variational approximation using minibatches
of the data and a reparameterization gradient estimator '°>'3'47. We also simultaneously stochas-
tically optimized the set of genes included in the foreground subspace, using the Leave-One-Out
REINFORCE estimator "+>54. We implemented the model and inference strategy within the prob-
abilistic programming language Pyro by defining a new distribution with log probability given by
the negative NKSD*?. Pyro provides automated, GPU-accelerated stochastic variational inference,
requiring less than an hour for inference on datasets with thousands of cells.

We examined three scRINAseq datasets, taken from (i) peripheral blood monocytes (PBMCs)
from a healthy donor (2,428 cells), (ii) a MALT lymphoma (7,570 cells), and (iii) mouse neurons
(10,658 cells) (Section E.s.2). We preprocessed the data following standard protocols and focused
on 200 high expression, high variability genes in each dataset, based on the metric of Gigante et al. >°.
We set T' = 0.05 as in Section 5.7, and used the Pitman-Yor expression for mz (Equation 5.3) with
a = 0.5,0 = land D = 100. This value of D ensures that the number of background model

parameters per data dimension is larger than the number of foreground model parameters per data
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dimension except for at very small N; in particular, there are 798 foreground model parameter di-
mensions associated with each data dimension (from the 199 interactions .J; ;s that each gene has
with each other gene, plus the contribution of H;),and mp > 798 rgfor N > 13. Our data
selection procedure selects 65 genes (32.5%) in the PBMC dataset, o genes in the neuron dataset,
and 187 genes (93.5%) in the MALT dataset; note that for a lower value of m, in particular using
D = 10, no genes are selected in the MALT dataset. These results suggest substantial partial mis-
specification in the PBMC and neuron datasets, and more moderate partial misspecification in the
MALT dataset.

We investigated the biological information captured by the foreground model on the MALT
dataset. In particular, we looked at the approximate NKSD posterior for the selected 187 genes,
and compared it to the approximate NKSD posterior for the model when applied to all 200 genes.
(Note that, since the glass model lacks a tractable normalizing constant, we cannot compare stan-
dard Bayesian posteriors.) Figure 5.8 shows, for a subset of selected genes, the posterior mean of the
interaction energy AFE;;r := Jj01 + Jjjr12 — Jjjra2 — Jjj11, thatis, the total difference in energy
between two genes being in the same state versus in opposite states. We focused on strong interac-
tions with |[AE};/| > 1, corresponding to just 5% of all possible gene-gene interactions (Figure E.3).

One foreground gene with especially large loading onto the top principal component of the
AFE matrix is CD37 (Figure 5.8). In B-cell lymphomas, of which MALT lymphoma is an example,
CD37 loss is known to be associated with decreased patient survival ***. Further, previous studies
have observed that CD37 loss leads to high NF-xB pathway activation*”3. Consistent with this

observation, the estimated interaction energies in our model suggest that decreasing CD37 will
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Figure 5.8: Posterior mean interaction energies AE; ;1 1= Jjjr01 + Jjjr12 — Jjjr22 — Jjjr11 for asubset of the
selected genes. For visualization purposes, weak interactions (|AEJ~]-/ | < 1)areset to zero, and genes with less than
10 total strong connections are not shown. Genes are sorted based on their (signed) projection onto the top principal
component of the A E matrix.

lead to higher expression of REL, an NF-£B transcription factor (A Ecp;,rer. = 2.5), decreased
expression of NKFBIA, an NF-£B inhibitor (A Ecp,, nkrBia = —3.6), and higher expression
of BCL2A1, a downstream target of the NF-xB pathway (A Ecp;,Bcr.ar = 2.1). Separately,

aknockout study of Cd37 in B-cell ymphoma in mice does not show IgM expression®*, consis-
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Figure 5.9: Comparison of posterior mean interaction energies AEjj/ for a model applied to all 200 genes (pre-data
selection) to those learned from a model applied to the selected foreground subspace (post-data selection). Each point
corresponds to a pairwise interaction between two of the selected 187 genes.

tent with our model (AEcp;,16am = —8.2). The same study does show MHC-II expression,
and our model predicts the same result, for HLA-DQ in particular (A Ecp;, nLa-pQa: = 5.0,
AFEcp;,HLA-DQB: = 3.7). These results suggest that the data selection procedure can successtully
find systems of interacting genes that can plausibly be modeled as a spin glass, and which, in this
case, are relevant for cancer.

To investigate whether data selection provided a benefit in this analysis, we compare with the re-
sults obtained by applying the foreground model to the full dataset of all 200 genes. All but one of
the interactions listed above have |AE/| < 1 in the full foreground model, and three have opposite
signs (A Ecps,Nrxia = +0.7, AEcps,16uam = +0.0, AEcp,,niapge: = —0.6); see Fig-

ure E.4. Across all 187 selected genes, we find only a moderate correlation between the interaction
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energies estimated when using the full foreground model compared with the data selection-based
model (Spearman’s tho = 0.30, p < 0.01; Figure 5.9). These results show that using data selection
can lead to substantially different, and arguably more biologically plausible, downstream conclu-
sions as compared to naive application of the foreground model to the full dataset.

As a simple alternative, one might wonder whether genes that are poorly fit by the model could
be identified simply by looking their posterior uncertainty under the full foreground model. This
simple approach does not work well, however, since it is possible for parameters to have low uncer-
tainty even when the model poorly describes the data. Indeed, we found that examining uncertainty
in the glass model does not lead to the same conclusions as performing data selection: the genes ex-
cluded by our data selection procedure are not the ones with the highest uncertainty in their interac-
tions (as measured by the mean posterior standard deviation of A ;s under the NKSD posterior),
though they do have above average uncertainty (Figure E.sa). Instead, the genes excluded by our
data selection procedure are the ones with the highest fraction of cells with zero expression, violating
the assumptions of the foreground model (Figure E.sb). These results show how data selection pro-
vides a sound, computationally tractable approach to criticizing and evaluating complex Bayesian

models.

5.9 DiscussioN

Statistical modeling is often described as an iterative process, where we design models, infer hidden

parameters, critique model performance, and then use what we have learned from the critique to
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design new models and repeat the process®s. This process has been called “Box’s loop”>¢. From
one perspective, data selection offers a new criticism approach. It goes beyond posterior predictive
checks and related methods by changing the model itself, replacing potentially misspecified com-
ponents with a flexible background model. This has important practical consequences: since mis-
specification can distort estimates of model parameters in unpredictable ways, predictive checks are
likely to indicate mismatch between the model and the data across the entire space X’ even when the
proposed parametric model is only partially misspecified. Our method, by contrast, reveals precisely
those subspaces of X’ where model-data mismatch occurs.

From another perspective, data selection is outside the design-infer-critique loop. An underlying
assumption of Box’s loop is that scientists want to model the entire dataset. As datasets get larger,
and measurements get more extensive, this desire has led to more and more complex (and often
difficult to interpret) models. In experimental science, however, scientists have often followed the
opposite trajectory: faced with a complicated natural phenomenon, they attempt to isolate a simpler
example of the phenomenon for close study. Data selection offers one approach to formalizing this
intuitive idea in the context of statistical analysis: we can propose a simple parametric model and
then isolate a piece of the whole dataset—a subspace X'z—to which this model applies. When work-
ing with large, complicated datasets, this provides a method of searching for simpler phenomena

that are hypothesized to exist.
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Conclusion

Measuring and making sequences is central to modern biology, biotechnology and biomedicine.
This dissertation has presented generative statistical methods for biological sequences, which en-
able inference from complex sequence data, rigorous accounting of uncertainty, and prediction of
unobserved or future sequences that can be made in the laboratory. Our focus has been on address-

ing fundamental statistical problems: regression (Chapter 1), latent variable modeling (Chapter 1),
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density estimation (Chapter 2, goodness-of-fit testing (Chapter 2), two-sample testing (Chapter 2),
sampling (Chapter 3) and robust estimation (Chapter 4). Our new methods directly generalize and
replace widely successful heuristic methods for biological sequence analysis: MuE observation mod-
els generalize alignment preprocessing methods (Chapter 1), BEAR tests generalize kmer spectra
comparison methods (Chapter 2), and variational synthesis generalizes error prone PCR protocols
(Chapter 3). In some cases our attempts to find more rigorous versions of existing methods led to
novel statistical questions that had not been previously studied for any type of data. In particular,
our attempts to generalize profile hidden Markov model search algorithms led to Chapter s, which
formalizes and studies the broader problem of data selection. Overall, the principles and methods
developed in this dissertation contribute to an emerging toolbox of generative statistical methods for
biological sequences. We next outline two key directions for future work that can make use of and

expand this toolbox.

6.1 LATENT AND HIERARCHICAL STRUCTURE

For many scientific questions, it is important to incorporate latent and hierarchical structure into
generative sequence models. Consider for example the problem of forecasting pathogen evolution.
Epidemiological models of the spread of infection over time and space have been well-studied *°.
Models of viral population dynamics, which account for inter-strain competition under selective
pressure from the immune system, have also been studied, along with phylogenetic methods for pre-

146,163,

dicting evasion of the immune system 188 Fitness models, based on evolutionary multi-species
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sequence data, have been shown to predict viral protein function*'>*35. Any or all of these models
may be informative in forecasting pathogen sequence evolution, including not only future strains of
existing human pathogens but also novel zoonotic spillovers. Generative Bayesian modeling offers

a rigorous framework for combining information from different types of data (e.g. other species’
genomes, infection counts, etc.) and accounting for complex dynamics (e.g. the time course of infec-
tion, immunological responses, etc.), via hierarchical parameter sharing and latent structure. Indeed,
we can extend arbitrary continuous vector space dynamics models to sequence space using the MuE
observation distribution (Chapter 1), while probabilistic programming languages such as Pyro*3
enable building and inferring complex hierarchical models. BEAR goodness-of-fit and two-sample
tests (Chapter 2) allow these models to be criticized and checked. Thus, it seems possible to com-
bine our piecemeal understanding of pathogen evolution into larger generative sequence models
that can better forecast future sequences, and use these models to generate large libraries of likely
future sequences with which we can test candidate drugs and diagnostics prospectively. Similar op-
portunites abound in other areas of biological sequence statistics, for instance in forecasting changes

in the immune system and in the microbiome.

6.2 CAUSAL INFERENCE

Another important area for future work is causal inference '>. Consider, for example, questions
at the intersection of microbiome, diet and human health, such as occur in the context of inflam-

161,160,

matory bowel diseases 228 We might, for instance, be interested in measuring the causal im-
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pact of changes in diet on the metagenome, at nucleotide resolution. To estimate this causal effect
we would need a regression model which describes the conditional distribution of the outcome
(in this case, sequences) given treatment (in this case, diet) and any confounders. If we are focused
on a particular protein or RNA molecule, we can use a MuE regression model (Chapter 1); if we
are interested in the entire metagenome, and the treatment and confounder are discrete and low-
dimensional, we can adapt BEAR models for regression (Chapter 2.).

Generative sequence models are not just useful, however, when we are interested in effects o7 se-
quences; they can also be useful in understanding the effects of sequences. Consider the problem
of estimating the impact of changes in the metagenome on disease, with diet a confounder that can
affect both the microbiome and disease. One way of adjusting for confounding is by using propen-
sity scores, which require a generative regression model for the treatment, i.e. sequences'*°. Or we
might be interested in causal inference problems where the metagenome is itself a confounder, in
which case to perform a backdoor adjustment we would need a density estimator for sequences; we
can apply the BEAR model (Chapter 2). Note also that misspecification can bias causal estimates,
so effective nonparametric tests are especially important in causal inference; we can apply BEAR
tests (Chapter 2). Thus, our generative statistical methods open up new strategies for observational
causal inference with biological sequence data, beyond the naive “no confounder” assumption, with

possible applications in microbiology, immunology, evolutionary biology, agriculture and beyond.
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6.3 BROADER IMPLICATIONS

Increasing capacity to learn from complex biological sequence data can potentially have indirect
impacts on society, beyond direct technological applications in developing new therapies, diagnos-
tics, enzymes, etc.. In particular, it may substantially increase the value of biological sequence data,

as has been repeatedly seen in other areas of machine learning**°

. This includes sequence data not
just from humans and their pathogens, but from across all of life. For example, fitness estimation
methods, such as those discussed in Chapter 4, directly translate genome data from highly diverse
organisms into technologies for diagnosing disease and engineering proteins®>**#. This makes bio-
diversity important not just in terms of the moral and ecological value of preserving unique species,
but also in terms of medical and economic value. The same is true of other emerging applications of
biological sequence statistics, such as genome mining6’59. Speculatively, the growth of companies
and organizations that depend on biological sequence data could potentially produce new economic

and political interests invested in biodiversity, as well as new incentives for privatization of biological

sequence data.

6.4 CONCLUSIONS

Generative statistical methods offer a powerful, rigorous and flexible strategy for learning from se-
quence data and forming predictions of new sequences that can be constructed in the laboratory.
Their potential for widespread impact will only grow as technologies for sequencing and synthesis

advance. The goal of this dissertation has been to help build stronger foundations for biological se-
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quence statistics, firmly rooted in the underlying statistical and biophysical theory. However, much
work remains to be done to realize the full potential of generative statistical methods for biological

sequences.
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A.1 OVERVIEW DIAGRAM AND NOTATION

1. Generate regressor. 2. Add mutations with MuE.

@

Xi
1 1 G
| ]ﬂ | ﬁ
©o® / LMT
M AC G T
] D L Wl 1 -~ B
Al
1 K
Xo ®)
T
°RId T m 8
[2]
_‘g @ @ Wy T
o - C
2 . A
- @
X ®)
T
G
v @© Ws T
.I
Vd | ]

Figure A.1: MuE observation model. Overview of the generative process in MuE observation models. First, the latent
regressor sequence X ; is sampled. Then, the MuE distribution adds mutations to generate Y;. A latent variable TV
controls the pattern of insertions and deletions. Global parameters that must be inferred are highlighted in yellow.
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Table A.1: Notation for MuE observation models A summary of the notation used in the main text, for convenient refer-

ence. Space refers to the space the variable lives in, i.e. N € N, the set of positive non-zero integers.

Variable Space Generation Description

N N Observed Number of observed sequences.

B finite set Hyperparameter Alphabet (e.g. {4,T,G,C} for DNA).

B N B := |B| Alphabet size.

M N Hyperparameter Length of latent regressor sequence.
(Typically set to be somewhat larger
than max; L;.)

D N Hyperparameter Size of latent regressor sequence’s al-
phabet. (Typically set to be some-
what larger than B.)

Vi RMx*D Vi~ pg Output of the initial continuous-space
generative model.

X (Ap)M X; = softmax (V) Latent regressor sequence, intuitively
the “precursor” or “ancestor” to Y;.

a® Ak Parameter Controls the probability of insertion
and deletion mutations occurring in
X;.

al®) (Ag)K Parameter Controls the probability of insertion
and deletion mutations occurring in
X;. Must satisfy Condition 2.2.

W; {1,..., K}  W; ~ MarkovModel(a(?),a(®) The hidden Markov model state vari-
able, which defines a latent alignment
between X; and Y;. (W; is marginal-
ized out during inference.)

c (Ap)M+1 Parameter Controls the probability of the inser-
tion sequence letters (but not the pres-
ence or absence of the insertion).

L (Ap)P Parameter Substitution matrix.

Y; BLi Y; ~ MuE(X;, ¢,a(©,a®) Observed sequence, intuitively gener-
ated by mutating X; with substitu-
tions, insertions and deletions.

L; N L; :=Yi Length of observed sequence Y;.
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A.2 THEORY

A.2.1 ILLUSTRATING MSA PATHOLOGIES

° BCR
~ise0] © TCR

10t 102
Datapoints [V

Figure A.2: MSA width can diverge with dataset size. MSA width J as a function of sequences [V in the dataset. BCRIis a
B cell receptor dataset, TCR a T cell receptor dataset.

To illustrate the problems described in Section 4.1 of the main text, we examined a B cell recep-
tor dataset and a T cell receptor dataset (the 1ox Genomics datasets described in Section A.6). Se-
quences were subsampled and aligned using MUSCLE”°, a standard MSA algorithm. Figure A.2

shows the growth in MSA width J as a function of the subsampled dataset size.

A.2.2 PROOF OF PROPOSITION 4.4

To prove the result, we will examine each existing model individually; exact specifications and as-
sumptions for each model are provided in their corresponding section. The probability of the
(®)

Markov chain terminating given that it is at a state k is denoted ., and the probability of the

Markov chain terminating initially (that is, of the Markov chain taking zero steps) is denoted ¢(?).
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Algorithm 1 Pairwise alignment construction

input : (ji,...,7z) and (g1,...,9z) and X and Y

output: A
n=0 (indexes position in overall alignment. );
m=0 (indexes position in sequence X );

Iterate until each letter in both X and Y has been placed in A;
while m < M orn < j; do

n=n+1;
if 31 : n = j; then
AY =y, (by definition, of j);
if g; =1 then
| A@) — _ (by definition of gi);
else
m=m+1;
A9 = x,, (by definitions of g, and A®; letters of X must be in order);
end
else
AY = - (by definition of 5i);
m=m+1;
AD = x,, (by definition of A; each column of A must have at least one letter);
end
end

Without loss of generality, we will write transition probabilities a® and a9 without conditioning

. T t t . o
on the Markov chain not terminating, i.e. ;. a/,(C L, + t; ) = 1. The conditional transition prob-

ability can of course be computed as ag’)k, /(1 — t,(:) ). In general, we will also index latent states k
of the MuE by their corresponding (1, g) value where (in line with the definition of g; and ;)

g =1U(k > M)andm =k — Mg; we will use k and (m, g) interchangeably for any given state.

It is useful for understanding the following results to have in mind a particular example to illus-
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trate the definitions in the main text.

Sequences  Pairwise alignment A J and g representation
Y = ATG AW = A-—-T6-  (j1,...,40) = (1,4,5)

X=1c16  A®W = -tc1-6  (g1,...,91) = (1,0,1)

It is also useful to define m; := W; — M g;, which indexes the position within the first or second

block of states. For the example we have, (m1,...,mr) = (1,3, 4).

Remark A.2.x. Given sequences X andY of length M and L respectively, (j1, ... ,j1) and (g1, ..., 9L)

uniguely define a pairwise alignment A.

Proof. Applying Definition 4.2 and the definitions of (j1, ..., jz) and (g1, . . ., g1,) iteratively to

each column of the alignment leads to the construction of A in Algorithm 1. O

THORNE-KISHINO-FELSENSTEIN

The Thorne-Kishino-Felsenstein (TKF) model is a continuous-time stochastic process model of
sequence evolution that satisfies detailed balance *57.

Statement Let X be a one-hot encoding of the initial sequence. Let D = B and let 7 be the
TKF parameter corresponding to the equilibrium probability of each letter. Forallm € {1,..., M}
and b € {1, ..., B}, assign

Cm,b = Tp. (A.I)

Let A\ > Oandp > O be the TKF indel rate parameters, with A < p,andlet7 > 0 be the
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divergence time parameter. Define

1 — e_(/J“_A)T
Define the transition matrix and termination probability as
[pB(T)]™ ~m=1H9e=mT[1 — AB(7)] ifm—g<m' <M+1
andg’ =0
) ._ _ , )
ek = Y AB(T) ifm—g=m'—1landg =1

[uﬁ(r)]m/_m_2+9[1 —e M —uB(N[1 = N3(1)] ifm—g<m' —1landg =1

0 otherwise.
(A3)
t) = [1 = AB(7)][pB(r) M+ (Ag)
The initial transition vector follows the same form, and can be written as a,(co) = aé?c, and the

initial termination probability can be written () := tét) (i.e. they match Equations A.3 and A.4
with (m, g) = (0, 0) plugged in). Let s > 0 be the TKF substitution rate parameter and define the

substitution matrix

e T +my(l—e57) ifb=10
bppy = (Ass)

my (1 — e 57) iftb £
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T T

A TACGC B TACGC
7=0 7=1 7=10 7 =100 s=001 s=01 s=1 s=10
TACGC  TAACG  CGC GTTC TACGC = TACGC TACGT TGTTG
TACGC  TACGC ~ ATAACCGC TG TACAGC  TACGC TACGC GACAT
TACGC TACGC ~ TCGC CATATCACT TACGC AACGC CACCA CGEGC
TACGC = TACGC ~ TTCGC C TACGC TACGC GCTGT TTCCG
TACGC  TACGC  TCGC CAA TCGC TACGC GACGC CTCAT
TACGC TACGC — TAGC TCG TACGC TACGC TCAC GAAAG
TACGC  ACGC AGC GAC TACGC TGCGC TGGGT CGTGC
TACGC  TACGGC  TACGC AA TACGC TACGC TACCA ATATC
TACGC TACGC — GGCGC TAAGC TACGC GATGC TACAA
TACGC TACGC  CTACC T TACGC TACGC TTCGC GATAG

Figure A.3: Samples from the Thorne-Kishino-Felsenstein model. Initial sequence TACGC, u = 0.02,and A = 0.01. A.
s = 0.01 and varying 7. B.7 = 1 and varying s.

With these definitions, Y ~ MuE(X, ¢, ¢, a0, a®) is the distribution of the Thorne-Kishino-
Felsenstein model after the sequence X evolves for time 7. Note that the limit 7 — 0 is the no-
mutation limit. Figure A.3 illustrates samples from the TKF model with changing parameters.

Proof We will show that the joint probability of W and Y under the MuE distribution is iden-
tical to the joint probability of the corresponding alignment pairwise alignment and Y under the
TKF model. To start, we systematically enumerate state transitions in the MuE model and compute
the corresponding probability factor under the TKF alignment scoring system. Our alignment nota-
tion in this section follows the original paper. “X” represents a residue and “~” a gap. “.” represents

the “immortal link” in the model, the start of the sequence. We use “$” as a termination symbol.

Following the original paper, we define, forv € {1,2,...},

pu(7) = e *T[1 = AB(T)][AB())" !
po(T) == uB(7)

(A.6)
Py () = [L—e " — uB(7)][1 = AB(T)][AB())"

() = [1 = AB(N)]AB(7)]"
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The TKF model assigns probabilities to a pairwise alignment based on the pattern of residues and
gaps; we will break down possible pairwise alignments into chunks corresponding to state transi-
tions under the MuE and compute the probability factor that they contribute under the TKF scor-

ing system. When enumerating transitions in the Markov model we put a

“|77

symbol to the right of

the residue we are transitioning from.

1. Transitioning from a state (m, 0) to astate (m’ > m, 0) gives the probability factor

[ph (D)™ =™ 1 (1) = [uB(T)]™ ™ Le HT[1 — AB(7)] according to the TKF scor-

ing system.
X | X oou X X
X | - - X

2. Transitioning from (m, 1) to (m' > m, 0) gives the factor

[ (1)]™ ™ p1 (7) = [uB(r)]™ =" #T[1 = AB(7)].

3. Transitioning from (m, 1) to (m, 1), situation 1. This gives a factor % = A\B(7).

X = vee = | -

X X oo X | X

4. Transitioning from (m, 1) to (m, 1), situation 2. This gives a factor 27*28 = AB(7).
v+1
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. Transitioning from (m, 0) to (m + 1, 1). This gives a factor Z?E:g = A\B(7).

X | -
X | X
. Transitioning from (1, 0) to (m/ > m + 1, 1). This gives a factor [p) (7)™ ~™2p} (1) =

[uB(P)]™ 2L — et — pB(r)][L = AB(7)].

X | X oot X -
X | - .
. Transitioning from (m, 1) to (m’ > m, 1). This gives a factor [pj (7)™ ~™1p} (1) =

[B()]™ = L = e7# — uB(7)][1 = AB(7)).

. Terminating after (m, 0). This gives a factor [p)(7)]M =™ = [uB(r)|M—™.

. Terminating after (m, 1). This gives a factor [pfy(7)]MF1=™ = [uB(r)|M 1™,
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I0O.

II.

I2.

13.

Initial transition to (1, 1). This gives a factor p5(7) = p{ (T)AB(7) = [1 — AB(T)][AB(7)].

. |

.l x

Initial transition to (m, 0). This gives a factor

PU(D) o ()™ pu(7) = [L = AB(T)][B(r)]™ e [1 = AB(T)].

[ X ... X X
| - oo - X
Initial transition to (m > 1, 1). This gives a factor p// (7) [pj (7)™ 2pi (1) = [1 —

AB(TIuB(T)™ 2 (1 — e7H7 — uB(7)][1 — AB(T)].
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Compiling these results yields the probability factors associated with each transition between states

[B(E)]™ ~m =19 m 1 — AB(t)]
ifm—g<m' <M+1landg =0
A3(t) ifm—g=m'—1landg =1
(m,g) = (m',g") :
(B(E)]™ =249 [1 — e — puB(D)][1 — AB(D)] (A7)

iftm—g<m/—1landg =1

0 otherwise

(m, g) — termination : [Nﬁ(mMinﬁg
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And with each initial transition

[1 = ABD)][uB®))™ e M1 — AB(t)] f0<m < M+1
andg =0
[1—AB()|AB() ifm=1andg=1
initial — (m, g) :
[1 = AB@)] (1B ()"
x[1—e ™ — uB(t)][1 — A\3(¢)] ifl<mandg=1
0 otherwise
initial — termination : [1 — M\3(t)][uB ()M
(A.8)

However, these are unnormalized probability factors, not complete probabilities. Note that every
alignment will include a factor [1 — AS(t)], which in the original TKF description is associated with
the initial transition. However, if we instead rearrange this factor and assign it to the final transition

we obtain the transition matrix given in Equation A.3. We can check that this transition matrix
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normalized. From a state (m, 0), the total outward transition probability is one:

M , M+1 ,
STowBmT T e T = AB +AB+ Y [wB™ T — e T — pf][1 = AS]
m/=m+1 m/=m+2
+ [wBM (1 = AB)
1— (up)M-—m

= W[l — e KT _Mﬁ—i—e_l“'”l _ )‘6] + A8+ [NB]M_m(l . )‘6)

=1— (uB)M ™1 — A8 + [uB]M ™ (1 — AB)
=1.

(A.9)

The same expression holds for the initial transition, plugging in m = 0. From (m, 1), we have

M M+1

ST BT L= ABHAB+ > B T L — e M — ppl[l — Af]

m’'=m m/'=m+1

+ [wBMTT (1= AB)

_ 1wyt
- 1-upB

-1 (M,@)M+1_m[1 _ AB] + [MB]M-H—m(l _ Aﬁ)

[1— e — pufB+ e ][L = AB] + A8 + [uB]M 1™ (1 — AB)

=1

(A.10)

Conditional on the mth residue of X being aligned to the lth residue of Y (i.e. w; = m), the
TKF model specifies that the probability of y; given Ty, is D 4, iy T, b6, Y11, which is identical to

the probability under the MuE model. In the case where the Ith residue of y is aligned to a gap (i.c.
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g1 = 1), the TKF model says the probability of choosing the specific base b is 7y, the equilibrium

probability of the base. We can check that the MuE provides the same factor:

Pyl (Up = 1w, @, ¢,0) =Syl
b/

=me T + (7Tb)2(1 —e )+ Z mymp(l — e 57) (A.11)
b//#b

=mpe T+ mp(l — e ) = my.

Pair HMM

The pair HMM model generates pairwise alignments by switching between three states: (1) a state
emitting residues in both X and Y (a match state), (2) a state emitting a residue in X and a gap in
the alignment of Y, and (3) a state emitting a gap in the alignment of X and a residue in ¥ (Durbin
etal. 7, Chapter 4.1).

Statement Figure A.4 shows a standard pair HMM diagram and state probabilities, with 7 the
probability of transitioning to a gap state, € the probability of staying in a gap state, and  the proba-
bility of the Markov chain terminating. We assume 1 — 2y — k > 0and1 — € — k > 0. When in
amatch state, the pair HMM emits letters b and 0’ in the = and y sequences with probability 1/ /3

otherwise, in gap states, the probability of letter b in the non-gapped sequence is 7.
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Define the MuE transition matrix and termination probability vector as

1-2v—k f 1= /<M dao= I
1—(“/6M*m*1(1—R)+n+’)%71761¥;m71) tm = wmeg=9 0
,Ye'rrL/—7n72(l—e—K]) - : lfm + 1 < m/ < Mandg — g/ — 0
1—(yeM=—m=1(1—g)+r+yri=T—") o
X if l=m'<Mandg=0andg =1
17(%M_m_1(17ﬂ)+n+w1761\14:€m71) itm + m < M andg and g
® ,Yl—n ifm+1=m'=M+1landg=0andg =1
A iy =
1Ii;“ iftm=m'<Mandg=1andg =0
T iftm=m'<Mandg=¢' =1
s ifm=m'=M+1landg=¢ =1
0 otherwise
(A.12)
oLkl ifm < Mand g =0
17(76A1_m_1(171{)+n+’yn176]\1[:67”_1) rm < and g
e ifm=Mandg=0
t ytr
t,g) = (A.13)
P iftm=M+1landg=1
0 otherwise
The initial transition vector is defined by a](CO) = a(()ti and initial termination probability is +0) .=

+®

o - Define the substitution matrix
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initial ——— >

Figure A.4: Pair HMM state diagram.

forall b, b’ € {1, ..., B}. Let the rows of the insertion matrix ¢ be

emi=0HT .7 (A.1s)

where £~ is the inverse of the substitution matrix, which is assumed to be an invertible matrix, and
T indicates the matrix transpose.

With these definitions, Y ~ MuE(X, ¢, ¢, a0, a(t)) is equivalent to the conditional distribu-
tion of Y given X under the pair HMM. Note thatif v = 0 and ¢ = diag(7) (the B X B matrix
with diagonal entries 7 and all other entries 0) then we recover the no-mutation limit of the MuE
distribution.

Proof We will show that the joint probability of W and Y under the MuE model is identical
to the joint probability of the corresponding alignment and Y under the pair HMM, conditional

on X. We start by enumerating all possible transitions between states of the MuE Markov chain
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and computing their probability under the pair HMM model without conditioning on X. Define
w? = l](.A(-x) € B) and wY likewise. We use w”, w¥ notation to represent possible alignments, with
<« | »

the symbol “|” placed to the right of the residue we are transitioning from.

1. Transitioning from (m,0) to (m + 1 < M, 0) has probability 1 — 2y — k.

x: 1] 1

y: 1|1

2. Transitioning from (m,0) to (m’ > m + 1,0) form’ < M + 1 has probability

e T2(1 — € — K).

x: 1] 1...11

y: 1|0 ...01
3. Transitioning from (m, 0) to (m + 1, 1) has probability .

x: 1] 0

y: 1| 1

m—1

4. Terminating after (m < M, 0) has probability yeM ="~ 1.

x:1]1...15%

y:1]0...05

5. Terminating after ()M, 0) has probability .
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IO.

y: 1| $

Transitioning from (m, 1) to (m < M, 0) has probability 1 — € — k.

x: 0 |1

y: 1|1

Transitioning from (m, 1) to (m, 1) has probability e.

x: 0] 0

y: 1|1

Terminating after (M + 1, 1) has probability x

x: 0| $

y: 1| $

Transitioning from the initial state to (1, 0) has probability 1 — 2y — &.

Transitioning from the initial state to (m > 1,0) form < M + 1 has probability

Ye™2(1 — € — k).
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These transition probabilities were derived without conditioning on the fact that we have observed
X, which has length M. To compute this conditional probability, we calculate the probability that
the pair HMM generates an alignment with too many or too few X residues starting from each

MuE Markov model state.

1. Starting from astate (m < M, 0), the probability of the pair HMM generating an invalid

alignment that is too long (rather than transitioning to a valid MuE state) is yeM=—m=1(1 —
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€ — k) +yeM=m = yeM=m=1(1 — ). The first term is from alignments that use a match

state instead of terminating.

. Starting from a state (m < M, 0), the probability of generating an invalid alignment that is

M-—1
m/=m+1

1

. . . . . l_ J—
too short (rather than transitioning to a valid MuE state) is £ + YN T T R =

 M-m—1 . . . . .
K+ 7&1617_6. The first term is from alignments that immediately terminate.

The second term is from alignments that terminate early after transitioning to the z-alone

state.
x: 1|1 18
y: 1] 0 OIS
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3. Starting from the state (M, 0), the probability of generating an invalid alignmentis (1 —

2y — k) + v =1 — v — k. The first term is from alignments that use a match state instead

of terminating.
x: 1] 1
y: 1|1

4. Starting from astate (m < M, 1) the probability of generating an invalid alignment that is

too short is k.

5. Starting from the state (A + 1, 1), the probability of generating an invalid alignment that s

toolongis1 — € — &.
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6. Starting from the initial state, the probability of generating an invalid alignment that is too
long is yeM=1(1 — € — k) + yeM =™ = veM=1(1 — k). The first term is from alignments

that use a match state instead of terminating.

7. Starting from the initial state, the probability of generating an invalid alignment that is too

M-1
17% when M > 0. The first term is from

— I
shortis k + 2%211 vk = k 4+ YK .

alignments that immediately terminate.

The second term is from alignments that terminate early after transitioning to the z-alone

state.
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8. Starting from the initial state, if M = 0, then the probability of generating an invalid align-

mentis (1 — 2y — k) + v = 1 — v — k. The first term is from alignments that use a match

state.
x: |1
y: |1

We can confirm that all possible trajectories of the pair HMM are either valid transitions under the
MuE Markov model or produce alignments with too few or too many X residues, by checking that

the outward transition probabilities from each state sum to one.
1. Fromastate (m < M, 0), the total outward transition probability is

M
(1-2y—kK)+~v Z 21— e — k) 4y + 4T 44 TTL(1 - g)
m'=m-+2

1— eM—m—l
)

1—e€
1— 6M—m—l

1—c¢

+ (k + 7k
1— 6M—m—l

M—m—1
+ 1—c¢

=1—-vy+y(1—-€e—k) + e o
=1—7y+7y(1— M ™) 4yt
=1

(A.16)
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. From the state (M, 0), the total outward transition probability is

Yy+E+(1—y—k)= (A.17)

. From astate (m < M, 1), the total outward transition probability is

(I—-e—kr)+e+r=1 (A.18)

. From the state (M + 1, 1), the total outward transition probability is

k+e+(l—e—kr)=1 (A.19)

. From the initial state, with M > 0, the total outward transition probability is

M
(1-2v—k)+ Z Y™ 2(1—e—k) + v+ e 4+ 7M1 — k)
m=2
TRV il
Rt Y=
—eM-1 _ M1
:1—'y+fy(1—e—/£)17+'yn6M*1+’yeM*1(1—n)+'y/<c 1
e _
1— M-1 1— M-1
=1yl — M) — gt M g

1—c¢

=1

(A.20)
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6. From the initial state, with M = 0, the total outward transition probability is
Yy+E+(1—y—k)= (A.21)

Consolidating transition probabilities and conditioning on the length of X yields the transition
matrix Equation A.12.
Next we consider sequence emission probabilities, given an alignment. Recall that X and Y are

one-hot encodings of sequences.

1. Consider the case that Y] is aligned to X, ie.

The conditional probability of Y7 ;y = 1 given X, ;, = 11is, according to the pair HMM,

¥y, /Tp. This matches the conditional probability assigned by the MuE,

Y; ~ Categorical( Z Xonprlyr) = Categorical(ﬂ). (A.22)

b Ty

2. Consider the case that Y] is aligned to a gap, ie.
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The conditional probability of Y j, given X is just 7, (since X is not informative in this case).

This matches the conditional probability assigned by the MuE,

Y} ~ Categorical (" - £71 - £)T) = Categorical(r). (A.23)

. Consider the case that X, is aligned to a gap, ie.

The conditional probability of X, given X is trivially one, so this term does not contribute
to the conditional probability of Y given X under the pair HMM. It also does not con-

tribute to the probability under the MuE.

Thus, term-by-term, the joint probability of W and Y under the proposed MuE distribution

matches the joint probability of the corresponding alignment and Y under the pair HMM condi-

tional on X.

ProriLE HMM

The profile HMM (pHMM) is a widely used model for defining protein sequence families, inferring

multiple sequence alignments, and performing database searches 67,
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Statement Define the pHMM insertion parameter 7y, ; € [0,1] forallm € {1,..., M +1} and
J € {0,1,2}, and the deletion parameter uy, ; € [0,1] forallm € {1,...,M}andj € {0,1,2}.

Then define the MuE transition matrix and termination probability

(1= rmt1-g,g)(1 = Ums1—g,4)
iftm+1—g=m'andg' =0
(1= Pt 1-g.9) 1.9 (T 9o [(1 = T 2)thr 2] (1 = T 2) (1 = )
iftm+1—g<m/andg' =0
Uk’ “= \ Tmg1-g,g
iftm+1—g=m'andg =1
—1

(1 - Tm+lfg,9)um+1*gyg(H%":m+2_g[(1 - Tm”,?)um”,2])rm’,2

iftm+1—g<m'andg =1

0 otherwise
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L=rpmi1yg

" ifm—g=M
), = (A.25)

(1- rm-i-l—g,g)um-&-l—gy(Hr]\r/L[”:m—i-Z—g[(1 = Tyt 2) U 2]) (1 = Tar41,2)

ifm—g< M

(0)

The initial transition vector is given by a;.” := a(() L and the initial termination probability is given

by t0) = t(()t). Let the MuE substitution matrix £ be the identity matrix I, ie.
Uy == Op (A.26)

forb,b' € {1,..., B}.

With these definitions the profile HMM can be writtenas Y ~ MuE(X, ¢, ¢, a©® q® ). Fig-
ure A.s illustrates samples from the pHMM. Intuitively, 7 controls insertion probabilities and u
controls deletion probabilities; when 7, ; = 0and u,, ; = 0 forall m and j, we recover the no-
mutation limit of the MuE.

Proof This result follows from the relabeling of the profile HMM Markov state architecture
with the (m, g) notation (Figure A.6). So-called “delete states” in profile HMM:s do not generate
observations Y;. To compute the probability of transitioning between two observable states (1, g)

and (m/, ¢’), we compute the probability of (1) direct paths between the two states and (2) all possi-
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u=(0,0.5,0,0,0,0)

T TACGC

TACGC
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TACGC
TCGC
TACGC
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TACGC
TACGC
TCGC
TCGC

r = (0,0,0,0.4,0,0)
u=(0,0,0,0,0,0)

TACGTGC
TACGC
TACCGC
TACGC
TACAGC
TACGC
TACCGGC
TACGC
TACAAGC
TACGC

Figure A.5: Samples from the profile HMM. The regressor sequence Xl,-~7M issetto TACGC,and we set 7y, j—0 =

Tm,j=1 = T'm,j=2 and Um,j=0 = Um,j=1 = Um,j=2 for all m.

(1= rap)usp

initial
(1=710)(1 = u1) (1’ 0) (1= r2,0)(1 = uz)

(1=7r30)(1 = uz0)

| termination
(M. 0) T—rmi10

Figure A.6: Profile HMM state architecture. The conventional profile HMM state architecture labeled with MuE states,

using (m, g) notation. Squares indicate “match states”, diamonds indicate “insert states”, and circles indicate “delete

states”.

ble paths between the two states that go only through deletion states. This yields Equation A.24.

The emission probability of each state in the pHMM is set by its associated emission probability

vector. Without loss of generality, we can write any emission matrix of the pHMM as & (Definition

2.1) since £ is the identity matrix.

NEEDLEMAN-WUNSCH

The Needleman-Wunsch (NW) algorithm is a classic non-probabilistic alignment method **7.
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Summary Let GG be the NW gap penalty, which we assume to be negative, and define u := €S,

We define the MuE transition matrix and termination probabilities

}I_—Zum/*m*Hg ifm—g<m' <M+1landg =0
a(t) ;=g l=u, m'—m+g if I < / (A.27)
K,k Trul ifm—g<m' <M+1landg =1
0 otherwise
t(t) 1+’ uM—mtg (A.28)
= 2
K 1+u
The initial transition vector is defined by a,(go) = aétzc and the initial termination probability is

t;co) = tgt). Let S5 be the NW similarity matrix, for which we assume that 3, ¢%»% = B for all

b. We define, for b, b’ € {1, ..., B},

, S
bb = g (A.29)
Finally, forallm € {1, ..., M + 1},

em =Y. (1/B,..,1/B)" (A.30)

where £~ is the inverse of the substitution matrix (assumed to be invertible) and (1/B, ...,1/B)"
is alength B column vector. Let X and Y be the sequences to be aligned.
Under the MuE model Y ~ MuE(X, ¢, /, a©®, a(t)), the maximum 4 posteriori estimator of the

alignment variable w given X and Y corresponds to the Needleman-Wunsch pairwise alignment
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between X and Y. Note that in the limit G — —oo and Sp,y — —oo forall b’ # b, we recover the
no-mutation limit of the MuE distribution.

Proof We can organize the NW scoring system according to transitions in the MuE Markov
model. We use w”, w¥ notation to represent alignments, with the symbol “|” placed to the right
of the residue we are transitioning from. We assign I’ to be the residue of Y at the column of the

alignment corresponding to state K.

1. Transitioning from (m, 0) to (m’ > m, 0) givesa NW score of (m’ — m — 1)G +

Db T/ bbb Yir b -

4. Transitioning from (m, 1) to (m' > m, 1) givesa NW score of (m' —m + 1)G.
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x: @] 1...10

y: 1|0 ...01

5. Terminating after (m, 0) gives a NW score of (M — m)G.

x:1]1...15%

y:1]0...05

6. Terminating after (m, 1) givesa NW score of (M — m + 1)G.

x: @] 1...158

y:1]0...05

Now we can rewrite the Needleman-Wunsch objective function in terms of these transitions,

rather than in terms of gap and insert scoring. In particular, define

(m'—=m—-1+¢)G

, ., + be/ mm/,bS@b/yl,?b/ ifm—g< m’ < M and g’ =0
A(l',m,g,m',g") := (A31)

(m'—m+g)G ifm—g<m/ < Mandg =1

—00 otherwise

Based on the cases outlined above, the NW objective function can now be rewritten as

L

argmax »_ A(L,my_1, gi—1,m4,91) + (M —myp + g1)G (A32)
m,g =1
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where wesetmg = 0,90 = 0. If we find the solution to this objective function, then follow
the mapping from the list of Markov chain states (m1, 1), ..., (M, gr,) back to an alignment, we
obtain the Needleman-Wunsch alignment between sequences x and y.

Now we examine the maximum « posterior estimator of w under the MuE distribution. We have

L

arg max log p(y, w|z, ¢, a, ¢) = arg max logp(term.|wL)+Zlogp(yl,wl|wl_1)—|—logp(y1,w1)
w w 1=2

(A.33)

where p(term.|wr,) is the termination probability after state wy,, which reduces to p(term.|init.)

when L = 0. Under the given MuE model,

1—u

M- 5 exp( Db b Ty b Sb Yip)
ifmy_ 1 —g1<my<M+1landg; =0

p(yi, wilwi—1) = }Izuml*m171+9171% ifmi_1 —g1 <my < M+1
andg; =1
0 otherwise
(A34)
1 + U2 M—m
# ) —_ L+9L A.
pleerm.|wr) = < ot (A35)
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™ T exp(Lpy Tmy pSe Y1) ifmy <M+ landgp =0

14+u
p(yr, wi) = i—ﬁumlﬁ ifm <M+1landgy =1 (A.36)
0 otherwise
1 2
p(term.|init.) = tu u (A.37)

1+ u

Now, the maximum  posteriori estimator of w can be written as

1—ul 1+ u?

— l
1+uB)+ 0g(1+u

L
) + ZA(laml—lagl—la ml7gl)

arg max log p(y, w|z) = argmax [L log(
w n.g 1=1

m7g

+ (M —mp + gL)G]

= argmax[zA(lvml—hgl—lamlagl) + (M —mr + QL)G]

mvg =1

(A.38)

where again mg = 0 and go = 0. This objective function is identical to the NW objective function
(Equation A.32), so the maximum « posteriors estimator of w in the MuE distribution corresponds
to the Needleman-Wunsch pairwise alignment of X and Y.

We can confirm that the transition probabilities of the MuE distribution are normalized by con-
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sidering transitions from state (m, g):

M M+1 2
1 —u Z um’fm71+g + 1 —u Z um’fm+g + 11+ u uM—m+g
+u m/=m—g+1 +u m'=m—g+1 +u
M—m—14g¢g M—m-+g 2
]. — U m! m! 1 +u M—m+g
= u u u u
1+u [ ; + ; J+ 1+u
m''=0 m!’ =
2
_ ! [1— Mg gy — g Momtet2) 4 Ltu uM—m+g (A-39)
1+u 14+u

1 + u2uM—m+g + 1 + u2uM—m+g
1+ u 1+u

A.2.3 INFERRING MULTIPLE SEQUENCE ALIGNMENTS

In this section we describe how MuE observation models can be used to infer multiple sequence

alignments. First we define a multiple sequence alignment, analogously to Definition 4.2.

Definition A.2.2 (Multiple sequence alignment). Lez Y1, ..., YN be sequences with lengths Ly, . .
A multiple sequence alignment Yysa € (B U {=1) bas rows YMSA 15 - - - » YMSA,N each consisting
of the letters of Yy, in order, interspersed with gap symbols. The alignment Yyisa must satisfy the condi-

tion that forevery j € {1,. .., J}, there exists somei € {1, ..., N} such that Yysa i j € B.

Consider models of the form of Equation 2, and let W; be the latent alignment variable associ-
ated with sequence Yj,i.e. W 1, ..., W; . is the path through the latent state space that generated

Y; with length L;. Algorithm 2 constructs a multiple sequence alignment of the dataset Y7, ..., Yy
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Algorithm 2 Multiple sequence alignment construction

input H {Wl,la ey WLLI}’ ey {WN,la ey WN,LN} and Yi, ey YN
output: Yuvsa
Plug in definition of j; and g; for each sequence;
for i€ {1,2,...,N} do
for l; € {1,2,...,L;} do
9ig; = I(Wiy, > M);
mgy, = Wiy, — Mg;y,;

end
9i,L;+1 =0 (for convenience);
mi ;41 =0 (for convenience);
end
n = 0;
l1,l2,...,lN = 1;
Iterate through each latent state, assigning letters of Y1,...,Yn to Yumsa;

for m € {1,2,...,M +1} do
Place in the same contiguous set of columns letters generated from the same site in c;
while 3i : m;;, = m and g;;; =1 do
n=mn+1,
for i€ {1,2,...,N} do
if m;;, =m and g;;, = 1 then
Yrmsain = Yiu;

L=L+1
else
| Yumsain ==
end
end
end

Place in the same column letters generated from the same site in X;
if 3 : my;, =m and g;;, = 0 then
n=n+1;
forie{1,...,N} do
if m;;, =m and g;;, = 0 then
Ymsain = Yiy,;

L=L+1
else
| Yumsain = -
end
end
end

end
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given Wy, ..., Wy, placing Y; ; that are generated from the same state (m, 0) (corresponding to a
particular position in the “ancestral” sequence X;) in the same column. Note in the case of multiple
sequence alignments, as opposed to pairwise alignments, there is no longer a unique alignment given
W, since X is not observed. The Algorithm 2 construction is chosen to match a standard construc-
tion used for the profile HMM (see Durbin et al. ©7, Chapter 6.5), using the fact that the profile
HMM is a special case of Equation 2 with py(v) = &y, (v), where 0, (v) is the Dirac delta function
at vg. In MuE observation models we can apply the same algorithm as for pPHMMs, placing Y ; that

are generated from the same state (1, 0) in the same column.

A.2.4 PROOF OF PROPOSITION 4.5

We require that with probability 1, the set {j1, . .., j } defined by Definition 4.3 is valid, i.e. it
must be ordered such that j; < jiy;foralll € {1,..., L — 1}. Plugging in Definition 4.3, this is
equivalent to the requirement that

M1 > my — g, (A.40)

where recall m; := W; — M g;. For this inequality to hold with probability 1 for any sample W,

Condition 2.2 is necessary and sufficient. O

A.2.s VOGELET AL. NATURAL LANGUAGE TRANSLATION

The Vogel et al. 7° translation model takes the same general form as a MuE distribution, with X a

sentence in one language and Y a sentence in another language (encoded as sequences of words). In
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particular, with states k indexed by tuples (1, ¢), the transition matrix takes the form

t ZMTMH"'/_m ifg =g =0andm,m’ <M
aff), = { Dmra st (Ag1)
0 otherwise

where r € R*M is a vector of non-negative weights. The initial transition vector is defined by
a,(co) = a(()tze. The length L of Y is sampled independently of . We can see that for general -,

Condition 2.2 is violated.

A.3 MODELS

In this section we provide a detailed description of the models evaluated in the main text. We param-
eterized the transition matrix a(*) in terms of 7 and following Equation A.24 (the profile HMM
parameterization). We also considered a simplified variation on Equation A.24 where we enforce the
CONSLIAINE Uy 0 = U, 1 = U2 and likewise 7y, 0 = 7,1 = 74,2 for all m. We enforced (in both
cases) the constraint upr,; = Oforj € {0,1,2} (termination has probability zero); rather than
assign a termination state we assume the length of the sequence Y;, that is L;, is independent of W;.
Since the probability of L; does not contribute to the per residue perplexity performance metric
(Section A.5) we do not use an explicit model for L;. The initial transition vector followed the same
form as the transition matrix, i.e. a,(co) = a(()?ﬁ.

Note that in our experiments we go slightly beyond the vanilla MuE observation model pre-

sented in the main text (Equation 2), and allow the insertion sequence c to also depend on py.

235



A.3.1 ProriLE HMM

The profile HMM is

Yi ~ MuE(z, ¢, £ = I, a9 (r,u),a® (r, u)) (A.42)

where a(®) (7, u) and a® (r, u) depend deterministically on the parameters r and u according to

Equation A.24, D = B,and Ip is the B x B identity matrix.

A.3.2 REGRESSMUE

The RegressMuE model uses a linear regression model as the MuE observation’s continuous-space

vector model. Let H; 1, ..., H; 7 be covariates associated with sequence Y;. Let Béx), - éfc) €
RMXD be a set of coefficients associated with X, and let B(()C), e (T(':) e RMADXD he g get of
coefhicients associated with c. Then the RegressMuE is
) (2) d (2)
‘/;(x _ Oz + Z Hi,tﬁtz
t=1
T
Vi = 560+ 3 i (A43)
t=1

Y; ~ MuE(X; = softmax(V\™), C; = softmax(V,?), ¢, (r, u),a® (r,u)).

Note that in this model, unlike the pHMM, the substitution matrix £ is not constrained to the iden-
tity. Whenr,, = ¢, = Oforallmand/{ = Ip, the RegressMuE reduces to a multi-output

multinomial logit regression model.
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A.3.3 FacTorRMUE

The FactorMuE model is the latent linear version of the RegressMuE. Instead of observing covari-

ates H , we draw a latent variable Z from a standard normal prior,

Z;i+ ~ Normal(0, 1)

T
Vi = 7+ 30 2y
o (A.44)

T
VO = 50+ Y. 2l
t=1

Y; ~ MuE(X; = softmax(V"™), C; = softmax(V;)), £, @ (r, u), a® (r, u))

A3.4 ICAMUE

The ICAMuE model the same as the FactorMuE model, except that it uses a Laplace prior instead

of a Normal prior on the local latent variable (Murphy '*5, Chapter 12.6).

Z;+ ~ Laplace(0, 1)
T
o+ 3 2,080
t=1

T
V;(C) — /3(()0) + ZZi,tﬁtc)
t=1

Y; ~ MuE(X; = softmax(V;(x)), C; = softmax(Vi(c)), 0,a9(r,u),a® (r,u))
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A.3.5 NEURALMUE

The NeuralMuE model uses a fully connected neural network as the MuE observation’s continuous-
space vector model. We use a network I layers using relu nonlinearities, widths 7' .14 1), and weights

Br:(r+1)- Let Hi 1.1, be a vector of covariates.

Try

Vire1 = Bryio+ Y HitBriiy
t=1

Tr
Vir = Bro + Z relu(Virq1.4) 00
=1

T
V) =85+ relu(Vig,) 8L
t=1

AT
Vl(;) _ g% + Z relu(‘/i,Q,t)ﬁft)
t=1

Y; ~ MuE(X; = softmax(V,{), C; = softmax(V,'}), £,a( (r, u), a® (r,u))

A.3.6 LATENTNEURALMUE

The LatentNeuralMuE model uses a neural network latent variable model as the MuE observation’s

continuous-space vector model. It is the latent covariate version of the NeuralMuE, where instead
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of observing H we draw a latent variable Z from a standard normal prior.

Zit ~ Normal(0,1)

Tri1

Vir+1 = Br410 + Z ZitPri
=1

Ir
Vir = Bro+ Y relu(Viri1:)Bry
t=1
(A.47)
Ty
VZ(;E) _ izo) + Z relu(%,&t)ﬁﬁﬁt)
t=1
T
‘/z(i) _ {‘33 + Z relu(%g,t)ﬁ%,cg

t=1

Y ~ MuE(X; = softmax(ViE:f)), Ci= softmax(ViEf)), ,a9 (r,u), a® (r,u))

A.3.7 PRrIORS

We place standard normal priors Normal(0, 1) over each element of each coefficient matrix /3 in
each model. Recall that each row of the matrix ¢ is constrained to the simplex, /; € Ap. To enable
easy gradient-based optimization and stochastic variational inference '+, we transform an uncon-

[RDXB

strained parameter £ € with a Gaussian prior to the simplex,

45 ~ Normal(0, 1)

{4 = softmax({y).
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The variables 7, j and wyy, ; are constrained to [0, 1] for all m and j. This corresponds to the first

dimension of a simplex Ag, and so we apply the same approach,

P ™~ Normal(ug), 1) forv € {1,2}

_ (A.49)
exp(7m,j2)

exp(fm’j,l ) + exp(fm,j,g)

rm 7j =

where ;") is a hyperparameter. The variable 1y, is handled identically, with prior
Uy j0 ~ Normal(ugu), 1) for 9 € {1,2}.

In the case of the ICAMuE model we found that training improved with an annealing strategy:
we multiplied each coefficient matrix 3 by a scalar inverse-temperature parameter £, drawn accord-
ing to £ ~ Normal(100, 1) and ¢ = softplus(€) where softplus = log(1 4 exp(-)); the variational
approximation to £ (see below) was initialized such that q(f ) had mean o. Note that this anneal-

ing approach does not change the expressivity of the model, only the prior and training dynamics.

Details can be found in the supplementary code (see Section A.4.2).

A.4 INFERENCE

A.4.I STOCHASTIC VARIATIONAL INFERENCE

Variational inference approximates the posterior distribution p(0|Y7. ) of a given probabilistic
model using a tractable family of distributions g, (6]Y1. ) parameterized by 7*7. To form this ap-

proximation, variational inference minimizes the Kullback-Leibler (kL) divergence between the two
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distributions,

1o := argmin KL (g (0Y1:3)[p(0]Y1:n)) (A.s0)
n

This objective can be rewritten as maximizing the evidence lower bound (ELBO),

no = argmax By, g1y, v)[logp(Y1.nv, 0)] — Eq, (67, x) [10g 45 (0|Y1:n )] = arg max ELBO(7)
n n

(A.sT)

We employ mean-field variational inference for MuE observation models. We use a diagonal
Gaussian distribution, with unknown mean and standard deviation, for the variational distribu-
tion over the global parameters 7, 1, l, 5 and f3. For the local variable z in the FactorMuE and La-
tentNeuralMuE, we amortize inference using an inference network (also known as an encoder net-

work) '3%*"3_ In particular, we set

N N
an. (v | Yiw) = [[ an. (2ilY3) = [Nl £ (Yis me), £ (Vi) (A.s2)
=1 =1

where NV (2|1, o) is the probability distribution function of a Gaussian with mean g and standard

deviation o, and f(*) (Yi;m.)and f (@) (Yi; m2) are differentiable functions of 7,. We parameterize
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) and f(@) using a neural network,

yz((f) = Byt MuB (Y60 £0),0(0) (1@ (@) (8 (r(0) 0y [ Y]
L@ B
z(qr)(q>+1 51(“q<t)z>+1,0 + ZZ; ; yi(z?bﬁl(ﬂ@z)_%l,b
F(Q)
z(ql')‘(‘I) = B, o D relu(v r)<q>+1 t)BI(“q(zﬂ,t
=1 (A.s3)

T
F0 = i 4 Z relu(v)% ) 815"

f( (q«r) + Z relu(v (q,o)‘

where we have introduced the variational parameters (3 (@) @) (9 (D) (D) =: 1., The first
layer of the encoder employs the MuE distribution and computes the expected value of mutants of
Y;, at positions [ € {1, ..., L{®}; this expected value is a differentiable function of the MuE parame-

ters, and can be tractably computed using the forward algorithm. We use the same parameterization

of the MuE distribution as in the models (Section A.3), but fix 1":([?0) = 7“&?% = 1":([?% = 7“5?3 =..=

(@)

Dy and ug ()) gqi q) (9) (9) (@) (@)

=Ujy = ug?()) = .. =uy jande;’ = ¢y = ... = ¢y Intuitively,

)

the MuE encoding serves to “smear out” the one-hot encoded sequence Y; according to learnable
insertion, deletion and substitution probabilities, making it easier for the encoder to learn which
(q)

sequences are similar, and making each encoded sequence y,

the same length L@,
To optimize the variational approximation we need to compute the gradient of the ELBO with

respect to the variational parameters 7. To enable faster optimization we employ stochastic varia-
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tional inference, approximating the gradient at each update step using a minibatch of data*°®. Let
¢ = (B,r,u,¥) be the global parameters of the MuE observation models proposed in Section A.3

and let 74 be the parameters of the associated mean-field variational distribution. Then the gradient

of the ELBO is
v & V,E loo n(Y:| Z; VL )
r2120(1) = (Va6 g (¥ 20 ) + oy iy [ g 755 )
p(9)
+V,E lo
| gqn¢(¢)}
Z( v llogp(YilZi, @)1 + VyEq, . (zilv; {bgﬂ})
18] Zg\ Ve O 4 mhan (1Y) [ 198 7T
p(¢)
+V,E lo
n Q77¢(¢)[ gqn¢(¢)}
(A.54)

where S C {1, ..., N} is the set of datapoint indices making up the minibatch and |S| is the

size of the set S. We estimate the gradient of the first term on the right hand side of this equation
using the reparameterization trick Monte Carlo estimator (with a single sample) and automatic
differentiation "#7'3%*3, The remaining terms can be computed analytically (see e.g. Kingma &
Welling "*?, Rezende et al. '3 ). Note that this approach relies crucially on the fact that the marginal
likelihood of the MuE model, pyut (y]z, ¢, £, @, a®) = S pmur (y|w, z, ¢, £,a? a®), is

a differentiable function of z, ¢, a and £. We integrate over all possible values of the Markov chain
state variable w using the forward algorithm.

It is useful in some circumstances to reweight the variational objective to reduce the amount of
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regularization placed on the local latent variable. In particular, for x € [0, 1], we reweight the ELBO

as

N
Z;
ELBO, (1) = (B, (6130, (v 08 P(Yil Zis )] + XEq,. (212 | log qp((Z,)y)D
= T (Ass)
p(¢)
" q"¢(¢)[ °8 qn¢(¢)]

We achieved improved training performance by annealing the weight x from o to 1 linearly over the
course of an initial time period during training*’. To avoid posterior collapse and produce infor-
mative latent representations, we found it useful in certain cases to anneal x only up to a low value
Xo << 1in which case we are approximating the maximum likelihood estimator of z; this anneal-

ing schedule was only used for producing data visualizations, rather than prediction of held out data

(Section A.8)7.

A.4.2 PROBABILISTIC PROGRAMMING

We implemented a MuE distribution in both Pyro*? and Edward2 *3, probabilistic programming
languages that are GPU-enabled and can use a variety of different inference procedures including
both stochastic variational inference and MCMC methods. Probabilistic programming systems
make it easy to try out different priors and different continuous-space matrix models py; they also
make it easy to build joint models of sequences and other types of data.

Documentation for the Pyro implementation can be found at https://docs.pyro.ai/en/

dev/contrib.mue.html. Example Pyro models can be found at https: //github.com/pyro-ppl/
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pyro/tree/dev/examples/contrib/mue. The Edward2 implementation, along with a brief tu-

torial, is available at https: //github.com/debbiemarkslab/MuE.

A.s EvALUATION

The per residue perplexity of a probabilistic sequence model p(y), over a dataset Y7. v, is defined as

N

1 1
Q:=exp(— szlogp(Yi]Li)). (A.56)
i=1

In evaluating our models, we computed the average log likelihood performance on a heldout test set

Y7 for the model distribution learned from the training set Yp. More precisely, we use

Z (¢|vp)llogp(Yi|Li, )]) (As7)
zGT

0= exp ’ 7_’

where g(¢|yp) is the variational approximation to the posterior distribution from the training
dataset and | 7| is the size of the test set. For models with local latent variables z;, we approximate

the marginal likelihood using the ELBO*7,

- p(Z;) )
QNexp( m; a@vo ot ) 108 PO, Zis O] + Byt [Tog 725 ) )

(A.s8)
We use Monte Carlo estimation for the expectations. In comparing between different models p1 and

D2, we also report the log Bayes factor associated with the held out data, ie. the difference in total log
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probability of the heldout data between the two models,

logBF12 := Y Egpsvp)logp2(YilLi, 8)] — > Eyy sy log p1(Yi| Li, §)] (A:59)
ieT ieT

where g1 and g2 are the variational approximations associated with p1 and pa. For models with
local latent variables, we can use the ELBO approximation as in Equation A.s8. The Bayes factor
provides a measurement of the total evidence in favor of one model versus another.

Per residue perplexity is a useful performance metric for biological sequence models because it
is an absolute scale and comparable across datasets as well as models. Since per residue perplexity is
not yet widely used in the biological literature, in the interest of making it more interpretable we
computed the expected per-residue perplexity for a variety of different protein sequence models, cov-
ering different data regimes. In particular, for each model p(y), we examined the expected perplexity

in the large data limit, assuming that the model is true,

1
Qo = exp (— Epy) [E logp(Y|L)]). (A.60)

The expected perplexity is the exponentiated entropy of the model distribution, and so also provides
a measurement of sequence diversity under the model. Below, we compute the expected perplexity
for distributions ranging from the very high diversity regime (all of evolution) down to the very

small diversity regime (human population genetics).
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Na1ve

A naive model assigns an equal probability to each amino acid. In this case the per residue perplexity
is

Qo = exp(—E[log(1/20)]) = 20. (A.61)

AMINO ACID FRE QUENCIES

A simple modeling approach is to predict individual amino acids solely based on their naturally
occurring frequency across evolution. Using the UniprotKB amino acid frequencies f; forb €

{1, ..., B =20}, we have

20
Q0 = exp ( - [EYNCategorical(f) [log(fT ' Y)]) = CXP(_ Z fb IOg fb) ~ 17.92 (AGZ)
b=1

where Y is a one-hot encoding>*5-*+.

BLOSUMbG62

If we are studying specific evolutionary families of proteins, an idealized strategy for building a
model is to infer the sequence of the last common ancestor and then predict family members us-
ing the standard BLOSUMG62 substitution matrix '°*. The BLOSUMG62 matrix is a renormalized

copula density, but we can convert it into a mutation probability matrix ¢ by assuming the marginal
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probability of each amino acid follows the UniprotKB frequency across evolution:

log€b7b/ = logp(yb/ = ]_’.’Eb = 1) = log (f:l;":/> = lOg fbl + lOg <]{:;//)
b (A.63)

log(2
= log fyy + ng()BLOSUMG%,

where x is a one-hot encoding of the ancestral amino acid, ¥ is a one-hot encoding the mutated
amino acid, and fj 3 is the joint probability of amino acids b and b/, where b, " € {1, ..., B = 20}.
(The log(2) /2 factor comes from the definition of BLOSUMG62..) We renormalize the rows ¢, to
ensure £, € A (BLOSUMG62 uses only small integers, producing non-negligible rounding error).
Next, we assume that the ancestral sequence is known exactly, has infinite length, and the frequency
of each amino acid within the ancestral sequence matches the UniprotKB overall frequency across

evolution. The expected per residue perplexity is then

QO = exp(_lEXNCategorical(f) [[EYNCategorical(X-Z) Uog(XT L Y)”) ~ 11.00. (A64)

HuMmAN PoruLATION GENETICS

Finally, we examined a simple model of human population variation. Each human has on aver-

age roughly s million single nucleotide polymorphisms (SNPs) relative to the reference genome .
Naively assuming a constant mutation rate over the genome, the probability of a mutation occur-
ring in any particular codon is Geogon = 1 — (1 — 5/6400)3, since there are 6.4 billion total base

pairs. If we very naively assume a uniform probability of the codon mutating to any other amino
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acid, then we can use the substitution matrix ¢ defined by

gten ifh £
by = (A.65)

1 = Geodon ifb=1v.

If we further very naively assume that there are no correlations among mutations at different genome
locations when looking across individuals, then the expected per residue perplexity of the sequence
distribution is

QO = €Xp ([EYNCategorical(xT~€) [lOg(l’T L Y)D ~ 1.024. (AGG)

A.6 PREDICTIVE PERFORMANCE

A.6.1 SURVEY

Dihydrofolate reductase (DHFR) is a widely conserved enzyme, serine recombinase (PINE) is
used as a tool for genomic engineering, cyclin dependent kinase inhibitor 1B (CDKN1B/p27) is
a cell cycle inhibitor, and the human papillomavirus E6 protein (VE6) is an oncogenic viral pro-
tein ''2¢1254, Evolutionarily related sequences for each were collected using jackhmmer (v3.1) from
the UniRefToo dataset (date 6/2019) '3>¢*5", We used seed sequences with Uniprot identifiers
DYR_HUMAN (DHFR dataset), PINE_ECOLI (PINE dataset), CON1B_ HUMAN (CDKN1B
dataset), and VE6_HPV 16 (VE6 dataset). Note that CDKN1B and VEG6 have regions classified as

disordered. We set a bitscore threshold of 0.5 bits/residue as in Hopf et al. '*° and ran the jackhm-

mer search using the API from the EVcouplings package '*”. We included the full envelope of the
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profile HMM hit in the final dataset. The CDN1B dataset had 1,055 sequences and the VEG6 dataset
1,609 sequences. We found 32,510 and 79,3 54 hits respectively for the DHFR and PINE datasets,
which we randomly subsampled to 10,000 sequences to create the final datasets. Note that the
jackhmmer search algorithm uses a profile HMM to find distant homologs, and thus may bias the
dataset to look more like samples from a pHMM; we therefore expect the performance gains from
using other MuE observation models, as compared to the pHMM, on these datasets to be smaller
(more conservative) than the performance gains that might be achieved on alternative datasets as-
sembled using different search methods. The TCR dataset was not assembled using jackhmmer.
Instead, we downloaded a public dataset from 10x Genomics of 6,327 TCR sequences found in
CDs+ cytotoxic T-cellshttps://support.10xgenomics.com/single-cell-vdj/datasets/
2.2.0/vdj_vl_hs_cd8_t (download file dated July 28, 2018). These were sequenced using single
cell sequencing of peripheral blood mononuclear cells obtained from an individual healthy donor.
Internal stop codons were removed from the sequence.

We set the latent alphabet size D = 25. In each experiment, we set M to be 10% longer than the
longest sequence in the dataset. We used 7' = 5 latent space dimensions in the FactorMuE and layer
sizesTo = 5,711 = 10 in the LatentNeuralMuE (we found a substantial dropoft in performance
when increasing network width or depth). In the recognition network, we set L@ = M — 1. We
also used 9 = 0 (no relu nonlinearities) in the FactorMuE recognition network and r@ =1,
Ty = 101in the LatentNeuralMuE recognition network. For the MuE, we used the constraint
Um,0 = Um,1 = Upm,2and likewise 7, 0 = 7,1 = 7p,2 for all m. For the prior on the MuE

insertion and deletion parameters we used 11(") = 1(*) = (100, 1) to disfavor indels.
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In these particular experiments, models were implemented in PyTorch, with variational infer-
ence implemented by hand and without the parallelized forward algorithm (experiments in Sec-
tions A.6.2 and A.6.3 were performed second with the Pyro implementation). We optimized the
variational approximation using Adam *** and a minibatch size of 5. The mean of the variational
distribution was initialized at the prior mean, while the variance was initialized to a small random
value (the absolute value of a sample from a normal distribution with standard deviation 0.01).

We used one Monte Carlo sample to estimate the ELBO gradient at each step. For each model and
dataset, we evaluated two different learning rates, 0.1 and 0.01, and three different random restarts,
selecting among training runs the parameter values that reached the highest ELBO on the training
set for making predictions. For models with local latent variables (the FactorMuE and LatentNeu-
ralMuE), we annealed the ELBO reweighting factor x from o to 1 linearly over the first 2 epochs.
We trained for 4 epochs total on the DHFR and PINE datasets, and 7 epochs total on the smaller
CDKN1B, VE6 and TCR datasets, which was sufficient for convergence in each model. We esti-
mated the heldout perplexity using one independent Monte Carlo sample per batch. Computations
were performed on graphics processing units (NVIDIA Tesla M40, K80 and Voo GPUs), with
double precision, and we used gradient accumulation to reduce memory usage. Single training runs
ranged from ~30 min. for smaller datasets (CDKN1B and VE6) to ~2.5 hours for larger datasets

(DHFR, PINE and TCR).
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A.6.2 PATIENT IMMUNE REPERTOIRES

We considered six datasets. “HC 17 consisted of 5,179 BCR sequences from a healthy donor, ob-
tained with single cell sequencing of peripheral blood mononuclear cells, available from 1ox Ge-
nomics https://support.l0xgenomics.com/single-cell-vdj/datasets/3.0.0/vdj_
v1_hs_pbmc2_b (download file dated November 15, 2018). The rest of the datasets all were taken
from a study of T cell receptors in patients with and without multiple sclerosis during pregnancy *7.
Sequences were translated to amino acids based on the provided nucleotide sequence annotations.
The dataset “HC 2” is from a healthy patient, third trimester, CD8+ cells. “HC 3” is from a healthy
patient, third trimester, CD4+ cells. “MS 17 is from a patient with MS, before pregnancy, CD8+
cells. “MS 2” is from a patient with MS, second trimester, CD8+ cells. “MS 3” is from a patient
with MS, third trimester, CD4+ cells. Each of the datasets from Ramien et al. **7 was uniformly
subsampled to 20,000 sequences. Across all datasets, internal stop codons were modeled along with
the 20 amino acids (i.e. B = 21).

We again set the latent alphabet size to D = 25. We set M = 200, longer than most sequences
in each dataset. Weused I' = 5 latent dimensions in the ICAMuE. In the recognition network
weused '@ = 0 and set (@), u(?) and £(9) to the no-mutation limit (avoiding the need for the
forward algorithm, to speed up inference at some cost in flexibility). We did zo# use either the con-
Straint Uy, 0 = Um,1 = Um,2 OF the constraint Tm0 = Tm,1 = Tmp2in these experiments.

For the prior on the MuE insertion and deletion parameters we used p) = p = (10,0), for

both the ICAMuE and pHMM models. We used the & ~ Normal(100, 1) prior as described in
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Section A.3.7 for the ICAMuE model.

Models were implemented in Pyro. We used Pyro’s stochastic variational inference method (in
particular, JitTrace_ELBO, the jit-compiled ELBO), and the parallelized forward algorithm**7.
Optimization was performed with Adam, with a learning rate of 0.01, and a minibatch size of s.
Initialization was performed the same as previously, with the exception that q(€) was initialized to
have mean zero. Pyro’s low-variance ELBO gradient estimators enabled more reliable inference, and
so we only used one initialization in each experiment (rather than three). For the HC 1 dataset we
trained for 1o epochs, annealing x for the first 4; for the remaining (larger) datasets, we trained for
two epochs, annealing for 1. This was sufficient for convergence. We used the same GPU hardware
as previously, but did not use gradient accumulation. Training took ~20 min. on the larger datasets

(the Pyro implementation offers considerable speedup advantages, thanks in part to the parallelized

filtering algorithm).

A.6.3 DISORDERED PROTEINS

261

Toth-Petroczy et al. *°* collected datasets of evolutionarily related sequences using jackhmmer on
the Uniref and Uniprot databases, starting from regions of human proteins classified as disordered.
They developed a (heuristic) alignment uncertainty score to determine whether the MSA provided
by jackhmmer was trustworthy enough to apply a Potts model and reach conclusions about epistatic
interactions between positions in the MSA. They did not proceed with the Potts model analysis on

datasets with a sufficiently high uncertainty score; we examined these datasets in particular (https:

//marks.hms.harvard.edu/disorder/proteome). We focused on moderately sized datasets:
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those with more than 3,000 but less than 25,000 sequences, with the disordered segment less than
160 amino acids long. As before, we included the full envelope of the profile HMM hit in the final
dataset.

We used the same hyperparameters and training procedure as in Section A.6.2, but set the num-
ber of epochs to be the minimum number such that at least 50,000 optimization steps were taken,
and the number of epochs of x annealing to half this number (rounded up).

Detailed results Perplexity on a randomly held out 20% of sequences are shown in Table A.2. In
55 out of the 56 datasets, the relative performance of the pHMM and ICAMUuE on the training data
accurately reflected their relative performance on the test set, i.e. when the pHMM outperformed
the ICAMuE model on the training set it also did so on the test set and vice versa. The ICAMuE
seems to offer particular advantages when the pHMM itself has low perplexity: among datasets with
pHMM perplexity below 8, we find the ICAMuE performs better in more than half (16 out of 31),

while among datasets with pHMM perplexity below s, the ICAMuE performs better in 5 out of 6.

Table A.2: Heldout perplexity on disordered protein datasets. “Disordered segment” is the region of the protein classified
as disordered that was used as a seed in jackhmmer. “Size” is the total number of sequences in the dataset. Rows sorted by
pHMM perplexity.

Genename Uniprotid Disordered segment  Size (sequences) pHMM ICAMuE

AKAP6 Q13023 293-431 6349 2.88 1.98
NSD1 Qo6L73 2463-2590 6517 2.93 2.64
NEFAT 094916 633-769 10283 2.94 1.98

Continued on next page
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Table A.2 - continued from previous page

Genename Uniprotid Disordered segment  Size (sequences) pHMM ICAMuE

CIC Q96RKo 48-207 7511 3.10 3.79
S26A8 Q96RNI1 847-970 9466 4.14 2.67
TADBP Q13148 261-373 12873 4.78 2.97
TET2 Q6No21 1475-1587 22017 §.11 5.98
K2022 Q5QGSo 589-707 3719 5.14 5.99
YAF2 Q8IYs7 53-180 16005 5.42 5.98
HDACs  QoUQL6 479-631 14275 S.44 5.85
MUC19 Q7ZsP9 5890-6021 13491 5-59 4.84
RBM27 QoP2Njs 91-247 11685 5.80 6.28
DENIA Q8TEH;3 453-567 6070 5.84 6.11
K1683 QoHoB3 383-502 10098 5.94 4.39
FNBP1 Qo6RU3 280-432 23781 5.96 3.82
TOX 094900 135-269 9881 6.02 6.48
SRPK3 QoUPE: 238-348 9345 6.06 5.73
CAC:1G 043497 470-626 16502 6.16 7.07
NGAP QoUJF2 803-953 6356 6.39 4.45
PS1C1 QoUIGs 1-126 3434 6.62 6.13

Continued on next page
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Table A.2 - continued from previous page

Genename Uniprotid Disordered segment  Size (sequences) pHMM ICAMuE

GPKOW Q92917 31-157 5888 6.67 4.90
GOGSB ASMQT2 I-131 3674 7.17 8.04
CPXM1 Qo6SM3 30-137 3538 7.28 I1.§1
ESX1 Q8N693 34-147 10234 7.34 10.44
PPIL4 Q8WUA2 337-492 5897 7.38 6.06
TAOK3 QoH2K38 316-433 8661 7.38 8.32
CAAPr  QoHB8G2 197-335 19715 7.54 5.00
CCD66 A2RUB6 681-830 9586 7.66 9.02
GCC2 Q8IW]2 1416-1552 7593 7.74 5.71
ASXL3 QoCoFo 107-236 5108 7.75 8.42
ARHGF 094989 273413 4290 7.97 7.66
YJo13 Q6ZQT7 1-158 22994 8.07 4.32
PHLB2 Q865Qo 842-976 22091 8.34 10.61
CC168 Q8NDH:2 86-232 12240 8.40 9.73
41 Prriy: 690-805 7429 8.70 10.05
CEBPA P49715 161-314 20149 8.81 10.18
CP2so Q9BV73 2213-2346 17867 9.08 12.34

Continued on next page
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Table A.2 - continued from previous page

Genename Uniprotid Disordered segment  Size (sequences) pHMM ICAMuE

CHDe6 Q8TD26 2312-2457 8843 9.19 10.62
ANKH1 Q8IWZ3 2000-2149 15540 9.22 10.59
CPLX4 Q7Z7G2 18-128 20000 9.42 11.16

WAC Q9BTA9 198-353 3385 9.58 9.15
BAHC1 QoP281 1357-1482 9092 9.76 I11.13
GOGG6B A6NDN3 473-580 7947 9.78 I11.50
NOB1 QoULX3 110-221 4659 9.86 11.93
DGKH Q86XP1 581-705 5903 9.86 I1.41
CASZ: Q86V1s 1589-1735 7943 9.92 11.38
POTED Q86YR6 367-502 15076 9.95 11.48
POTEC B2RU33 367-502 15076 10.02 11.43
POTEH Q68545 405-545 8777 10.32 11.90
ZKSC2 Q63HK;3 586-738 18126 10.32 14.57
PTRF Q6NZI2 175-297 18730 10.35 14.07
PERQ1 O75420 289-441 10443 10.44 12.35
UryL8 PoC7lo 383-530 2759 10.57 9.99
LRCH2 QsVUJ6 491-642 6832 10.66 12.60

Continued on next page
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Figure A.7: Latent space representation of human T-cell receptor sequences, colored by supervised annotations. Anno-
tations were provided with the 10x Genomics dataset. (A) C,, versus C@. (B) cx chain V types. (C) cx chain J types. (D) 3
chain V types. (E) 3 chain D types. (F) 3 chain J types and subtypes.

Table A.2 - continued from previous page

Genename Uniprotid Disordered segment  Size (sequences) pHMM ICAMuE

EMIL2 Q9BXXo 121-259 5666 I1.16 14.16

LMO~7 Q8WWI1 763-901 7893 I1.18 12.68
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Figure A.8: Comparing MuE observation model features to T-cell receptor relative solvent accessibility. (A) Relative sol-
vent accessibility of TCRﬂ from the structure PDB:2BNR % (the TCRcx chain is shown in gray), computed using DSSP 132
and the maximum values in Tien et al. 2°® with the Biopython API142. (B) Residue relative solvent accessibility versus Fac-
torMuE shift magnitude v along vector 1 and vector 2 from Figure 5D. The correlation between the shift along vector 1
and the accessibility is Spearman p = 0.039,p = 0.64.

Figure A.9: T-cell receptor structural annotations. (A) CDR segments of PDB:2BNR chain E % based on IgBLAST annota-
tions 2%° of the nucleotide sequence of 1G4 TCRB obtained from Robbins et al. *¢ | and translated from nucleotides into
the corresponding positions in the amino acid sequence. CDR1 in red, CDR2 in yellow and CDR3 in orange. (B) V (green),
J (yellow) and junction (red) segments of the 1G4 nucleotide sequence, based on the IgBLAST annotations, and translated
from nucleotides.
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Figure A.10: Shift / from chain « to chain 3 sequences learned by the RegressMuE model. /; was computed as in Equa-
tion 3, using the chain annotation in place of the latent variable 2.

A.7 T-CELL RECEPTOR ANALYSIS

A.7.1 DEeTAILS

We used the 10x Genomics single-cell TCR sequencing dataset described in Section A.6.1, along
with the CellRanger annotations of chain features provided along with the dataset. Annotations
of the reference structure PDB:2BNR are based on IgBLAST annotations*”S of the nucleotide
sequence of 1G4 TCR[3 obtained from Robbins et al. >, and translated from nucleotides into the
corresponding positions in the amino acid sequence (Figure A.9).

To obtain a latent space representation (Figure sB), we trained the FactorMuE observation
model with 7" = 2 latent dimensions, and chose among training runs based on a randomly held
out test set (5% of the data). Hyperparameters were otherwise set as in Section A.6.1. The shift v/ is

estimated using the variational approximation to the posterior of the FactorMuE (using 1o Monte
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Carlo samples). W is estimated using a single sample from the variational approximation to the

posterior and the Viterbi algorithm.

A.7.2 FURTHER RESULTS

Along feature vector 2 (Figure sD) we found weak positive correlation between the magnitude

of variation and the relative surface accessibility of each site (Spearman correlation p = 0.20,

p < 0.02; Figure A.8). Along feature vector 1 (Figure sD) we observed high values of 7/ in the V
segment, suggesting that there are systematic and heterogeneous differences between the V segment
sequence distribution used in TCRa chains and in TCRf chains. To confirm the observation, we
used the RegressMuE model to predict the entire TCR sequence based just on its annotation as
TCRa or TCR}. In particular, as covariate vector H; we used a one-hot encoding of the chain type
annotated by CellRanger; sequences without an annotation were labeled as (0, 0). We computed
the regression shift ; in the same way as Equation 3, with the covariate H in place of 2. Figure A.10
plots the shift in amino acid preference between the two chains, showing that at a population level

there are key positions within the variable region with substantial differences in preference.

A.8 INFLUENZA ANALYSIS

A.8.1 DETAILS

We downloaded publicly available influenza A(H3N2) HA sequences from GISAID*3¢. We se-

lected only sequences longer than 500 amino acids and with no ambiguous amino acids. Some se-
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Figure A.11: Comparing RegressMuE model coefficients to HA1 structural domains. (A) Head (orange) and stalk (green)
domains of the HA1 protein (PDB:4O5N); residues between sites 52 and 277 are defined as the head domain, and all
others as stalk, following Lee et al. 1. (B) Violin plots of regression shift v/; (Equation A.67) for residues in the head
domain (226 residues) versus the stalk domain (103 residues). Mean and standard deviation are shown in orange.
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Figure A.12: Comparing MuE observation model regression coefficients to HA1 epitope regions. (A) Epitope regions A

) 288.184 (B) Violin plots of regression shift 7/; (Equation A.67) for residues in

(red), B (orange), C (yellow), D (green), E (blue
each epitope region, for all epitope regions together, and for residues not in any epitope region; the number of residues in

each region is shown in parenthesis. Mean and standard deviation are shown in orange.
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Figure A.13: Comparing MuE observation model regression coefficients to HA1 relative solvent accessibility. (A) Rel-
ative solvent accessibility of the HA1 protein (PDB:4O5N), computed using DSSP 132 and the maximum values in Tien
et al. 2°® with the Biopython API *?. HA2 protein shown in dark gray. (B) Relative solvent accessibility versus regression
shift magnitude v; (Equation A.67), residue-by-residue. Spearman p = 0.41,p < 1013,
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Figure A.14:
Comparing MuE observation model regression coefficients to a deep mutational scan
of HA. X-axis: regression shift for each amino acid at each position from 1968 to 2019,
Vip = [E[yl,b |’UA)ref, t= 2019] - [E[yl,b |UA7ref; t= 1968}
(terms defined as in Equation A.67). Y-axis: relative preference for point mutants with amino acid b at position [ in the
deep mutational scan performed in Lee et al. °%. Spearman p = 0.08,p < 10~11L,
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Figure A.15: Generating forecasted samples. (A) Two locations in the reference structure PDB:4O5N, indicated in blue
and red, corresponding to low and high 1/ values (Figure 6B). (B) Segments of sequences sampled from the posterior
predictive distribution for the year 2024. The alignment variable w.r is fixed based on the reference (PDB:4O5N), such
that segments 1 and 2 correspond to the annotated structural features in A, and the column numbering is standard for
influenza A(H3N2) %,

quences were labeled at different levels of time resolution, with annotations providing months or
years rather than days; we assumed month and/or day were missing at random and imputed them
uniformly at random. Following Lee et al. 5, we randomly subsampled six sequences per month,
from 1968 to October 2019, to form the dataset. In the forecasting experiments we removed the
mis-annotated data identified in the 2008 outlier cluster marked by  in Figure 6E prior to subsam-
pling (GISAID identifiers EPI_ISL_24813, EPI_ISL_24814,..., EPI_ISL_24867). Accession
numbers for the complete dataset can be found in the Supplementary Table 1 file in the published
paper**4; our results were stable upon resampling. We extracted only the first 350 amino acids of
each HA sequence, covering HA1 in the reference A(H3N2) numbering°.

We used M = 361 in the MuE distribution. We set the prior on indels to pn) = pw =

(1000, 1). We trained each model for 7 epochs, which was sufficient for convergence. Hyperparam-

eters and training schedule were otherwise set as in Section A.6.1. To produce the latent embedding
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in Figure 6D, however, we annealed the ELBO weighting x only up to xo = 0.001 after 7 epochs,
providing only very weak prior regularization such that the embedding corresponds to approxi-
mately the maximum likelihood estimator of z (and we avoid posterior collapse).

To visualize features, we trained the RegressMuE model on the full time period (1968 to 2019),
with 5% of datapoints randomly held out to choose among training runs. We computed the magni-

tude of the shift in sequence space from time ¢ to time ¢; in the RegressMuE as
B L7112
v = [Z (E[Y] p|ref, t = 2019] — E[Y]p|trer, t = 1968]) (A.67)

using as reference the HA1 sequence from PDB:4O5N. The expectation is estimated using the varia-
tional approximation to the posterior with 10 Monte Carlo samples. 0 is estimated using a single
sample from the variational approximation to the posterior and the Viterbi algorithm. In evaluating
the association between the shift vector v} and epitope regions of HA 1, we specifically compared to

the 16 sites with clear antigenic selection in at least one human sera identified in Lee et al. 5*.

A.8.2 FURTHER RESULTS

In addition to the classic epitope regions, we also compared the regression shift v to the structural
domains of the HA1 protein (Figure A.11), relative solvent accessibility (Figure A.13), and rela-
tive amino acid preference in a deep mutational scan evaluating fitness effects of mutations (Fig-
ure A.14).

The cluster marked § in Figure 6E appears around 2008 but the latent representation of these
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sequences is close to that of sequences from the late 1960s or 1970s; this cluster comes from an ex-
periment performed in 2008 on 1968 sequences, rather than contemporary patient samples as in the
rest of the GISAID dataset.

MuE observation models can be used to generate samples of future sequences, enabling exper-
imental tests of immune response and antibody titer on sequences that are likely to emerge in the
future. We generated samples for the year 2024 from the RegressMuE, and confirmed that they
are similar to previously observed sequences, as would be expected (Figure A.15). In particular, we

sampled from

¢~ q(¢o|Yp)
(A.68)

Y; ™~ PRegressMuE (y|wref7 (257 t= 2024)

where q(¢|Yp) is the variational approximation to the posterior over model parameters, under the
model trained on the full time period (1968 to 2019), and PDB:4O5N is again used as a reference

sequence.
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Supplementary Material for Chapter 2

Sections B.1-B.6 are our theoretical results. Section B.7 describes our simulation experiments. Sec-
tion B.8 details how we implemented scalable inference for BEAR models. Sections B.9-B.13 pro-
vide details on our empirical results based on real data. The Datasets.xlsx file in the supplementary
material of the publication contains information on all the datasets, including links or accession

numbers for public databases. Code and documentation are available at https://github.com/
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debbiemarkslab/BEAR.

B.1 THEORY INTRODUCTION

BEAR models can be used to address a variety of different estimation and testing problems, and the
theoretical questions that arise in each case are related but distinct. One crucial, high-level distinc-
tion is between the “finite-lag case” (where we assume the model lag L is finite) and the “infinite-lag
case” (where we allow the model lag L to approach infinity). In addressing nonparametric density
estimation, it is crucial to consider the infinite lag case, since it is likely in practice that the true distri-
bution can only be matched in the infinite L limit. On the other hand, when it comes to diagnosing
misspecification or constructing hypothesis tests, the finite lag case is more acceptable since it is
likely in practice that any differences between the model and the data, or between two datasets, will
be reflected in finite marginals of the data distribution. The finite lag case is complicated by the fact
that it is likely that many kmer-to-base transitions have extremely low probability in practice; even
on massive datasets, we observe many transitions with no counts whatsoever. To deal with this case,
we develop theoretical tools to accommodate the possibility that some transitions truly have proba-
bility zero under the data generating distribution.

An essential and innovative aspect of our formalism is the focus on ”subexponential” sequence
distributions that obey an exponential moment bound on their length. Our choice to consider se-
quence distributions that have no upper bound on the lengths of sequences they produce separates

our theory from the theory of distributions on finite sets. On the other hand, moment bound as-
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sumptions separate our theory from the theory of distributions on countable sets.

The theory will be organized as follows. Section B.2 describes basic theoretical properties finite-
lag Markov sequence models, including their expressiveness and subexponentiality. Subexponential
sequence models will be introduced in general here. Section B.3 demonstrates consistency of infer-
ence with a fixed lag and in model selection between lags. A connection is established between eftec-
tive model dimensions and topologies of de Bruijn graphs. Section B.4 describes the behavior of the
model when inference proceeds by empirical Bayes. The parameter h is established as a descriptor
of misspecification. Section B.s describes theoretical guarantees on the behavior of goodness-of-fit
and two-sample tests. Finally, section B.6 demonstrates consistency in the infinite lag case. Later
sections depend on definitions and results established in previous sections with the exception that

section B.6 may be read immediately after reading the definitions at the top of section B.3.

B.1.1 NoraTION

We consider an alphabet 3 with more than one letter. Define B = B U {$} where $ is interpreted as
the stop symbol, i.e. $ may only appear as the last letter of a sequence. Also define the set of strings
of the alphabet BB of length L that start with any number (including o) of repeated ) symbols, B%.
For a sequence X of letters in BB, possibly terminated by $, we define | X | as its length, including

the stop symbol $ but not any start symbols (). For two strings X, X’ define #X’(X) the number
of occurrences of X' as a substring in X and, if X is not terminated by $, define (X, X”) as the
concatenated string. We also define the substring from index i to j (inclusive) of X as X;.;.

Define the set S of all finite sequences terminated by a stop symbol and give it the discrete topol-
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ogy. Note that S is countable. Say p is a distribution of S. We will use [, or E if there is an unam-
biguous data-generating distribution, to denote taking an expectation; for example, E,# X" is the
expected number of occurrences of the substring X’ in sequences drawn from p. For a sequence Y’
possibly not terminated by a stop symbol, we definep(Y ...) = p({X € S| X; = Y; Vi < |Y]}).

We also define subexponential moment bounds, an assumption we will make great use of:

Definition B.1.1 (Subexponential sequence distributions). We say a distribution p on S is subexpo-

nential if forat > 0, £, exp(t|X]) < oc.

For a random variable Z on a probability space with probability P, and a measurable set A in the

sample space, we define

F[Z; A] = E[Z1.4] = E[Z]A]P(A)

where 1 4 is the random variable with 14 = 1 on A and 14 = 0 outside of A. As well, for two real

sequences (@p )neN; (bn)nen, both possibly undefined for small n, we write a,, < by, to mean that

< b,, and

~

there is a positive constant C' such that eventually a,, < Cb,,. We write a,, ~ b,, when a,

G 2 by. We define a A b as the minimum of @ and b, and a V b as the maximum.

B.2 FINITE-LAG MARKOV MODELS

In this section we define finite-lag Markov models, and then study the expressiveness of the model
class. After defining finite-lag Markov models, this section will concern itself with the expressiveness

of the model class. We first show that while there are sequence distributions over .S that are not
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finite-lag Markov models, the set of finite-lag Markov models is nevertheless dense in the space of
distributions over S. We then show that finite-lag Markov models are subexponential.

The class of finite-lag Markov models is defined to be

Parameters: lag L, transition probabilities {vy 5}, B2 beb
XZ' = @fori S 0

Xig1 ~ Categorical({vxi_LH:i ,b}belé)

stopping generation when a § symbol is drawn and with parameters picked so that | X| < oo as..
These models are equivalent to Markov processes on the set BY U {(X,$) | X € BY_,}. The
requirement that generated sequences be finite length a.s. is equivalent to the requirement that for
every k € B9 thatis Markov-accessible, there is another &’ € B9 that is Markov-accessible from

k such that vy, ¢ > 0. Call p,, a probability distribution generated this way with parameters L, v.
Call the set of such probability distributions with lag L M .. Define the set of all finite lag Markov
models M := U3® ; My and note My C My C .... Defining A as the | B| — 1-dimensional
simplex with coordinates indexed by B, M is parametrized by transition probabilities in Agz.
This parametrization is not defined everywhere on the boundary and is not injective as if an L-mer
k is not Markov-accessible by a distribution p,,, the vector of probabilities vi does not affect p,’s dis-
tribution. This parametrization is continuous in the sense of the topology described by proposition
B.2.2.

We first give some examples of simple sequence distributions that are not finite-lag Markov.
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Proposition B.2.x. Not all possible distributions over S are in M.

Proof. Let A € Band p* be a distribution over finite sequences that puts probability a; on the
sequence A x i := A...Aoflengthiwith ) °ja; = 1. Assumep* € M, with transition
probabilities {vk7b}k€82 bel-
Fori < L, define v; := v(gx(1—i),Axs), l-€ the vector of transition probabilities from the L-mer
thatis L — i () symbols followed by i A symbols. Fori > L call v; := vp,.
Notice that for any i, the $-component of the vector v; is p*(|.X| = i [ [X] > i) = § where
a Sit1

Si = >_72;a;. Thus the A-componentis 1 — ¢ = =g=. By the definition of the sequence

(v3)$24, itis constantfori > L. Calla := Sp41/S1 = v, 4 = via = Sip1/Siforalli > L.

L

Thusforallé > L,a; = Siv;g = ozi_LSLULﬂ; = o' Lay. Thus the sequence a; eventually

decays exponentially and, as examples, it is impossible that a; ~ 1/i! or a; ~ 1/42. O

Next we show that M is dense in the set of probability distributions on S. To speak of density,
we review the topology and types of convergence on the set of distributions of .S in this next propo-

sition.

Proposition B.2.2. The topology of convergence in total variation, convergence in distribution, and

pointwise convergence of the probability of each X € S are identical.

Proof. Pointwise convergence of the probability of each X € S implies convergence in total varia-
tion by Scheffé¢’s lemma. It is also known that the topology induced by the total variation metric is

stronger than the topology of convergence in distribution. Finally, since for each X' € S, the set
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Figure B.1: Example application of this construction to the distribution on the left. Transition probabilities for kmers

smaller than L. = 2 are those defined by the original distribution, while those for larger kmers are all 1/3. The thickness
of each line denotes the probability of the transition.

{X} is open and closed, so that the Portmanteau lemma shows that convergence in distribution

implies pointwise convergence. ]

Lemma B.2.3. Say p is a distribution on S. There is a lag L Markov model, pr, such that for all

X € S, if|X| < L pr(X) = p(X), and if | X| > L, pr.(X) = p(X1.1)|B|~XI=D),

Proof. Forallk € B?,b € B, if there is a start symbol () in k, define vy, = %, otherwise,

define vy, = |B| 7', Itis clear p, satisfies the properties of pz, (Fig B.1).

Corollary B.2.4. M s dense in the set of distributions of S.

Proof. Define p to be a distribution on S with finite support, { X, }2V_;. Pickan L > |X,,| for
all n, so that with the definition of lemma B.2.3, p;, = pand thusp € M. Now note that any
distribution on .S can be approximated at finitely many points in S arbitrarily well by distributions

with finite support. The result follows from proposition B.2.2. O
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Proposition B.2.s. Finite-lag Markov models are subexponential.

Proof. Sayp € M, for some L, with transition probabilities v. Every & € B that is Markov-
accessible by phasa k' € B9 that is Markov-accessible from k in less than sy, transitions such that
v g > 0. Thus, inf; p(| X | < i+ s | | X| >4, Xi_p41: = k) > 0. Define s = maxy, yccessible Sk
q = inf; p(|X| < i+ s||X| > i) > 0. Now note, for any positive integer m, p(| X | > ms) =

Top(|X| >is || X| > (i —1)s) < (1 — ¢)™. Forarandom variable Z ~ Geom(q),

The integral is finite for some ¢ > 0 as geometric random variables are sub-exponential. O

B.3 CONSISTENCY IN THE FINITE L CASE

In this section we consider fitting to data BEAR models with fixed hyperparameters h and 6 (that is,
standard Bayesian Markov models). We first study the asymptotic behavior of the posterior over v,
the transition probability parameter, conditional on a particular lag L. We prove a Wald-type consis-

tency result, showing that the posterior concentrates on a neighborhood of the true data-generating
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parameter value v*, if such a value exists; when p* is not in the model class M r,, the posterior over v
concentrates at the point v* corresponding to the distribution p,« € M, closest in KL divergence
to p*. We next study the asymptotic behavior of the posterior over the lag L, building on the the-
ory of nested model selection since L is a discrete variable. We show that the posterior concentrates
at the true data-generating value L* when such a lag exists (i.e. when there is some L* such that

p* € Mp~), and otherwise diverges. At a high level, neither of these results are surprising, and they
would be expected to hold in general for well-behaved Bayesian models. The details of the model’s
asymptotic behavior, however, turn out to be somewhat unusual; as we shall see, the fact that some
transitions from a particular kmer & to a base b have probability zero under the data-generating dis-
tribution p* can complicate the normal story of Bayesian asymptotics.

To describe the possible kmer-base transitions, we define, for a distribution on S, p, and alag L,
the set of accessible kmers accr,(p) = {k € B} | p(#k > 0) > 0} and transitions supp, (p) =
{(k,b) |k € BS,b € B,p(#(k,b) > 0) > 0}. Define also, for any particulara k € B9, the set
of allowed transitions supp; (p)|x := {b € B| (k,b) € supp, (p)}. Define the restriction of the

parameter space Agz to the support of p*, Ap (P*) = Tieace L(p*) A Ifv e Agz , We

supp, (P*)k
will often use the abbreviation supp(v) = supp; (p,) for convenience.

Say p* is a distribution on S and L is a lag. Define the transition probabilities v*, corresponding

to the closest model in M, to p* (as measured by KL), as

v* = argmin KL(p*||py) = argmax Elog p,(X) = arg maxz E [#(k, )] log v p.-
o v v k.b

B
L
vEAB
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Unlike for many other statistical models studied in other contexts, here we can easily compute the
closest model to the data-generating distribution: using Lagrange multipliers, one may see that for
allk € accr(p*), vy, = E[#(k, )] /E[#k]. We then define p*(E) = p,« as the best approxima-
tion to p* in M. Note supp(v*) = supp; (p*)) = supp, (p*).

We now ask whether Bayesian inference on M, is consistent, i.e., whether the posterior con-

(L)

verges to a point mass at p**/, even in the case where supp, (p*) is not all of B7 x B. The result is

a classic Wald-type argument, adapted from theorem 2.3 of Miller '7°

and theorem 1.3.4 in Ghosh
& Ramamoorthi*®. The primary difficulty in the proof is that these previous theorems assume the
true parameter value lies on the interior of the parameter space and rely on uniform convergence of
the mean log likelihood in a neighborhood around the true value. In our case, we can have ”U;; p = 0,

. . B7 T .
so that the true parameter value lies on the boundary of its space A ;" and the likelihood function

diverges at this boundary point.

Theorem B.3.x. Say p* is a distribution on S with E| X | < oo. Say Il is a prior on Agz that assigns
probability o ro the set of v with p, ¢ M. Say X1, Xa,--- ~ p*iid. CallV = {v € Agz | py =

p*(L ) } and assume that it is not disjoint from the support of I1. Then for all open sets U containing V,
U Xy,...,Xn) — 1

a.s.. As a probability distribution on the space of measures on S, 1| X1, ..., XN = 0,x(5)-

Proof. Define v* as the transition probabilities of p*(%). Define Iy (v) = — & 3207 log(py(X,)),
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which is continuous in v and v* = miny, ) v}, ;- Note that

Esupp(v*)

x|
Elogp*™(X) =EY logvk, , . , x, > E[X|logr*.
=1

First we show that the likelihood of the data is eventually small in a neighborhood of the bound-

ary. Pickann; > 0. Say (k,b) € supp(v*) = supp, (p*) and define g, = p*(#(k,b) > 0)

which is positive. Pick a positive

Vi p < €Xp (_qi;;(ﬁl — E|X|log V*)) A Vg -

E sup li(v*) = l1(v) =E [ sup logpv(X)] — E [logpy+ (X)]
V8.t Vg b <Vk,b U S.t. Vg b <Vk.b

(B.2)
<qiplogrip + (—log™)E|X| < —nr.
Thus defining U1 = {v € AZ" | there exists (,b) € supp(v*) s.t. v < vy}, as., for large
enough N, Ix(v*) — Iy (v) < —ny forallv € Uy by the SLLN.
Call the complement of Uy K. K is compact and forallv € K, supp(v*) C supp(v). Note that
V is compact and in the interior of K. Pick a positive vk which has, for every (k,b) € supp(v*),

VK < Vgp- Then

E sup |l (v*) — 1 (v)] < |log(vie A v*)|E|X]| < oo
veK
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Then by theorem 1.3.3 in Ghosh & Ramamoorthi **, a.s., [y (v*) — Iy (v) converges uniformly to
kL(p*||p*®) — xL(p*||py) < 0on K (note, for the application of theorem 1.3.3 in Ghosh &
Ramamoorthi®, this quantity is well defined even if p,, is not a distribution over finite strings).
Now pick an open neighborhood U of V. By the continuity of v +— KL(p*||py), since K \ U
is compact, inf, ¢ g\ 7 KL(p*||py) > KL(p"| [p*(1)) otherwise there wouldbeav € V' \ K. Thus
we can pick a positive kL(p*|[p*(F)) + 1y < inf,c g\ KL(p*||pu). Since v+ KL(py+||py) is
continuous and K is a neighborhood of V, there is an open Us C K N U containing V' such that
one can pick an 13 with sup,, ;. KL(p*[|py) — KL(p”| 1p*(F)) < n3 < 11 Ama. Then as. eventually,
In(w*) —In(v) < —maforallv € K\ Uandiy(v*) — In(v) > —nsforallv € Us. Thus, as.

for large enough N,

H(U|X1> s 7Xn)

e dTTeN (N (") =i (v))
- Jyy dlleN (In(*)—In(v)) 1 fK\U deNUn (W) =In () + fU1\U dIIeN iy (v*)=In (v))

-1
dTTeN Un (v*)=In (v)) dITeN Uy (v*)—In (v))
> (14 fiw Nn )T z N (o) —Tn () (B:3)
Jy, dlleNUn N Jy, dlleNUnN N

(4 MEND)e e n(uy)e i !

- I(Uy)e—Nns II(Uy)e—Nns

—1.
Finally, as a probability distribution on the space of measures on S, I1| X1, ..., X,, — 5p*( L.

This follows from the fact that the prior and thus posterior probability of p, ¢ M, is o and so

B

one may push forward the measure from A| 8 to the space of probability measures on S. The im-
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age of V' is a point p,+. Since this mapping is continuous, it preserves the weak convergence of the

measure, in this case to a point mass. ]

Next we will study the posterior distribution of the BEAR model over the lag L, showing under
general assumptions that the posterior concentrates on the true data-generating value L* (when
such a value exists). Our analysis builds off of standard asymptotic analyses of nested Bayesian
model selection, since models with different lags are nested, i.e. M, C M, when L' > L. Typ-
ically, when a simpler model (e.g. M) is nested inside a more complex model (e.g. M), and the
data-generating distribution p* is in the simpler model, the log Bayes factor comparing the two mod-
els will asymptotically prefer the simpler model and scale as %(dim/ — dim) log N where dim’ is
the dimension of the parameter space in the more complex model and dim is the dimension in the
simpler model 5°. This O(log V) term, which is independent of the prior, can be thought of as origi-
nating from the Laplace approximation to the marginal likelihood; it is the basis of such widely used
model-selection techniques as the Bayesian information criterion.

Somewhat surprisingly, the fact that some transitions may have probability zero (v, = 0)
changes the asymptotic behavior of the log Bayes factor, in particular by altering the dimension fac-
tor dim’ — dim. In effect, dimensions of the parameter space corresponding to kmers that occur
with probability zero under p* do not contribute to the dimension count, while dimensions for
which U;,b = 0 do not count as full dimensions; this leads to the notion of an “effective model di-
mension”, defined as dim$T (p*) := supp, (p*)| — [accr(p™)| + Xkeacer (v7) D btsupp, ()1, Qb

where oy, , is the concentration of the Dirichlet prior. This effective dimension depends the data-
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generating distribution p* and on the prior hyperparameters, not just on L. Note that the unusual
asymptotic behavior of BEAR models does not just come from their Markov structure; even in

the everyday example of a Dirichlet-Categorical model, if some outcomes of the Categorical dis-
tribution have probability exactly zero under the true data-generating distribution, the standard
Laplace approximation does not hold, and the Dirichlet prior contributes O(log V') terms to the log

marginal likelihood ***.

Theorem B.3.2. Sayp* is a distribution on S with E| X |?> < oo and say X1, Xa,- -+ ~ p*iid.
Given L, consider a Dirichlet(ou, p ), i3 prior on the simplex in AgOL corresponding to the L-mer k.
For all L, assume oy, > 0 for (k, b) € supp, (p*) (otherwise p((Xn)2_1 | M) is eventually 0 a.s.).

Define kL(p*|| M) := infpe pm, KL(p*||p). Given Ly # Lo, if " kL(p*||Mr,) > xL(p*||ML,),

(Xn)pr M)
(Xn)nlaML,)

logi = N (xz(p*||Mp,) — x£(p*||M1,)) + Op(VN). (B.4)

Otherwise, if p* € My, , My, and, defining, for a lag L, dim$(p*) == [supp, (p*)|—|accr(p*) |+

ZkeaCCL(P*) Zb¢suppL(p*)|k kb

p((Xn)gzllMLl) _ 1
P((Xn)paMi,) 2

log (dzmj—fg (p*) — dzmeLfi (p*)) log N + O,(1). (B.s)

"We do not need to assume E log p > —00 as we may define in this case KL(p* || M, ) —KL(p*||[M,) =
—Elogp*2)(X) + [Elogp*¥1)(X) which we will see is bounded by the moment bound assumption
E|X|? < .
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Proof. Foralag L, note dim(Af (p*)) = supp, (p*) —accr,(p*). Puta Dirichlet(au,b)besupp, ()1

prior on each A (p*)],- Call M, the set of probability distributions described by A, (p*). We

suppy,

will show that kL(p*||p.) is maximized in the interior of Az, (p*) so that the asymptotics of the

. 1 ~ B . .
marginal likelihood (p(X |M L)) are well understood. In Al BL\ however, there are dimensions that
correspond to k-mer - base transitions that are impossible under p*. Using the symmetry of the
Dirichlet prior, we can de-couple the asymptotics of these excess dimensions from the asymptotics

of the much more natural” space of A7, (p*):

Ly anp) D(akp)
1 X))V M) = ! T 1 ’
og (P((Xu)01 | M0) o (°gr<zbak,b+#k> T o+ #(k, b)))

= log (p((Xu)2oa | M1))

L(>7, akp) L(>75 arp)
lo J —lo ,
" kéagj;(p*) < ST(Syanp+ #K) P T(Shans + #@)

(B.6)
where 37} is a sum over the b € supp, (p*)|k, and where #k in this case is S0 _; #4k(X,,) and
#(k,b) is similar. We will deal with each of these terms in turn.

To analyze the first of these terms, we first check regularity conditions. Forv € Az (p*) and

strings X1, ... X, define

1 N 1
In(v) = —Nlog H po(X,) = -¥ Z #(k, b) log vy »
n=1 (k,b)esuppy, (p*)

I(v) = —Elogpy(X) = — Z E[#(k,b)] log vg.p-
(k,b)esuppy, (p*)

281



Call v,, the minimizer of [y and v* the minimizer of {. Note v* is also the minimizer of v
KL(p*||py) forv € Ap(p*) and has vpp = E4£(k, ) /E4£k. In particular p,- = ") 5o that
kL(p*||Mp) = xL(p*||M ). One may check that Iy is C*, and, by secing that it is a sum of con-
vex functions, convex. Calling D™ the m-th derivative operator (D the identity), || - || some norm

on RIMALE™)™ "and E some set whose closure is in the interior of Af(p*)

Esup [|[D™In(v)] < Y. E[#(k,b)]sup [ D™ loguy| < oo
veEE (k,b)GSllppL(p*) veEE

since F is relatively compact. Thus, by theorem 1.3.3 of Ghosh & Ramamoorthi *, D"y —
ED™Ily = D™l locally uniformly where the last equality is by Leibniz’s rule due to the local bound-
edness of all derivatives. In particular, D31 are uniformly bounded across N on a neighborhood of
v* and, sending £ A (p*), and noting [ is a.s. eventually —o0 on the boundary of Ap (p*),
we see [y — | pointwise a.s..

As in the analysis of Dawid 5°, we write

~ p((Xn)Nzl‘ML) Pu (Xn)Nzl «(L N
log p((Xn)N_;|Mp) = lo L + log —NITIN=L 4 oo p* (B (X, )N
g (( ) 1‘ ) g va(Xn)iy:1 gp*(L)(Xn)r’];f:1 g ( ) 1

6

The above paragraph demonstrates that we satisfy conditions (2) of theorem 3.2 of Miller '7° and

thus we can write

p Doy (an)rjy:f — _lem (AL(P )) log N + O(1)
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and say that vy — v*. Now, using the mean value theorem,

v Xn 7]:[* * * *
bgﬁdfo(%wl::—naN@N>—hwU>>=—«¢Nm)—vN»TD%N@vmﬂvw —uy))
n)n=1
for some vy on the ray connecting v* and vy. Call Zy = |/ D2lx(vly) (VN (v* — vy)). By
local uniform convergence, since vy — v*, D%l (vly) — D?I(v*). Satistying the conditions
on a neighborhood of v*, since vy — v*, by theorem 5.41 in van der Vaart >%%, \/N(v* — UN)

converges in distribution to N (0, D?/(v*)~1). Thus, by Slutsky’s theorem, Z,, converges to

Pup, (Xn)iy:1 —

ZT 7 converges in distri-
Pvg (Xn)7]1\1=1 n=n 8

N (0, I), and by the continuous mapping theorem log

bution to Xim ( ; thus this term is Op(1). Recall from the remark in the last paragraph that

AL(p*))
kL(p*|| M) = xL(p*|| M) for all L; note in particular p* € M, if and only if p* € M. Then
finally, by the analysis of Dawid °, since E[log p*(") (X,,)N_;12 < (log(mingp U,;;))2[E|X|2 < 00,

n=1

log p* ) (X )N_; = logp*(X,)N_, if p* € My, and
log p* M) (X,)N_; = N [—kr(p*||[ML) + Elogp(X)] + Op(V'N)

otherwise.

By our analysis above we can say that given L1 # Lo, if kL(p*||M,) > xL(p*||ML,),

(X)X M)
(X, M)

log. = N (xu(p M) = 517 [ ML) + Op(VE). (B)
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Otherwise, if p* € Mp,, Mp,,

g L)
p((Xn)le |ML2)

= % (dim(AL, (p")) — dim(Ap, (1)) ) log N + Op(1).  (B.3)

Moving to the second term, for a k € supp(v*), by Stirling’s formula,

<lo L, o) o D>y o p + #k)>
T(Sy anp + #K) 8 T(Xhans)

(o Yol 5o
<#k Yo - ) log (#k 23 ak,b> " (#k 25 ak,,,)
(o lgin) g

4 (#mz Qi — ;) log (#/H—Z akb> - (#m;’ak,b)

1 S Qpp + H#k
(*“”Z L Crves )
_ <Z kb — Z /cw@b) log <Z agp + #]{;) +0(1)
b b b
1 1
(#k+2 g - ) o(4)
_ <Z Qe — Z ,ak7b> log#k + O(1)
b b
= ( > ak,b) log#k + O(1)

begsupp(p* )|k
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Now note log #k = log N + log (%#k) = log N + O(1) by the strong law of large numbers.

Putting this together with B.7, B.8, B.6, and B.9 gives the result. O

So far, we’ve studied pairwise comparisons between models with different lags; we now study the
posterior over lags. We start with the case where there is no true data-generating lag, i.e. p* ¢ M. In

this case, we can apply theorem B.3.2 to show that the posterior over lags diverges to infinity.

Corollary B.3.3. Let w(L) denote a prior over lags, with w(L) > 0 for all L. Choose for each lag
a Dirichlet prior on the simplex Agz that satisfies the conditions of Theorem B.3.2. If p* is subexpo-
nential but p* ¢ M, the posterior diverges in the sense that for any choice of lag L, we have I(r >

LI(X)N_ ) = 1as.

Proof. Ttis shown in the proof of theorem B.6.1 that as L — 00, we have kr.(p*|| M) — 0. Say L
is a lag, so, since p* ¢ M j, there exists some L’ > L such that KL(p*||Mj,) < kL(p*||Mj) <

kL(p*||[Mp) forall L < L. Note we have

7 N ZLgi p((Xn)ﬁ[:ﬂML’)
HE < HXnd=) < S i N M) + oK) M)

There are only finitely many L’ less than or equal to L, so we can apply theorem B.3.2 and the con-

clusion follows. O

We now consider the case where p* € M. Pick L* to be the minimum lag such that p* € Mp-.
We will need to assume, for theoretical tractability, that the prior over lags has finite support. Then

we can establish sufficient conditions for the posterior to concentrate on the true value L*.
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Lemma B.3.4. Let (L) be a prior over lags with w(L) > 0 for all L less than some L > L*, and
withw(L) = 0forall L > L. Then TI(L*|(Xn)N_)) — 1in probability if (dim$F (p*)) > 1+ is

n=1

non-decreasing and dim 11(p*) > dim¢t (p*).
Proof. Apply theorem B.3.2. O

If transition probabilities vy, , were always non-zero, the effective dimension of the model would
. . . B9 . . .

simply be the dimension of the parameter space A BL , and thus the dimension would always increase
with increasing lag, making lag selection consistent. Allowing for ”Z, » = 0 makes the situation
more complicated, since in fact the effective dimension may not increase with increasing lag. If this
is indeed the case, the posterior will no longer be guaranteed to determine the true L* from data,
even asymptotically. In order to describe how the effective dimension in fact scales with the lag, we
will introduce the notion of a distribution’s de Bruijn graph: for a distribution p on .S, the L-mer
de Bruijn graph is the directed graph with nodes accr,(p) and a directed edge connecting L-mers
k — K if k" = (ka.p,b) forab € supp; (p)|x. (De Bruijn graphs are a common data analysis tool
in biological sequence analysis, where they are typically constructed from an empirical distribution
over observed sequences; here, we are in effect studying the asymptotic de Bruijn graph, i.e. the de
Bruijn graph that we would have if an infinite amount of data were observed.) Call a de Bruijn graph
a tree if every node has at most one parent (since sequences must start and end with start and stop
symbols, there cannot be a loop where each kmer has just one parent). The next two results show

that we can only consistently infer the true lag if the the L*-mer de Bruijn graph of p* is not a tree.

Proposition B.3.5. Sayp* € M+ and for each L, consider a Dirichlet(ou b ), g prior on the
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simplex in Ag’o‘ corresponding to the L-mer k. Say for L > L, for all L-mers k and bases b, oy, =
Qky_puy.p b (1. the prior concentration depends only on the last L* letters of the L-mer). There exists
al (possibly infinity) such that for all L > L*, the L-mer de Bruijn graph is a tree if and only if

L > L. Then (dim%F(p*)) 1> 1+ is a non-decreasing sequence, strictly increasing until L, and constant

past L.

Proof. Callv* the transition coefficients of p*. Say L > L*, k € accy,(p*). Call K’ € accr(p*)
the last L* letters of k. If for some b € B, p*(#(k,b) > 0) > 0 then clearly p*(#(K,b) > 0)
thus supp; (p*)|r € suppy.(p*)[. On the other hand, say b € supp,.(p*)|r = supp(v*)|w
and Y is a string, not terminated with $, and with its last L characters equal to k and p*(Y ... ).
p((Y;0) ... |Y...) = v, > 0s0,p*(#(k,b) > 0) > 0. Thus supp (p*)|r = supp. (p*)|x-

Now write

. eff
dim'(p") = > D [ Locpp, 00k + Togsupp, () ketks] — 1
ke€acer, (p*) besupp (p*) |k

where, for astatement A, 14 = 1lif Aistrueand 14 = 0if A is false. Thus, since in this case
supp; (p*)|r = supp.(p*)|x, and by the assumption on the prior coefficients,

dimf (p*) = Y [{k €accr-(p) | kr-r-11.2 = K'}|

k' €accr* (p*)

" ( Z [ﬂbEsuppL(p*)lk’ + ]lbisuppL(p*)l’f’ak/’b} - 1) .

besupp (p*)I},

(B.10)

Since foreach k' € accp-(p*) thereisak € accp(p*) that hasits last L* letters equal to £/,
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dim¢f(p*) > dim% (p*). Since p* € My forall L > L* the argument may be repeated for all
pairs L1 > Ly > L* to conclude (dim%f(p*)) > - is non-decreasing.

Noteiffor L' > L,dim$t(p*) = dim$(p*) then forall ¥’ € accy,(p*) there is a unique
k € accr/(p*) with its last L letters equal to k. Thus if X7, Xo € S with p*(X;), p*(X2) > 0and
X1, X3 end in the same last L letters (not including $), then X, X5 end in the same last L' letters.
Looking at positions | X ;| — L' : | X;| — L' + L — 1, one can also conclude that X1, X5 end in the
same last L' + (L' — L) letters. Continuing, one may conclude X; = X5. It can be seen that this is
equivalent to the L-mer de Bruijn of p* being a tree. On the other hand it is not difficult to see that

if the L-mer de Bruijn of p* is a tree then dim% (p*) = dim¢(p*) forall L/ > L. O

Corollary B.3.6. Sayp* € M and L* is the minimum lag such that p* € Mi«. Lerm(L) bea
prior over lags with w(L) > 0 for all L less than some L > L*, and with (L) = 0 forall L > L.
For each L, consider a Dirichlet(a ), g prior on the simplex in Ag’o‘ corresponding to the L-mer k.

Assume that for L > L, for all L-mers k and bases b, oy, = o, . b Then lag selection is

+1:L>

consistent if and only if the L*-mer de Bruijn graph of p* is not a tree.

Remark B.3.7. Ifp*(X) > 0 for infinitely many X € S, as is the case if the transition coefficients
of p* are all positive or there is a cycle in the L*-mer de Bruijn graph of p*, then no L-mer de Bruijn
graph of p* is a tree as sequences with p(X') > 0 cannot be identified by their last L letters. As another
example, pick a particular sequence X € S and say X " is one letter away from X. Fora0 < q < 1,
definep = qdx + (1 — q)dxr. Pick L* the smallest lag such that p* € Mip«. Then the L*-mer

de Bruijn graph splits into two paths at the position where X and X ! differ. These paths may rejoin
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after L* nodes. Thus the L*-mer de Bruijn graph is a tree if and only if the position at which X and

X' differ is less than L* letters away from the end symbol $.

B.4 MISSPECIFICATION DETECTION

In this section, we turn from studying the parameter v and lag L in the BEAR model to studying
the hyperparameters i and 6. Intuitively, we expect the empirical Bayes estimate of h to behave as a
diagnostic of misspecification, since h controls the extent to which the prior predictive distribution
of the BEAR model is concentrated at the embedded AR model. Here we make this idea rigorous
by examining the asymptotic behavior of the empirical Bayes estimates of & and 6.

We first briefly introduce the setup and some notation. We will assume p* is subexponential. We
will work with fixed lag L, though the results can be straightforwardly extended to the case of a prior
over a finite number of lags. The function f : © — AZZ defines an autoregressive model, with
parameter space © some set. Forany h > 0,60 € ©, define a prior 7(:|h, 6) on AZOL consisting
of independent Dirichlet(} fx 5(6)),c 5 priors on each simplex corresponding to k € B. Define
m((Xn)_1|h, 0) to be the marginal likelihood of the data (X,)2_, under the prior 7(-|h, 6),
thatis m((X,)2_1|h, 0) = [ po((Xn)2_1)7(v|h, 8). For our purposes we may assume f 5(6) >
0forall (k,b) € supp, (p*); if this is not the case for some 6 then the marginal likelihood at 6, for
any choice of h, is a.s. eventually 0. We will study maximum marginal likelihood/empirical Bayes
estimates (hy, 0n) = argmaxhﬂm((Xn)fy:ﬂh, 0).

Our starting point is the analysis of empirical Bayes presented in Petrone et al. 196 Here is the
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(very heuristic) intuition behind their result: the Laplace approximation to the marginal likelihood
is proportional to the probability of the true data-generating parameter under the prior, so asymp-
totically we expect m((X,,)2_; |h, 0) oc mw(v*|h,0). Then, roughly speaking, the empirical Bayes
estimate will be (A, 0) =~ argmax,, 4w (v*|h, 6); in other words, the empirical Bayes estimate
should asymptotically maximize the probability of the true parameter parameter value under the

prior. Petrone et al. 196

give conditions under which this is indeed true, but BEAR models fail to
meet them. There are two major problems: (1) in the limitas 4 — 0, the prior converges to a
point mass, making the Laplace approximation invalid (the “degenerate” case mentioned by Petrone
etal. *°) and (2) when some transitions have probability zero, U = 0, the standard Laplace ap-
proximation does not hold regardless of the value of h. Our analysis in this section adjusts for both
these issues, and also provides more detailed insight such as convergence rates and intuitive approxi-
mations for the optimal h.

In analyzing extremum estimators, such as the maximum marginal likelihood estimator used in
empirical Bayes, uniform convergence results are particularly powerful. Ideally, we might try to es-
tablish a Laplace-like approximation to the marginal likelihood that holds uniformly for all 4 and
0, but this is unavailable because of the degeneracy at h = 0. Our strategy will be to first demon-
strate a uniform Laplace approximation over all 2, 6 with some caveats: (1) we ignore transitions
that are not possible under p* and analyze their contribution to the likelihood later; (2) if h — 0 we
assume it does not decrease too fast; and (3) we assume similar control over the prior density at the

“true” transition probabilities v*. In proposition B.4.3 we prove that (3) must indeed hold for when

hi, 0 are the maximizers of the marginal likelihood.
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Foranyv € Ap(p*), define the negative average log likelihood Iy (v) = —= logpy (Xn)A_4,
andlecvy € Ap(p*) be the (as. eventually unique) maximizer of [y Define a prior 7 (- h, §)
on A (p*) consisting of independent Dirichlet(;: i 4(6) )pesupp, (5], Priors on each simplex
corresponding to k € accy (p*) (for a scalar a, Dirichlet(cv) is just defined as the point mass on the

0-dimensional simplex {1}). Let 712((X,,)2_; |h, 6) denote the marginal likelihood under the prior

7(-|h, 0) and define

. _ o TCoiifen®) T(Chfka(0) )
g = 2. | (lgnzbifk,b(m#k) 805, Ffeald) + #0)

k€accr, (

where Y}, is a sum over the b € supp (p*)|. So, as shown in theorem B.3.2, logm((X,,)2_; |k, 0) =
log M ((Xn)N_1|h,0) + logrn (h,0). define B(v, n) to be the ball of radius 7 around v in some

norm; finally, define By, (7) = {v € Ap(p*)|Elog? ;;j())(())() < n} and, for convenience

B(n) = B(v*,n), foranyn > 0.

Theorem B.4.x. With probability 1, for any sequence (hn ) N and (On) N, possibly dependent on the

data, if hy NY4=¢ 5 oo foran 1/4 > € > 0 and lim inf(log 7 (v* |y, On)) /V'N # —o0, then
1 -
lOgﬁl((Xn)g:ﬂhN,eN) — (—NZN(UN) — B dimAL(p*) lOgN +10g7~T(U*|hN,9N) + Om)‘ —0

for a fixed Cy+ dependent only on v*.

Proof. First note, calling ey, , the indicator vector at position k, b for some k € accr,(p*),b,0’ €
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supp; (p*)|k, the directional derivatives with respect to v

afes(®) =1 pfrw(0) -1
VE.b Uk, b/

DEk,b—ek,b/ log7(v|h,0) =

are bounded by J/h, for some J > 0 in a neighborhood of v* for all 6.

Forann > 0, define the KL ball

Ba(n) = {v € AL(p*) [ vkp > vf (1 — n/E|X|) Vk, b},

Noteifv € EKL(n), then the KL divergence is bounded,

*(L) *

p* (X)) Vk,b

Elog ———= < (E|X]) suplo S
g Po(X) = (E1X]) kf gvk’b =1

sov € By (n). Note

n * Ui
(Wh,b) (kb supp, () (wk,b + Vg (1 - ))
(k,b)€supp (p*) [E‘X| ) [E|X’ (h,b)Esupp, ()
is a diffeomorphism from Az (p*) to By so by the change of variables theorem the volume of
By is (n/E| X |)4m AL (which comes from the factor multiplying wy, ) times the volume of
AL(p). Finally note that by an application of the triangle inequality,
By (n) C B(2ndiam(A(p")) /E|X]).

Define the information matrix at 7%, Z = E[D?11(*)],andan €’ > 0 less than the smallest
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eigenvalue of 7 (Z is positive definite by the strict convexity of [ described in theorem B.3.2). Also

pickan ¢’ < %€ such that B (¢"n%) € B(n) for all small . Now define a sequence y =
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N~=(/4=9) noting nx /hny — 0. Let |Z| denote the determinant of the information matrix.

log iv((Xn)pa [hv, )

1 ~ 1
_ <—NZN(UN) ~ 5 dim Ay (p") log(2w) —  log || + log (v, eN)> ‘

A ) B s}

AL(p*) B(UN)

+ [log ( | e th,eN)> — log ( / e‘NWﬁ(v*mN,eN))'
B(nn) B(nn)

([ sn) ([, o)
B(WN) B(vn,mN)

+ | log / e Nin(v ( *|hn, ON)
B(vn,nN)

1 ~ 1
- (—NZN(UN) ~3 dim Az (p*) log(2rN) — §log |Z| + logfr(v*|hN,¢9N)> ‘

fAL *“N\B( UN) NIN(UN) Niw (v ( |hN79N)>
fB('f] )eNlN('UN) NlN ’U)ﬂ-( |hN)9N)

_ hN,‘gN) —NI
+ lo / Nin( v)7T(|> (/ e~ Nin(v)
8 (( — wl.ow)) | s
et ™™
B(vn N +luy —v*]) B(vn N —|lvn—v*]))

+ log ((27[.) dlmAl ’I‘ 1/2/ eN(lN(vN)lN(UN+y/\/N))>‘
llyll<nxvN

<ep(N s (@) =in@)) /([ MOV, o)
Ba(en2,)

[v*—vl>nn

<log <1+

+ sup ‘logﬁ'(vm]\/,e]v) —logﬁ'(v*|hN,0N)|
vEB(nN)

+ </ e—NlN(U)> / (/ e—NlN(»U)>
Blow -+ len —v VB my—lx —*l) Bl llox—*])
+ |log ((2 )~z 7d1mAl ’I‘ 1/2/ eN(lN(vN)—lN(UN-i-y/\/N)))‘_
lyll<nn VN
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The third line in this inequality follows since B(vn, Ny — |[uxy — v*||) € B(vn,nn) N B(nw)
and B(vn,nn) U B(nny) € B(vn, nn + ||luy — v*||). First note that the second term is bounded
by Jnn /hn and thus vanishes a.s.. We will show the rest of these terms also vanish a.s..

To analyze the last term, we will use a simplified proof of a Laplace approximation. First note,
given the regularity conditions established in the proof of theorem B.3.2, a.s. vy — v*,and
D?ly — D?Ely locally uniformly. Thus, for each y, since UN\/N — o0,andandny — 0
(so that if ||y|| < 7y VN theny/vVN < ny — 0), as.

(In(wn)=In(vn+y/VN)) _

N — 2y D2y (vly)
Ly <nnvE = Lyj<nyvNE 2

1, T
Yy 73V 1Y

where vy is on a ray connecting vy to vy + y/V N. As well, eventually,

(In(vw)—In(vn+y/VN)) _

TDAN()Y < o= 1Y LY

N —1y
2
Ly <nnvIE Ly <nyvEE

The right hand side is integrable and takes the form of a Gaussian pdf. Thus, integrating the Gaus-
sian pdf, the last term of equation B.11 goes to 0 a.s. by the dominated convergence theorem.

To analyze the third term of equation B.11, recall from the proof of B.3.2 that {y is convex, so,
the value of — Ny is less on the annulus B(vn, ny + |[uxy — v*|]) \ B(on,ny — ||lony — v*])
than on B(vn, Ny — ||luxy — v*||). Thus, to demonstrate that this term vanishes, it suffices to show
that |luy — v*||/nny — 0a.s.. Recall from the proof of B.3.2 that we showed thata.s. vy — v*

and D?ly converges to ED?l, uniformly in a neighborhood of v*. Thus, eventually, recalling the
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definition of € as less than the minimal eigenvalue of Z, and defining ¢ — vy as a linear path from

VN to V¥,
* * L 2 * 1 / *
DLy (0] = 1Dte) = Dlaewll = | ([ dtDin(wn) ) @ = ow)] = 5l = o

On the other hand, defining e j, as above, [ De, ,—e, ,11(v")| < | X[/ infy p v} ;, and so,
Dey, —e, 11 (v") is subexponential. Recalling EDIy (v*) = DEli(v*) = 0, using Bernstein’s

inequality (theorem 2.8.1 in Vershynin *7+),
P (| Deyy—ey, p IN(07)] > n%) < Cexp(—C'Nny) < Cexp(—C'N*).

Since S3_; Cexp(—C'N4) < [7° dwexp (—C'z%€) < 00, by the Borel-Cantelli lemma, a.s.
eventually, || DIy (v*)|| < Cn3; for some C' > 0. Finally, since ny — 0, we have |Joy —v*|| /nn —
0as..

To analyze the first term of equation B.11 first note that for small enough 7, recalling that Elx

is convex with maximum at v*, and by the definition of €', we can Taylor expand around v* and find

sup  (Ely(v*) —Eix(v)) =  sup (Eln(v*) — Elx(v)) < —1/2¢'n3%.

[[o* —v|[>nn [v* —vll=nn

We will also show below that a.s. eventually, for all v away from the boundary (i.e. outside a fixed
neighborhood of the boundary), |Ix (v) — Eln(v)| < %6/ n?%;. For now, assume that this is the

case. So, a.s. eventually, SUP |y >ny (In(v*) = In(v)) < —3/8€¢'n3;, by the triangle inequality.
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Having bounded the numerator, we now turn to the denominator. Note that by equi-continuity,
since Jnn /hy is eventually less than log 2, 7 (v|hn, On) > % (v*|hy, O0n) forallv € B(ny).
As well, again, by a triangle inequality, a.s. eventually, forall v € By (€'n%,), In (v*) — In(v) >
—e"nd — Le'nd; > —Le'nd,. Recall that the volume of By (€% is equal to C'(C'n3;) 4™ AL

for some C, C" > 0. Then the first term of equation B.11 is bounded above by

1 .
2C exp (—86,N77]2V +2dim A7 (p*) log (17]:,1) — log 7 (v*|hn, HN)>

for some C' > 0. This expression goes to 0 as log 7 (v* |k, ) /v/'N is bounded below and thus
lim inflog 7 (v* |, On) /N Y/2H2€ = 0.
We now show that a.s. eventually, for all v away from the boundary, |Ix (v) —Eln (v)| < 16 3.

First write

1 1
Dek,b*ek,b/ lN(U) N#(k b)vk b N#(k b,)vk‘ v

which is almost surely eventually bounded by the strong law of large numbers for all v away from
the boundary of AL (p*). The derivatives of Ely with respect to v are similarly bounded away from
the boundary; say the derivatives of both functions are eventually bounded by J'. Also note that
the random variables |11 (v)(X)| < C”|X| are uniformly sub-exponential for all v away from the
boundary. The covering number of A (p*) by balls of radius & J*~1e/n3, is < my2SmA2®7),

Say (v;); are centers of the balls of such a covering. By uniform sub-exponentiality and Bernstein’s

inequality (theorem 2.8.1 in Vershynin *7#), for small enough 1, P(|Ix (v;) — Eln(v;)| >
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5€nk) < exp(—~CNnk) = exp(—CN) forsome C > 0. Now, for some C,C’" > 0,

s 1
Z P(there is a v; such that |Ix (v;) — Elx (v;)| > ==€'n%/)
= 32

o0 1
<> > P(lin(vi) — Eln(vs)] > 3*26'?712@
N=0 1

S Z exp (fC'N‘l6 —2dim AL (p*) lognN) (B.12)
N=

S/ dx exp (—0'1:46) < 00.
0
By the Borel-Cantelli lemma, |1 (v;) — Eln (v;)| < 55€'n% forall i as. eventually. Thus, eventu-

ally, by the triangle inequality and the a.s. eventual boundedness of the derivatives of [y and El v,

lIn(v) — Eln(v)] < %6/')7]2\[ for all v away from the boundary a.s. eventually. O

We now focus on the behavior of not just any sequence of /v, 0, but rather specifically on
hn, 8N which maximize the marginal likelihood.T The next two results both use a proof by contra-

diction strategy that relies on the following logic.

Remark B.4.2. Fix h,0. We showed in theorem B.3.2 thatlogrn(h,8) = O(log N) a.s. and
we can conclude from theorem B.4.1 thatlogm((X,)N_ | h,0) = —Nliy(vn) — O(log(N)).
Thus, m((Xn)N_1 | h,0) = —Nlin(vn) — O(log(N)). On the other hand, for any W', ¢/,

logrn (h',0) < 0andlogm((Xn)_y|W,0") < —Niy(vN). Thus for the maximizers of

It is not crucial that maximizers of the marginal likelihood exist for any of the result below: the results
below hold assuming only that A,  are approximate maximizers, i.e. logm((X,)2_; | hy, On) =
supy, 5 log m((Xn)N_, | h,0) + o(1) or in slightly altered form swapping the o(1) for op(1).
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m, h, O, it is a contradiction iflogrn (b, On) < —NP orlogm((Xn)N_ | hy,0n) <
—Nin(vn) — ONB forany B > 0: saylogim(hy,0n) < —Niy(vn) — NB. Then, for some
C >0, —Clog(N) < m((X,)N_y |h,0) + Niy(vn) < m((Xn)M_y |hn, 0n) + Niy(vy) <
logm((X,n)N_ |hn,0n) + Nin(vy) < —CNP, 4 contradiction. On the other hand, say
logrn (hy,0n) < —NP. Then —Clog(N) < m((X,)N_4 |h,0) + Niy(vy) <

m((Xn)N_, |hy,0n) + Nin(vy) < logry(hy,0n) < —C'NP, also a contradiction.

Proposition B.4.3. Say (hn)n and (ON) N are sequences maximizing log m((Xn)N_;|hn, On)
Sforeach N. Then a.s. there is no subsequence (h, ) and (0;) j such that for some e > 0,

thle/4_e — 00 and for some 3 > 0, limlogﬁ-(v*|hN]‘79Nj)/Nf <0

Proof. Assume the opposite. Define (vx) ;v and pick (nn) w7, € as in theorem B.4.1 such that a.s.
eventually, for all v away from the boundary, |Ix(v) — Ely(v)| < %66/?7]2\[, nN; /th — 0,and

infjy« _y|>nx Ely(v) > Eln(vn) + %6/7712\7- Then, eventually,

where B(1,)¢ denotes the complement of B(7y, ). On the other hand, by equi-continuity of the
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prior density, since 1 N, /h N, becomes small, for some C' > 0

/B ) )G_leNj(v)fr(MhN].,GNj) Sexp (= Njly, (vn,) + log 7 (v*| Ay, On,)
Nj

+ dim AL (p") log(ny, ) (B.14)

< exp (—leNj (vn;) — CN;” + O(logNj)))
for some C' > 0. By remark B.4.2, this completes the proof. O

We have so far explored what happens to the marginal likelihood when h does not converge
quickly to o, showing that it satisfies a Laplace-like approximation in this case. Next we show that
h will in fact converge to zero quickly only if the estimated autoregressive model f(6x) converges
to the optimal parameter value v*.

For a sequence (6) n define, for k € accr,(p*), on i = ZbESuppL ")k frp(On)and Ay =

1—ong.

Proposition B.4.4. Say (hn)n and (0N ) N are sequences maximizing logm({ X, }2_, |hy, On).
Then a.s., limsup hy; Njﬁ < 00 forsome 8 > 0 along a subsequence (N;) j only if frp(On;) — Vi,

Jorall k,b € supp, (p*).

Proof. Take a subsequence such that: i N; — 0 h N; IV ]B and h N; IV both converge, the latter
possibly to 00; fx 4 (0, ) converges for all k, b; and fx 3(0n; )/ h; converges, possibly to oo, for
all k, b. Note since [0, 00] is compact, every subsequence with lim sup /1, V. ]ﬁ < 00 hasa further

subsequence with these properties. Thus it will be sufficient to show that fj, ; (6 Nj) — v,’:’b for all
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k € accp(p*), b € B. Now define Ay, = lim Ay, j, and o, similarly for all k € accy (p*).

The proof will proceed in two parts. First we will show thatif Ay, # 0 forsome k € acc(p*),
then log 7, (h, O,) S —NI forsome ' > 0. This is a contradiction by remark B.4.2 so that
A = 0and o, = 1 for all k. Then we will show thatif f »(0n;) 7> vf,, forany k, b € supp; (p*),
eventually sup. ., log 7 (vl Ox,) S N2 (1| f(0x,) = v*]| — )" forsome 8 > 0
for small 7). Assume this is the case for now. By similar logic to that in equation B.13 of proposition

B.4.3, for small fixed 7, it can be seen that for some 3", C, C’ > 0,

log efleNj(U)fr(ﬂth,HNj) < —Njln; (vn;) — CNP".
B(n)“

As well,

log/ e_leNj(v)ﬁ(v]th,HNj) < — Njin;(vn;) +  sup  log7(v|hy;,0N;)
B(n) [[o* —vl|<n

< =N, (on;) = C/Njﬁﬂ'

using the fact that log 7 (v| Ay, , On,) < —N;° " This is also a contradiction by remark B.4.2 and
the statement of the theorem follows.

Part one: Assume that for some &/, A\ > 0. Performing the Stirling approximation on the terms
oflogr N; depends on the behavior of o Nk /h Nj- Based on the properties of the subsequence we
chose, this quantity converges. If it converges to a number greater than or equal to 1 we can perform

the usual Stirling approximation with O(1) error. On the other hand, if oy, 1. /b, has limit less

301



than 1, using the properties of the Gamma function we write
ON, .k ON, .k ON, .k
logT''{ —~ | =—log | —2~ | +logD" |1+ —2—
5 (th> g<th> 5 ( th)
ONjk ON. .k ON; .k
= [ 2Rk ) jog TRk ) L TNk L (g
( hn; ) g( hn; ) hn; W

where additional O(1) terms were added explicitly in the second line so that the approximation is

(B.15)

similar in form to the usual Stirling approximation with the exception of a 1 in the first term instead

of 1/2. Define v, = 1/2 if the limit of J}JLV ]frjk is greater than or equal to 1 and 1 otherwise. Finally
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recall that h N, =0 and write

IOgTNj (th,QNj) =

) 1 )
(T Lk~ 2 ) tog | TR 4 k) |+ 0(1)
hy; 2 hn;
- ¥ [_ “TR Jog(1 + huv, #k)
k€accr (p*) J
o 1
_ ( ]ivgzk _ 2) log (UN] k)
N; (B.16)
, .+ #khn,
(2 1 1) g P A
hN]. 2 1+ #k‘h]vj
ON, .k
+ > (@ —1/2)log <h> +0(1)
k€accp (p*) Nj
1
= Z —_— [ — ANk log(1 + #khy,) — on; klog(on; k)
k€accy, (p*) N;
ON; k + #EhN;
+ (0w + kb, ) log < 1+ #khn,

+ > (m—1/2)log (?}ﬁ) +0(1)

UN],k/hNJ%O J

1
< X |- Aglog(1+ #bh,) — o, oo, )
k€accr, (p*) J
ON; &+ #kth
4 _ e | T O(1
+ (UN],k+#khNJ)10g< 1+ #kh, +0(1)
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S

M
N,

Figure B.2: Graph of the function evaluated at th Nj in black when ON; bk < 1. The red line shows the tangent
at 0 with slope log(Jvak) < 0. The blue line shows that in this case, where o v, << 1, the function may be
dominated by some line for all values less than M. The green line shows that as hNJ. Nj — 00, the functionis

—An; k log(hn; Nj) + O(1).

The function

ON;k+ :c)

T —AN; klog(l + ) — o,k log(on, k) + (UNjyk + x) log ( t

UNj,k-HU

H—iz) , and is thus convex since the derivative is increasing

has intercept 0, and derivative log (
(Fig B.2).

Asx — 00, the functionis —Ay; x logz + O(1) while the function has tangentz +
xlog on; katz = 0.Inour case, we evaluateatx = h N, V5, which, based on the chosen subse-
quence, is either bounded or goes to infinity. First assume hy; N; is bounded, say by M, and recall

that we assumed Ay > 0 for some &, so 0y < 1. Then, because the function is decreasing and

eventually has negative derivative at 0, we can eventually bound it on [0, M] by a line with negative
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slope and intercept 0 (Fig B.2), so eventually, for some C, C’ > 0,

1
logTNl(h’Nﬁem) S _CTNJ}ZNJ —|— Cl g _N]

J

Otherwise h N; N; — 00 so, by the above remark about the limits of the function as x — o0,

1
log TN, (h’N] ) enl) < - 2h]\[
J

log(hn, Nj) Z AN+ C
k€accr, (p*)

for some C' > 0 eventually. Recalling that b, N. jﬁ is eventually bounded above, and by assumption
log(hn, Nj) — oo,

_NP log(h; Nj)

logrn, (hny, 0n,) S —N; Y mkaX/\k’S_mel?X/\k'
Nj*Yj

This completes part one of the proof.
Part two: Assume || fx5(0n;) — U || /> 0. We will perform the same technique to allow a Stirling
approximation of the prior: define yx = 1/2 if the limit of fy 4(0n;) /R, is greater than or equal

to 1 and 1 otherwise. Then, forallv € A (p*) away from the boundary, recalling that we showed
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Je(On,)
Nk

log 7 ( ]hNJ,QN Zlogf ( )
]

J

_ Z llogr (hjlvfk,b(eNj)> — %fk,b(eNj) logvk7b‘| +0(1)
)l J

besupp (p*)|k

ON N; k
:zk:<h N; 1/2>10g< hn; )

- > { <hlfk,b(9Nj) - ’Yk,b) log (hjlvfk,b

besupp (p*)|k Nj J

1
- hfk,b(eNj)IOgUk,b} +0(1)
N.

J

1

kb st yg p=1
1 k(0N
S—— ) KL JiOn;) vk | -
hn; ON; k

Now note hy; < N7 and for any norm | - |, by Pinsker’s inequality,

3 UNk

Je(On;) 2

ONj.k

o)z 3

k

One may check that (3", || - \\2)1/2 is also a norm and o, 1, — 1 forall k, so

;KL (fk(eN])

ON; k

2
|vk) 2 ||£0n,) = || +0(1)
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=—dim A 1 - on. kKL | ——2Z|v
5 L(p*) log (hN ) ) Zk: Nk ( N

+ Y (’Vk,b - ;) log (illek,b(eNj)> +0(1)




forany norm || - ||. Now noteif n < || f(On;) — v*||,

2
sup logfr(v[h]vjﬁ]vj) < _Njﬁ (Hf(eNJ) — v - 77) .
veB(n)

This concludes part two. O]

We now have the tools to determine the behavior of Ay and f (6 ) in the well and misspecified

cascs.

B.4.I THE WELL-SPECIFIED CASE

We now examine the asymptotic behavior of empirical Bayes inference for the BEAR model in the
well-specified case, or, more precisely, when the model is well-specified “at resolution L”, in the
sense that there are v such that for all k, b € supp; (p*), Frew(On) — v}, , (we say the model is
misspecified at resolution L otherwise). We first show that the misspecification diagnostic is guaran-
teed to converge to zero (hy —+ 0), correctly indicating that the model is well-specified, and that
the embedded AR model converges to the true transition probabilities (f(0y) — v*). We also
give a bound on the rate for the convergence of h v, a power of the dataset size. We then establish

additional weak conditions under which 6 also converges to the true value 6*.

Proposition B.4.5. Say the model is well-specified and (hn )N and (ON) N are sequences maximiz-
inglogm({ X, }N_1|hn, On). Then hy NY4=¢ — 0 forevery € > 0and fr,p(On) — O p for all

k,b € supp, (p*) with both sequences converging in probability.
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Proof. 1f U is a neighborhood of v* and 8 > 0, proposition B.4.4 shows that

p(hy < NP, f(On) ¢ U) =0

(otherwise p*(hy < NP, f(On) ¢ U for infinitely many N) > 0). We show below that
p*(hy > N™Y4€) 5 Oforanye > 0and it will thus follow that we also get f(6) — v* in
probability.

Proposition B.4.3 shows that

p*(hy > N7V log 7(v*|hy, On) < —VN) = 0

ashy < N~V4t€ifand only if hyN1/4=¢/2 > N¢/2 Thus it is sufficient to show that

p*(hy > N7Y4F€ log 7 (v*|hy, On) > —VN) — 0.

On this set, we may apply theorem B.4.1, but we will need to control log 77 (v*|h, 6).

For any h, 0, defining ;5 = 1 if%fk,b(ﬁ) < land 1/2 otherwise, and 43, = 1if & < 1 (where
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recall 0 = 3 pcqupp, (p*)]i Jh,b(0)) and 1/2 otherwise, by the same derivation as equation B.17,
3 1 - 1 1 fi(0)
1 *|h,0) == dim Ap(p*)1 - - = :
og(v*|h,0) 5 dim L(p*)log <h> . zk:O'kKL (UNj,k vy,

+ > (’Wab - ;) log (;Lfk,b(e)) (B.18)

k‘,b s.t. "/k,b:]-

5 (D) o0

k‘, s.t. ’yk=1

where O(1) is uniform over h or §. Since 43, = Lonlyify;, = 1forallb € supp, (p*)|x, by the
concavity of the log function, the sum of these last two terms is negative. Thus,

~ 1
log 7 (v*|h,0) < %dim Apr(p*)log (h) +C (B.19)

for all h, 6 for some C' > 0.

Now we derive a lower bound for 1 ((X,,)_1|h, Ox). Pick 6; such that
forallk,b € supp, (p*), fap(6;) —  vj, Thus, #(|h,6;) —
[Tkeaces (o) Dirichlet(507 ,Jpesupp, (p*)], forany b > 0in distribution. Andash — 0, we
also have [Tj.c,cc; (p-) Dirichlet(3 05 4 Jpesupp, () —> Ov+- S0, pick a sequence 0, fo; such
that 7 (-|hj, ]) — §,+ in distribution.* Then logm((X,,)N_, |h;, ]) — —Nliy(v*). Thus,

logm((Xn)Y_|hn,On) > —Niy(v*). Also recall that from the proof of theorem B.3.2 that,

*Since A (p*) is compact, the set of polynomials with rational coefficients, (g;)§24 is
dense in the space of continuous functions under the infinite norm. Pick h; to have |g; (v*) . -
[ gid [reacer o Dlrlchlet( Vi b )besupp, ()5 | < 1/j foralli < j and then 6% to have

|fg1de€aCCL(p  Dirichlet( 307 4 )bewupp, ()1 — J 967 (|, 0’)| < 1/j foralli < j.

309



defining Zny = Nin(vn) — Nin(v*), Zn converges in distribution (to a chi-squared distribution).

Since logrn < 0 we can write
logm((Xn)2; |y, 0n) > —Nin(vn) + Zy. (B.20)

Now, when both hy > N—1/4+¢, log 7 (v*|hn, ON) > —V/N, applying theorem B.4.1, we've

shown that with probability going to 1, for some fixed C' > 0,

1 N 1 ~ 1
lOgTh((Xn)ﬁ/:ﬂhN,@N) < —NZN(UN) — idlm AL(p*)IOgN—f- 5 dim AL(p*)log <h) + C.

Thus, as hy > N~ V/4+e,

1 A 1 ~ 1 -
1 dim Ar(p*)logN + C > — §dimAL(p*)logN+ (1/4 — 6)5 dim Az (p*)logN + C
> logm((Xp) 1 [hn, On) + Ny (vw)

>7ZN.
(B.21)

Since Z v converges in distribution, this occurs with vanishing probability. O

We have thus far discussed the asymptotic behavior of iy and f(6x). To draw conclusions
about 0 itself, we need to place some assumptions on the autoregressive function f. Here we pro-
vide an example of such assumptions, drawn from the theory of M-estimators, which say in essence
that f must have an isolated peak at 0*. These assumptions are enough to guarantee that the empiri-

cal Bayes estimate of the AR model parameter ¢ converges to the true value 6*.
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Corollary B.4.6. Say0* € © and disa metricon © such that fi,,(0") = vi, forall k,b €

supp, (p*) and forall 6 > 0,

Then On — 0% in probability.

Proof- Since by proposition B.4.5 we have || f(0x) — v*|| = op(1), we may apply theorem 5.7 of

268

van der Vaart **° to get the result. O

Taking a step back, a perhaps surprising aspect of these results is the weak conditions on f. Were
we, instead of trying to diagnose misspecification in the AR model, simply trying to analyze un-
certainty in the AR model’s parameter estimate, we might proceed by putting a prior on € and
performing Bayesian inference for the AR model. In this case, to guarantee asymptotic normality
and well-calibrated frequentist coverage, we would in general need strong conditions on f, such as
bounded third derivatives7°. Intuitively, the task of diagnosing misspecification might seem to be
harder than describing parameter uncertainty, but our conditions on f in this section and the next

are in fact much weaker, involving no restrictions on the derivatives of f whatsoever.

B.4.2 THE MISSPECIFIED CASE

We now consider the case where the AR model is misspecified at resolution L. In this case, we can

rewrite the marginal likelihood of the BEAR model (using propositions B.4.3 and B.4.4 to apply
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theorem B.4.1) as
1 -
logm((X,)2_1|hn,0n) = —Niy(vy) — 5 dim AL (p*)log N + Cpr = L (hn, 0n) + 0(1)

where we define L (hy,0n) = —log#(v*|h, 0) — rn(h, 0).% This expression for the marginal
likelihood takes the form of a modified Laplace approximation where, instead of the original prior

7 evaluated at the true parameter value, we have the prior over the support of the data, 7(v*|h, 6),
as well as the additional term 7, which is O(log V) rather than O(1) and depends on the concen-
tration of the prior outside the support of the data. Instead of the standard empirical Bayes behavior

described by Petrone et al. 196

, wherein the prior probability of the true parameters is maximized, we
instead heuristically expect that the objective function £ (h, 6) is minimized. The following result

makes this intuition formal, showing that hy and 6 indeed behavior similarly to the minimizers of

Ly.

Corollary B.4.7. If the model is misspecified at resolution L, a.s. Ln(hn,0n) = supy, g Ln(h, 0)—

o(1).

Proof. Say hy, O are sequences such that £y (hy, Ox) = sup;, o Ln(h,0) — o(1). For fixed h, 0,
we have L (h,0) = O(log N). Thus, for any 5 > 0 we clearly have
lim inf(log 7 (v* | hn,0xn))/NP > 0and since we are in the misspecified case, following the

logic of proposition B.4.4, equation B.16 may be used to see that we also have fALNNﬁ — 0.

S £ is stochastic due to r, but since by N# — oo for any B > 0, using the expansion in equation B.16,
one may show that the #k in 7 can be replaced with N E#k incurring only a penalty of Op (N ~1/2+€),
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Thus theorem B.4.1 may be applied to iL, 0 and a comparison of the Laplace approximations of

m((Xn)N_|hn, On) and m((X,)N_, |, O) gives the resul. O

We next examine in greater detail the behavior of the misspecification diagnostic h v, along with
the AR parameter estimate 6. There are two cases to consider. First, if the support of the AR
model matches the support of the data-generating distribution (that is, supp(f(€)) = supp, (p*)
forall @), thenry = 0and Lx = —log@(v*|h, #); we thus recover the standard empirical Bayes

behavior of Petrone et al. 19¢

, with Ay and 6y asymptotically maximizing the prior probability
of the true parameter value. In this case we find that /1y converges to a finite positive value. The
second case to consider is when supp, (p*) C supp(f(6)). Here, we have 7y # 0, and in particular

rn(h,0) &~ —41og(N)Yj, A(6). In this case we find that Ay — o0. Thus, in either case,

hn #+ 0,and so hy will correctly diagnose misspecification in the AR model.

Corollary B.4.8. If the model is misspecified at resolution L but supp(f(0)) = supp, (p*) forall 0,

h is eventually bounded above and below.

Proof. Recall from proposition B.4.4 thatif b — 0, log 7 (v*|h, 8) < —C% infy || f(0) — v*|| for
some C' > 0. This expression diverges to —oo as h — 0. We also showed in proposition B.4.5 that
log 7 (v*|h, 8) < % dimAp (p*)log(1/h) 4+ C forsome C' > 0. This expression also diverges as

h — oo. Combining these two observations along with corollary B.4.7 we get the result. [

To say something about 6, due to corollary B.4.7, we may use the theory of extremum estima-

tors we can apply theorem 5.7 of van der Vaart 268

, replacing limits in probability with a.s. limits to

get
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Corollary B.4.9. Say the model is misspecified at resolution L but supp(f(0)) = supp, (p*) for all

0. Say also that 0* € ©, h* > 0 and d is a metric on © such that for every 6 > 0,

log7w(v*|h*,6%) > sup log 7w(v*|h, §).
\h—h*|vd(0,0%)>6

Then O — 0 and hy — h™* a.s..

Now we consider the case where the support do not match, i.e. infy max; A\ (6) > 0, where

Ak(0) = Xbgtsupp, ()1, Trb(0)-

Proposition B.4.x0. If the model is misspecified at resolution L, supp, (p*) C supp(f(9)) for all 0,

and infg maxy A\, (0) > 0, then hy — oc.

Proof: We first show hyy is a.s. bounded below. Since by N¥ — oo forall 3 > 0,if h N; — Ofor
some subsequence, we showed in proposition B.4.4 that a.s.

logr, (i O;) < ~C 52 infy maxi Ao + €' < —C" 50 infy max Ay + C'
for some C, C",C" > 0. In particular, logrn, < —O(log(N)) butlogry, % —O(log(N)) if
hn; — 0. Thus, since log 7 (h, 0) > —C'log(N) for fixed h, 6, for some C' > 0 dependent on
h, 0 and 7 also diverges as h — 0, the assumption that h maximizes the marginal likelihood is
contradicted. Thus, hx # 0. In particular, we showed in proposition B.4.5 (equation B.19) that
log 7 (v*|h,0) < % dim A (p*) log(1/h) + C for some C' > 0 so we get that log 7 (v*|hy, O is
bounded above a.s..

Assume hy is bounded above; we will show that this leads to a contradiction. Define vy =
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1/2if oy (On)/hn > 1and yn = 1 otherwise. Define 4 i, similarly for 1 /A alone. We next
perform the same trick as in proposition B.4.4, expanding I'( ﬁ) in the form of a Stirling approxi-

mation, to analyze v further. Noting thatlog(hnN) — 00, we have as.,

logrn(hn,On) = E hi [ — Me(On) log(1 + #khy) — o log(or(0n))
keaccy, (p*)
On) + #kh
+ (ok(On) + #khy) log (%(1 ]jr)#]j; N) 1

fOY e 1/2) e (D)

k€accr (p*)

_ Z (AN —1/2)log <th> +0(1) (B.22)

k€accr, (p*)

== log(:]]\\[/N) > [M(GN) + o(1)

k€accy, (p*)

+ > (ke —1/2)log <Gk]§ijv)>

k€accr, (p*)

- X G- 125 ) +00).

keacer, (p*)

Note Yy, = 1onlyif vy, = 1 so that the the sum of these last two terms is negative. So, since h
is bounded above, logry (b, On) < —C'log(N) infy max, A, (6) for some C' > 0. Thus, since
we also have thatlog 7(v*|hn, 6) is bounded above a.s., we get that L (hn, On) 2 log(N) as..

On the other hand, with fixed 6, if hy — 0o (so we still have log(hnN) — 00), then

. log( N
long(hN,Q)——O%() 3 lkk(9>+o(1>
N heacer (p)

by Y loglow(®) +00)

k€accyp (p*)
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which is —o(log V), where we wrote log(hx ) /hn = o(1). Now pick hy increasing slowly so
that Ly (hy,8) = o(log(N)). This is eventually less than £y (A, 8 ), a contradiction. Thus,

hN—>OO. O

We can also study the behavior of 6y in this mismatched supports case, using again the theory
extremum estimators. We briefly outline the strategy, omitting details. Further analysis of equations

B.18 and B.22 gives an objective, as h — o0, 9

L(h,0) = — IOg <Z)\ +o(1 )

—dim A (p*)logh+ (1+0(1)) > log(fis(8)) +C +o(1)
k,besupp, (p*)

Zk Ak

for some fixed C' > 0. Careful analysis of the o(1) terms shows that h approaches dlm DR

Plugging this value of  in, the objective becomes

L(h,0) = —dimAL(p)logd N+ D> log(fep(0)) + Cn +o(1)
k k,besupp, (p*)

for some constant C'y dependent only on N and p*. One can then see that 6 is an M-estimator of
dim Ap (p*) log S e + X% besupp, ( ) 1og(fi,b(6)) and apply a similar analysis as in corollary
B.4.9.

So far we have seen that hy /4 0 when the AR model is misspecified at resolution L, but exactly

what value will /1 v take and what can it tell us about the amount of misspecification? Here we ana-

9Note that the KL term in 7 can be dominated by Zk,bGSLlppL (v 10g(fr,5(0)).
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lyze the objective £y heuristically to address these questions. From the expansions in proposition

B.4.4, we can write, for reasonable values of h, 8, assuming not too much misspecification,

~ % 1 . A * 1 1 *
log7w(v*|h, 8) ~ idlm Ar(p*)log h> - Z KL(fx(0)|vR)
k€accr (p*)
log(N
logry(h,0) ~ — Ogé ) Z A (0).
k€accy, (p*)

We see, then, that 0 and hy depend on an unconventional but valid divergence between the AR
model and p*(X); the sum of the KL divergence between the AR model transition probabilities
(from kmers that occur with non-zero probability) and the true transition probabilities, plus a
penalty proportional to log(/N') when the support of the AR model does not match the support
of p*. We can thus interpret hy not only as a diagnostic of misspecification, but also as a measure-
ment of the amount of misspecification, and make comparisons between different AR models on

the basis of their h values.

B.s HYPOTHESIS TESTING

In this section we use the results of the above sections to develop goodness-of-fit and two sample

tests.

B.s.1i GOODNESS-OF-FIT TEST

Say p* is a distribution on S with E|X|? < oo andsay X1, Xa, -+ ~ p*iid. Say f is another

distribution on S with F log? 5(X) < 0o where the expectation is with respect to p*. We are
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interested in testing whether or not p* = P, so we will consider the Bayes factor

P(Xn)ny

B = X, [My)

This test asks whether or not p approximates p* at least as well as the optimal model in M. We
can use it in particular to test whether p matches the data-generating distribution p* at resolution L,

that is, whether p matches p*(%).

Proposition B.s.1. Given L, consider a Dirichlet(ay ), g prior on the simplex in AZZ correspond-
ing to the L-mer k. For all L, assume ., > 0 for (k,b) € supp, (p*) (otherwise p((Xn)2_1| M)

is eventually 0 a.s.). Then if p # p*(L),
log BF, = N (xz(p*||p*™)) — xe(p*||p)) + Op(VN),

which goes to 00 in probability if kr (p*||p*P)) > xr(p*||p) and to —oc in probability if k1 (p*||p*")) <

xL(p*||p). If p = p*(L)
log BF;, = 71 dim®/ (p*)1 N +0p(1
g L 9 1m (p ) 0og ( )7

which goes to 00 in probability.
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Proof. Note that as shown in the proof of theorem B.3.2, KL(p* || M) = xL(p*||p*(")), and

>k ]‘ . e >k
log (X)Ll M) = log ™ (X)Ly) — 5 dimi (p7) log N+ Op (1), (B23)

Aswell, 5(X,,)N_; = NElogp(X) + Op(v/N) and a similar expression can be written for p*(%),

These two facts prove the result. O

Remark B.s.2. One may also consider a Bayes factor that integrates over many L:

< -1
BF = — P(Xn)ncy = ( L (L Brl)
SE A (L)p((Xa) Ny | My) Lg (LBF;

fora prior w with (L) > 0. By proposition B.s.1, this Bayes factor goes to 0 if kr (p*|| p*(i)) <
KL(p*||p) and goes to 0o if KL(p* Hp*@)) > xL(p*||p) orp = p* (D) (this later condition is implied
byp = p*F) forsome L < L and xkr(p*||p*F)) = xr(p*||p)). Thus this Bayes factor has the same

asymptotics as BFj.

B.s.2 TWO-SAMPLE TEST

To set up the two-sample testing problem, consider two distributions p1 and p2 on S such that
Ep,|X[> < ooforj € {1,2}. We will assume that the two groups of datapoints are sampled
together according to a mixture model with observed labels. That is, let j1, jo, . . . be observed
Bernoulli iid random variables indicating the group, with j,, = 1 with probability 3 and j,, = 2

with probability 1 — Bfora0 < 3 < 1. Then, let X,, ~ p;, independently. The pooled dataset
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thus follows the generative process X1, Xo, -+ ~ p* = fBp1 + (1 — B)p2 iid. We are interested
in whether or not p1 # pa. To make this question theoretically tractable, we will fix the lag L, and

attempt only to discern whether pl 75 D5 (1) \where p( )|

;s the best approximation to p; in M, (as

defined in section B.3). In other words, we attempt to distinguish between p; and p2 only up to a
”resolution”, in analogy to Holmes et al. "°°. We thus consider the Bayes factor

p(( )n 1|(Jn n=1P1 = P2 and p1,p2 € ML)
p((X)N_11(5n) Ny, p1 # p2 and p1, p2 € M)
(

(Xn)hi [ Mp)
P((Xn)n<n jn=1IML)P((Xn)n<n jo=2| ML)

BF; =

In the subsequent remark, we also extend the theory to Bayes factors that integrate over all L up to
some fixed maximum.

Consider independent Dirichlet(ck,p ), g priors on the simplexes in A‘BZ;L' corresponding to the
L-mers k. Assume oy, > 0 for (k,b) € supp, (p*) = supp, (p1) U supp; (p2).

Proposition B.s.3. If ng) 7 ng),

pO() rO)
logBFf, = N | BE 1log7+(1—5)[ ,log=———| + Op(VN)
") R (B2s)

— —ooas N — oo.

Otherwise p(1 ) = p(QL) and

1
log BF;, = 5 dimeLff(p*) logN + Op(1)
(B.26)

— 00as N — oo.
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Proof. First note that as shown in the proof of theorem B.3.2, noting |[{n|j, = j}| /N = Op(1),

ES 1 . [ *
g (X)Ll Ms) =gy (6 = dimif @) log N+ Op(1)
B.27

L. e
log p((Xn)n<N,ju=5IMr) = 10gP§L)((Xn)n§N,jn:j) -5 dimf’/ (p;) log N + Op(1)

forj € {1,2}. As well, log p*") ((X,,)N_}) = NElogp*P)(X) 4+ Op(v/N) by our assumption

n=1

on the moments [, | X|? < 0o and similar expressions exist for p and ps. Finally note that

arg min x1(p° ) = arg max E log p, (X)

BL
veAg (B.28)

=argmax SE,, logp,(X) + (1 — B)E,, log p,(X).

Thus, ifng) = ng) then ng) = ng) = P*(L)-

First assume ng) # ng). So, we have

log BF, = NE,- logp*®) — BNE,, logp{*)(X) — (1 — B)NE,, log i) (X) + Op(VN)
x(L) *(L)
= N | BEy, log “75 + (1= B)Ep, log - | + Op(VN).
Dy Py
(B.29)

Note £, log 1:((—;)) = KL(leng)) — xi(p1|[p*®)) < 0 by the definition ofng). Since p(lL) #
1

L #(L) #(L) .
pg ), at least one of [, log T;(—L), £, log ZT) must be negative and so log BF;, — —oo0.
1 2

Now sayp(()L) =p) = ng). In this case,

logBF, = %dimeLff(p*)logN + Op(1).
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Clearly log BFf, — 0.

Remark B.s.4. One may also consider a Bayes factor that integrates over many lags:

BF = Siom(L)p ((E() 1 Mr)

(S 7@K o= ML) ) (SEoa 7 (D)p(Xn s gu=al ML) )

By theorem B.3.2, for all three sums, eventually either (a) assuming the condition for consistency in
corollary B.3.6 the term corresponding to the smallest L such that p* € M, will dominate, if p* €
M, or (b) the term corresponding to L will dominate, if p* ¢ M. Thus, by analysis similar to
that of proposition B.s.3, in any case, we have equation B.25 with L replaced by L, so that the Bayes
factor goes to O if ng) #* pg:). 1f, on the other hand, we have pgi) = péi), then there are two cases:
p1 = p2 € Mrpx forsome L* < L (and L* is picked to be the smallest such lag), or py,p2 ¢ M.
In the first case, p* € Mpx so the asymptotics of BF are identical to that of BF'1» and we can refer to
proposition B.s.3 to see that the Bayes factor goes to 0. In the second case, we may still have p* € My«

for some minimal L* < L; if p* is not a Markov model with lag < L, call L* = L. In this case, by

the analysis of proposition B.5.3,
log BF = (dlmtﬁ(p ) — fdun‘ﬁ( )) logN 4+ Op(1) — oo.

Thus the asymptotics of this integrated Bayes factor are identical to that of BF: 5.
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B.6 CONSISTENCY IN THE INFINITE L CASE

So far we have only studied consistency in the finite lag L case, that is, our results only show that
we can approximate p* up to some finite resolution L (corresponding to the largest available lag).
In this section, we develop frequentist and Bayesian consistency results for the fully nonparametric
model, that is, we allow for priors with support over all lags L up to infinity, and show that we can
approximate p* itself even if p* ¢ M. The Bayesian consistency result is our main result, and the
most practically useful, but the frequentist result is a natural first step toward the Bayesian result,
and an opportunity to develop novel constructions (such as the projection algorithm in section

B.6.2) useful in proving the Bayesian result.

B.6.1 FREQUENTIST CONSISTENCY

We first show that maximum likelihood estimation is consistent, using the method of sieves de-

scribed in Geman & Hwang 8¢ The idea is to increase the size of the model class with the amount

of data IV slowly enough to avoid over-fitting. We define the model class considered for IV data

points first with the lag L, but also by restricting transition probabilities to be bounded below by a

v: In particular, when there are N datapoints, the model class we consider, or the N-th "sieve”, is
BzN c) 0o :

Sy ={ve AB | Vk, b, vy > vn} where (vn)_1, (Ln)R—q are sequences with Ly — oo,

vy — 0.

Theorem B.6.x. Say X1, Xo, - ~ p* iid where p* is a subexponential distribution on S. Say

Doy 15 a maximum likelihood distribution withvy € Sy given (X n)ﬁle. Doy — D and

323



KL(p*||pvy ) — 0 a.s. if for some € > 0,

uppy,, (%) (log (V"))
N

— 0. (B.30)

Proof. The proof follows that of theorem 3 of Geman & Hwang .

First note that Sy is compact and the likelihood function is continuous so a maximum likeli-
hood vy always exists. This satisfies condition Cr1 of theorem 2 of Geman & Hwang 86

Next, to satisfy condition C2 (b) of theorem 2 of Geman & Hwang *® we show that there are
Oy € Sn such thatkL(p*||ps,) — 0. First, for each L, pick a distribution p’ on S such that
forall | X| < L,p*(X) > Oandxr(p*|[p") — OasL — oo (for example, pick p”(| X| >
L) = p(X] > LypP(IX] > L) = p (IX] > L)andp"(||X| < L) positive with
xL(p*(-|X| < L)||p"(-||X| < L)) < 1/L). pk as defined in proposition B.2.3 is a lag L Markov

model with positive transition probabilities. Thus, for large [V, its transition probabilities are in Sy .
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Now notice,

(' lpf) <€ [log< 8;) x| <L

e (555) 1]

p(x) .
e (e, e ) -1

<E [log (ng ) 1X| < L] (B31)

~—

i

+L

log (ﬁ;éi) X >L]

’GE

»

P (X) ,
+L [log <pL(X)\B|_(X|_L)> 1|1 X > L
=x(p"|[p") + (log|B|) E[|X| - L;| X| > L]

—0as L — ooasE|X| < oo.

Now we can pick On € Sy, such that xL(p*|[ps, ) — 0.
ThatxL(p*||py) — Oimpliespy — p for distributions px on S follows from Pinsker’s
inequality. This satisfies condition Cz2 (a) of theorem 2 of Geman & Hwang *°. However, note

that the proof of theorem 2 of Geman & Hwang 86

also shows that if v is an MLE in Sy and the
conditions of the theorem hold, then XL(p*||py, ) — 0 a.s..
Finally, we define a partition of each Sy that satisfies conditions i-iii of theorem 2 of Geman &

1

Hwang *° to get the result. Pick a sequence py — 0 with log (V;[I) > (log(1+pn))~" eventually.

Call N the set of positive integers and fora ¢ € NP (» *), define
On(¢) :={v € S| V(k,b) € supp,, (), (14 pu) v > vep > (1+ pn ) uw}
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Figure B.3: Sieves Sy are broken up into subsets @N (C) each a Cartesian product of subsets of AB, and these subsets
inturn are indexed by (, for each k. Here we illustrate one such subset of A z, when |B| = 3andsuppr, Pk = B.
The regionincluded in @N (C) when (}, = (2, 3, 3) is shown in solid gray, while all other possible subsets for different
values of (. are shown in white. The region adjacent to the border of the simplex (hatched lines) corresponds to those

transition vectors that have components less than 1/ and are therefore not part of the sieve Sy .

SO that U(:en\lsuppLN (p*) @N(C) == SN (Flg B})

1
Callyy = (1::;%:]21\2) + 1) and note (1 + pn )"V ~lvy = 1. Thus the number of choices of ¢

that give non-empty sets, call this #Oy, is bounded above by ')/Jli,uppLN (p )‘. Now notice eventually

log (V&l)) L1 (log (V;))z +1> (log (V&l))z;

N log(1+ pn

so that #0y < exp (4 (loglog (v, 1)) |supp;, . (p*)\)
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Say 1 > 0and, pickinga ¢ € N™"PPLy (p*), define

On(¢) = {v € On(O)| KL(p"| [Py ) — KL Ip) = Elog (ﬁ;(i 1) <)

su (X
dc(t) = Eexp (t log ( pvi}iN((%(I; ( )>> .

Note ¢¢(t) < Eexp(t|X|(log (1/&1) )) which is finite for small enough ¢ by assumption. ¢
and the bound E exp(¢| X |(log (v} ~1))) are partition functions for exponential families so, since
they are finite for small ¢, they are C'°° with derivatives obtained by exchanging differentiation and
integration for small £ by theorem 4.5 of van der Vaart***. Tn particular, for t < Cye /(log (V"))

for some C)p+ that depends on p*, defining another constant that depends on p*, Czl)* < 00,

2
¢/Cl(t) =t [<log (Supvi?iN((C))(l;v(X)>> exp (t log <Sup”€pizj\;((c))(1’;v(X)>)]

<(log (vy"))’E [IX > exp (11X (l0g (vi"))) ] (B.32)

<C,x(log (V&l) )2.

As well, forany v, v2 € On(¢), forall (k,b) € suppy  (p*), [log (v1,kp/v2kp) | < log(1 +
pn) < pn. Thus, forallv € On((), since if p*(X) > 0 then all L y-mer-base transitions in X are

su v (X
insupp; (p*), Elog (W) < pnE|X]. So, defining C}. = E[X]|,

Supv (@) pU(X) X
$}(0) = Elog ( epN(g) + Elog ;’f((x)) < pnClh —1. (B.33)
v DN
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Putting things together we get, for small ¢,

1 _
6c(t) < 1+ t(pnCy. — 1) + 5t°C (log (vy')). (B.34)

Pickingt = 2(log (1/;,1) )=+ for some e > 0 gives, for large enough N, for any ¢, ¢¢(t) <

1 —n/(log (1/]?,1))1Jre < exp(—n/(log (v;;1))17€). Finally note that

(1 -1 )1+e (1 -1 )(14’6)/(176/) 1—¢
Oggxl;iv—g _< 4 )N ) -0

by equation B.30 if €, €’ are small enough. Now write, for large N’ and positive constants
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6//, C’ C/’ Cl/’

00 N
> (#@N) (ﬂép tir>lg¢><(t)> <

N>N'

> exp | 4 (loglog (vy')) lsupp,,, (p*)] - all

N (l0g (vi")) o

14-¢"

Ny - Jsuppy, ()] (log (v3')) )
< (s (e)) ™ | © N
<Zexp<—N€/C’> (B:35)
N

< /OOO dx exp (—C”af/)

261—10//—1/6’/ drz ¢V exp (—)
0
:6/—10//—1/5’F(1/6/)

<0

using the assumptions of the theorem and replacing € by €” to absorb log log (v, 1) (note one can
make €, €, €’ as close to 1 as desired). This shows that all conditions of theorem 2 of Geman &

Hwang *¢ are satisfied. 0
Remark B.6.2. 10 pick viable (Ln) N, (VN) N, note [supp;, (p*)| < B |BY |, 50, since

Ly, Ly+1
B|*vT —1
B =>_18' = Llihil |B|FvH,
1=0 Bl -1

we have |supp;, (p)| < \B|LN. Thus, as an example, for c1,ca > Osuchthat1 > c1 + ca,
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Ly = [c1logN/log|B|| and vy = e=N satisfy condition B.30. We can see that without any

a priori knowledge of |supp; (p*)| we are forced to pick a very slow growing sequence (L) N, and
thus it is likely that are model class is too conservative for p* whose support have cardinality far from
the upper bound. By adapting L to the content of the data in addition to its cardinality, the Bayesian

approach described in section B.6.3 does not suffer from this conceptual issue.

B.6.2 'THE PROJECTION ALGORITHM

Fix L and v for this section and define S = {v € Agz | vip > vV k,b}. Givendata X1, ..., Xy,
any maximum likelihood estimate (MLE) in M, v, has, for every L-mer k that is seen in the data,
Ve = #(k,b)/ (X yep #(k, b)) where #(k, b) is the number of times k is seen in the data im-
mediately preceding b. If v isa MLE in S, it will be shown that for each L-mer £ that is seen in the
data, (Ug.p),c g3 is equal to a "projection” of (vxp) 5 onto the smaller simplex {vy, € A|B\ | gy >
v Vb}. This projection is defined in algorithm 4, and the rest of this section will be devoted to its
properties, including continuity, bounds, and proof of the above statement in proposition B.6.8.
Some of these bounds will be used to prove the consistency of nonparametric Bayesian inference

in section B.6.3. For ease of exposition, we will first present a conceptually simpler version of the

projection algorithm, algorithm 3.
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Algorithm 3 PROJECTION ALGORITHM I

Input : Non-negative numbers (up),c3, with Yy cgup, > 0, and a positive number v <
Output: (1), such that 3, g, = 1 and 4y, > v forall b.

@)y (Syes uw)

2 BO  |{b|ay’ < v}

30041

4: while there exists a b with ﬂl(f_l) < vdo

5 forb € Bdo

6: if ﬂl(f*l) < v then

7: ﬂl(f_l) —v

8: else

% a Y e (1 - B(i_l)’/) up/(Zy | >y U )-

o BO «— [{¥| @ < v}
I1: 1¢+—1+1
12: forb € Bdo

_ _(i—1
13: Up < ugz )

Proposition B.6.3. Say algorithm 3 is applied to non-negative numbers (up ), g with 3, up > 0.

Define (Up)p, ((El()l) )o)i and (BW); as in the algorithm. Say the algorithm terminates at step 1.
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o) Foralli, SIBL () = 1.

2) If (up )y are scaled by a positive constant, the output (Up), remains the same.

3) Say (v, (i ))b is the i-th iteration of algorithm 3 with input (U (])) (v IE ))b = (ﬂl(,j+i))b.

) I < |B|. The algorithm remains unchanged if the while loop were replaced by “fori =
L |B| = 1do”

s)ip > (1= (1B = V)i

()

Proof. Results 1 and 2 are clear. For 3, note that if both %’ a)

and @ are greater than v, then

)/ub, = up/up . Thus, 1fu(j) > v,

W = (1) | Y | = e

v ﬂl(j)>zx

Similar logic may be used to show (?71()2))1, = (ﬂ,()j+2))b and so on.

To see 4, notice that for every i < I, atleast one b has ﬂl()i) = v while u,(f b < v. Thus,
(BOYL_ o= ({V/ | &) < w}|)L, isastrictly increasing sequence. B® < [Blasv < 1/|B.
If BO) = |B| thenv = 1/|B|and, by property 1, B() £ |B| — 1 for every i. In any case, the
sequence (B®)!_, may take on at most | B| values (including o) and thus I < |B|. The second
statement of 4 follows from the fact that for all b, i, > v and thus would remain unaltered by the

procedure in the while statement.

Finally, for s, first say 4 > v and note that B (I=1) < |B] (otherwise the algorithm is terminated
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or property 1 is violated).

iy = (1 — BU-Vy) = > (1- BU-Dy) (ZUb 72 (1= (B - Dw)ay”
%
(Zb/ lal ">y ub/) o
Now say 4, = v. Call ¢ the first step such that 'L_Ll()i/) =v.Ifi = 0orid = 1thenuy, = v >

(1— (1B = Dw)v > (1 — (1B = 1)v)a”). Finally, if i’ > 1 then

Up=v> ﬂl(f/_l) = (1 — B(i'_2)1/> up/ duy | > (1 — (18] - 1)’/) az(;o)-

il
b | ﬂl(; Dy

Thus in all cases @, > (1 — (|B] — 1)V)ﬂl(70). O

We now turn to the main projection algorithm.
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Algorithm 4 PROJECTION ALGORITHM II

Input : Non-negative numbers (uy) lblil, with Z@l up > 0,andapositive number v <
Output: (ﬂb)ﬂl such that 2@1 up = land w, > v forall b.

vl e u /(SR uy)

2 CO

30041

+ while thereisa b ¢ CU~Y with le(,i_l) <vdo

- Pickb(D e {p|u " < v} i

6 CO e cliD U [

7: forb=1,...,|B|do

8: if b € C then

9: ﬂl(f) — v

10: else

11 ﬂl()i) — (=) up/ (Cygcn wy)
12: 11+ 1

13: forb:L...,‘B‘dO

_ _(i—1
14: Up < ul(f )

An example run of algorithm 4 is visualized in figure B.4 (top row). Clearly this algorithm re-
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turns @, = vifv = 1/|B|andall the following results are trivial. Thus below we will assume

v < 1/|B].

Remark B.6.4. We will first consider an alternative representation of the algorithm.

Givena C C B, call

W = VZbgcub
1—|Clv

and zfuc > 0, define

a$ = (1 —|Clv)up/ (Z ub/) = vuy /u€

%
forb & C and ﬂg = v forb € C;soone gets ﬂl(j) = ﬂg(b at each iteration i. Ifb ¢ C, ﬂg <vifand
only if up < uC.

Sayb ¢ C and call C' := {b} UC.

o ¢ V(Zwgeuy) —up(1—|[Clv) v c
W e e T )

Thus uC > uC if and only if uy < uC with equality if and only if uy, = uC.

We can see that at iteration i the next b1 i chosen from {b | ﬂl(ffl) <vI\COD = {b|u <
cli—1) (i-1) . c(i—1) c(0) c
U H\C , i.e. from those b with wy, below the threshold U . Thus, u <u <....
This is reflected in figure B.4 (bottom row).
By induction (or from inspection of figure B.4), one may show that all the elements b of C @) st
have uy, below the threshold uC Y and the algorithm is complete only when all b with wy, below the

threshold uC" are inside CD. In other words, Jfori < I (where I is the final iteration) we have C @) ¢
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Step 0 Step 1 Step 2 Step 3

0.5

Figure B.4: Example application of algorithm 4. (ﬂl(f) )b at the end of each step of the algorithm is shown on the top row
with © in green and those elements in C(i) ingrey. (ub)lgl is shown as black bars in the plots in the bottom row with

(@) . @3) . . . .
u€"” shown as ared line. u€"’ for previous steps J < % are also shown on the bottom row as grey lines. The scale of the

. Bl . .
inputs (ub)lb:‘1 is of no consequence for the algorithm.

{blup < uC? }, and cI) — {b]uy < u€P ).
The important points from the above remark are summarized as:

Lemma B.6.5. 1)GivenaC C B sayb ¢ CandcallC' := {b} UC. uC > uC if and only if
uy, < uC with equality if and only if uy = u.
z)uc(O> < uCt <....

3) If the algorithm ends on ste, I,C(i) CHbluy < €Y foralli <1 c(@ C{b|lup <
44 74

uc(i)}fori < LandCh = {b|uy < ucm}.

Proposition B.6.6. Say algorithm 4 is applied to non-negative numbers (uy,), o g with Y, up > 0.
Define (Up)ps ((ﬂl(f) Vo)i and (CD); as in the algorithm. Say the algorithm terminates at step 1.
1) The output of the algorithm is the same regardless of the choice of (bo, b1, . . .).

2) The output of the algorithm is the same as that of algorithm 3.
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3) we can replace lines 4 and s of algorithm 4 with

4 whilethereisab & UV withw ") < v do

s Pickb0D e {b|ad Y < v\ el

and receive the same output. With this adjustment, I < |B].

4)Sayb ¢ C1). ﬂgiil} - ﬂl()i) < |B|(v — ﬂl(j:,ll)>)50 that ﬂl(ffl) is close to ﬂl(f) z'fﬂl()i;ll)) is close to

Proof. 1) Say the choices (b(?), . .., 1)) were made when running the algorithm. Consider a dif-
ferent sequence of choices (6'(?), . .., 'I")) to produce C'!"). Note that by lemma B.6.5,C :=
e = {blup < u€"Yand ' = C'T) = {b|uy < u€""}. Without loss of generality assume
C 2 C'souf > uf". We will show that this leads to a contradiction. Pick the smallest i < I such
that u€"” > 1€ Then u€" ™" < u, so by lemma B.6.5,C® C C'.

Pick an enumeration (b, . .., by) = (C"\ C¥). up, < uC < uf 5oV} > €Y By
induction, one may show that uC = CPuENC?) > uC b b1} > > uC b} >
uC"” . This contradicts the choice of i above. Thus,C = C'and I = |C| = |C'| = I'. Moreover,
since the final output (@) |, of the algorithm can be defined purely in terms of the final set C(9,
the output must be identical among runs of the algorithm.

2) Consider choosing (b(©), .. ., @) as such: first pick {0, ..., b0V} = {p|a” <
v}, which we know can be done since by lemma B.6.5, i) < v ifand onlyifu, < u¢"" and

uc(ﬁ) < uc(i1+1)

< .... This is equivalent to one step of the while loop of algorithm 3. Then

choose {b(1), ... b2~ D1 = [p| &l(fl) < v} \ €%, which we can do by similar logic. This is
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equivalent to the second step of the while loop of algorithm 3. Continuing the construction in the

same way, by conclusion (1) above, we get that the outputs of algorithms 3 and 4 are identical.

7 i—1 _(1
¢ = €Y and @l =

3) Note, by lemma B.6.s, picking a b(~1) with alh =y gives U y =

pli—1) =
dy ) forall b. Say (b, ..., b;), i < I are selected in the algorithm such that /) < v for each

j < iandallb € {b|al”) < v} \COhaved” = v, then (@™)y = (@), and all
be{b] ﬂl()iﬂ) < v} \ €O+ have ﬂl(f) = v. Continuing by induction demonstrates property (3).

That I < |l’>~’] follows by the same logic as conclusion (4) in proposition B.6.3 on algorithm 3.

4)Sayb ¢ C1),

WD a9, (1€ 1)

Up V(begc(i—w uy) — upi-n (1 — (0 = 1)v)

Yyge Uy Lpgeti-n Uy (B.36)
(i - _(i—1
:ul() )(1 - ZV) 1(” - ul()(ifl)))
5 _(i—1
<IBl(v — gy )
with the last inequality since i < |B| — 1and v < 1/|8].
]

Next we show that the projection defined by algorithm B.6.6 is continuous.

Lemma B.6.7. S2y0 < v < 1/|B|and ((Uj,b)l)ill)?il is a sequence of sets of non-negative num-

|B|

bers, each with at least one positive element, with ujy, — wy foreachbasj — oo, where (ub)b:1

is set of non-negative numbers with at least one positive element. Apply algorithm 3 or 4 to each set
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((uj,b)!;li)?il to get ((ﬂj,b)!;li1)§i1 and to (ub)lb |1 to get (ub)L |1 Then w;, — up forall b.

Proof. Define {LSI)? as in the steps of algorithm 4, with b 5D .. to be defined below. Say ﬂé?g) <

v. Eventually, ﬂ;?b)(o) < v and thus it becomes possible to pick b(©) in the first step of the algorithm

(1)

for all large enough j. Then, we get 71;712(0) =V = Uy Forb # AORT 1) )

(1

§'7b = I/Uj,b/ug as
1. , . B

defined as part of lemma B.6.5. u€" s a continuous function of (ub)L |1 so that u( b) — ul(; ) forall

b. Using the same logic, for large enough 7, we may pick an b with ul(](l)) < vand see @t b) — ﬁl(f)

for all b. We may continue as such until the algorithm terminates for (ub)ﬁll by property (3) in
proposition B.6.6. Thus, for some ¢, we have that ﬂgfl)) — Uy, for all b.
Note each (u; (@ ))‘ |1 may require another |B| — i — 1 steps for the algorithm to complete. For

(4)

large enough j, we have the implication , > v = u ib >V for all b so that if for a b, ﬂgf)

p <V,

then ﬂg?) — up = v. Applying property (4) in proposition B.6.6 to each of the remaining steps

of the algorithm applied to (ujl,)lﬂl for high enough 7, considering ﬂgfl)) — Uy for all b, we can see

that u;, — y, for all b. ]

Finally, we can show that the projection algorithms 3 and 4 indeed return the MLE on the sieve

S, given observed kmer transition counts.

Proposition B.6.8. Given data X1, ..., Xy, alag L, and a positive number v < 1/|l§’], say v
isan MLEin S = {v € Aﬁ% | Vk,b,vpp > v}. Forevery L-mer k that has been seen in the
data, (Ukp)yc g 15 equal to the output of algorithm 3 or 4 applied to (F#(k, b)), ;3 where #(k, b) is the

number of times k is seen in the data immediately preceding b.

339



Proof. The likelihood of the data undera p, € M, is

SN #(k, b) log(ug).
kE b

Thus, the MLE in S can be found by finding, for each k with #k > 0,

argmax, . A (o) Z #(k, b) log(v.»)
b

where A0 .= {vr € Ag|forallb, vy y, > v}.
Say k has been seen in the data, so the MLE on A, v,(go), is unique and satisfies v,i?g x #(k,b).
Call ¥, an MLE on A©), Say U,(CO) ¢ AO) 5o that for some b, v,(fg < Vp. By the uniqueness of

the MLE, the likelihood of the data under v,(;)) must be strictly greater than under 0y,. Connecting

(

U and v ko) by a line, considering the concavity of the log likelihood function, the likelihood must

(0)

be decreasing from v}, to 9. As the likelihood function is analytic and not constant on the line, it
must be strictly decreasing. Thus the line cannot intersect A©) except at Oy, For every b, Ay, +

(1-— )\)v,(fg > vforall A € [0,1] ifv,i?g > psforall A € [¢,1]forac < 1ifv,(€?g < Vpand

Ogp > vsandonlyfor A = 1 if”u,(cog < vpand ¥y = v. Therefore, for some b such that

(0)

Ve b

0y < v we have g po) = V.
Call v,(cl) the MLE on {v, € Ag | vy 0 = v}. Using Lagrange multipliers again, one may see

that
- (k,b)
VS R D)

v,gg =(1

340



forb # b0, Note that v,(:) is the result of one step of applying algorithm 4 to v,go) using b(©). Call

A = {vr € Ag|forallb, vy > l/andvk’b(l) = v}soly € AWM One may perform the

same analysis as above to see that if for some b, UISZZ < v, then there is a b(!) such that U;(:Zu) < v
and Up p1) = V.
We may then construct v,(f) , v,(f) , . .. by applying algorithm 4, picking b, Defining AW jn

analogy to A© and AD) the algorithm stops at step 7 when v,(:) e AW and o), = vl(j) = ¥g. That

vy, is unique follows from property (2) in remark B.6.6. O

B.6.3 BAYESIAN CONSISTENCY

In this section we take a Bayesian approach to inferring a subexponential p* from data X1, Xo,- -+ ~
p* iid. We put a prior on L, with support over all L > 0, to construct a nonparametric Bayesian
model and then study the consistency and concentration rate of its posterior. Recall that the Bern-
stein von-Mises theorem states that given some regularity conditions, for a Bayesian parametric
model, the posterior concentrates in a neighborhood centered at the data-generating distribution,
with radius proportional to 1/ V'N. For nonparametric models in general, and (as we shall see)
the BEAR model in particular, the concentration rate of the posterior can be strictly slower than
\/N87,221 .

In order to guarantee consistency and derive a concentration rate, we will, instead of placing a

prior directly on L, place a prior on sieves constructed similarly to those in section B.6.1. In particu-
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lar, define for all L, v/ > 0 and v > 0 the sieve
S, v,L)={ve Agz |V, vrg > vand vy, > ' Vb € B}

where v is a lower bound on the stop transition probability and V' is a lower bound on all other tran-
sitions. In particular, we will define a prior over the sieves that depends on how well a distribution

from each sieve can match p*. Define the sieve approximation mismatch

“(X)
V', v,L)= min [Elo2<p ( )
5( ) veS(' v, L) g pU(X)

In the next section, we will show that we can guarantee ¢ is sufficiently small by using the fact that
p* is subexponential. Here, we define the prior.

We may now define our prior:

Condition B.6.9. Assume, for monotonic sequences (Vin,)m, (L )m» and a distribution on the natu-

ral numbers T,

log <1/nibl) ~ mc
Bl ~ e
f(l/m71/m7Lm) S m_C3

logm(m) ~ —m®
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with c1,c2,c3 > 0and 1 > c1+co. c3 must obey the following condition: calling 6 = 1 — %/;@),

§ > 0and (1 —8) " (e1 + c2) > w > ¢1 + co. Consider positive numbers (. p) 1, kB2 beB such
that sup oy, p, < 00 and infay,p, > 0. Consider a prior 1 on the disjoint union L155_1.S(0, Uy, L)

that factorizes as such:

H(pv) = W(m) H Hk(vk) lfpy e S
keBy

where fora k € By, 11y, is a restricted and renormalized Dirichlet(a, p) vei3 Prior on the simplex in

S(0, Vi, L) corresponding to transition coefficients out of k.

Note as well the difference between the sieve we approximate p* with (S (v, Vim, L)) and the
one our prior is defined over (S(0, ¢5,, L, )). It is best to consider the constraints on ¢y, ¢2, w with
the fact that c3 is limited in the values it may take on by how well p* can be approximated by finite
lag Markov models. Our main result will be the consistency of the posterior under this prior and the

calculation of its concentration rate.

Remark B.6.x0. Using the techniques in section B.6.2, we can see that the maximum a posteriori

estimate on each sieve S(0, Uy, Lyy,) bas, for every k that bas been seen in the data,

Uy X F#(k, b) + agp

#(k,3)+ons . : _ -
S (PP ) > Vs otherwise, Vi, g = Vpy but we still have vy g, o< #(k, b) + oy, for

b € B. One may then compare the densities of the maximum a posteriori estimators in each sieve across
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L to get the maximum a posteriori estimator of the entire posterior.

We now discuss two interpretations of this prior. On the one hand,

M=) 5 mugm)IC SO0, L)

L=1m | Ly,=L

and thus, since S(0, vy, Ly,) C M, , and the fact that multiple m correspond to the same Ly,
the prior can be interpreted as similar to putting a prior on the lag, with the standard Dirichlet pri-
ors on each M, but with the prior having a “staircase” shape for very small stopping probabilities.
On the other hand, we have carefully chosen the values of v, and Ly, in order to balance the size of
S, against the amount of information about p* received from m datapoints. How this works will
become clear in the proof of theorem B.6.16.

In section B.6.3 we will show that there exists a ¢3 such that (Vi Vi, Lin) S m™3, e, p*
may be efficiently approximated by the sieves. Then we will derive our main result with the con-
centration rate in section B.6.3. Finally we describe how to use this result in practice on real data in
section B.6.3. Throughout we will consider a data generating distribution p* and all expectations

will be with respect to the data generating distribution unless otherwise stated.

APPROXIMATING SUBEXPONENTIAL SEQUENCE DISTRIBUTIONS

In this section we will be interested in finding an asymptotic upper bound for (v, Yy, L) of
the form m ™, thus showing that a prior as in Condition B.6.9 exists (proposition B.6.13). The

result relies on the assumption that p* is subexponential; our main consistency result (theorem
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B.6.16) would only require E| X |* < oo if Condition B.6.9 were somehow otherwise satisfied. In
its essence, this section is about constructing approximations to subexponential sequence distribu-
tions, with control not only over the expected log ratio of p* and the approximating distribution

p — the KL divergence, E log(p*(X)/p(X)) - but also over the variance of this log ratio - i.e. con-
trol of Elog® (p*(X)/p(X)). We will make use of lemma B.2.3 but need another construction and
technical lemma.

Note that if p* is a distribution on S'and X € S,

p(X) = p (X1 )" (Xig X1 ) o™ (X | X - )

where, recall, for a sequence Y/, possibly not terminated by $, p*(Y ...) = p*({X € S| X; =
Y; Vi < |Y'|}). Thus a probability distribution on .S may be described by its infinite-lag transition
probabilities p*((Y,b) ... |Y ...) for sequences Y not terminated by $ and b € B, ignoring those
Y with p*(Y ...) = 0. Infinite-lag transition probabilities were considered in the construction of
p7, in proposition B.2.3. Below we will be interested in constructing another distribution from p by
projecting, for some L, the transition probabilities at each Y with [Y'| < Lonto {v € Az [vp =

v* ¥ b}. This first lemma will be used to guarantee the existence of this distribution.

Lemma B.6.x1. Say p™ is a probability distribution on S. Given a lag L and positive numbers

((vxb)pei)icfo,..L—1},xeB with 3y vxp = 1 forall X, thereis a p*L such that for all sequences
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Y not terminated by $,

Vy,b Zf’Y’ <L

p*(Yb...|Y...) if|Y|>Landp*(Y...)>0.

Proof. For X € S,|X| < L define
. |X|
p* (X) = H UX1-1,X5e
i=1
ForY € BL withp(Y ...) = 0, define

L
p*L((Yv $)) = H Uy1,-1,Y;
=1

and p*F(X) = Ofor X € Swith X1.,, = Y and X111 # $. Finally, if p*(Y ...) > 0 define, for

all X € SwithXy---X; =Y,

L
p*L(X) = (H UYMLYZ) p (X|Y...).
i=1

It is not difficult to check that p*L is well defined and satisfies the requirements in the statement

(Fig. B.s).
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Figure B.5: Example application of this construction to the distribution p* on the left, with the v represented in the
center. Transition probabilities for kmers smaller than . = 2 are those defined by v while those after are those of the
original distribution. Thickness of lines denote probability of particular transition.

Finally, we write a technical lemma:

Lemma B.6.12. There exists a positive constant C such that for any p* and p that are distributions

over S,

£ tog? (L5) < 6 Jiog? (L52) o7 (3) > 50| + O 2

Proof. x ~ (logx)? is differentiable with derivative 22! log x. The derivative is bounded above
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on [1,00), say by C. Thus, forallz > 1, (logx)? < (log1)? + C(z — 1) = C(z — 1). Now,

o o (25900 <s00] s

<Clp* = pllrv

<ku(p*||p) /2.

c9

Proposition B.6.13. IfEexp(t|X|) < oo forsomet > 0 then &V, Vm, Lim) S m Bl

Proof. To approximate p* with a distribution in S(Vp, Yy, L) we will use the construction in
lemma B.2.3, however we must make sure that the transition probabilities are not less than v/,.

To do so, for sequences X without $, with | X| < Ly, define (vx )3 to be the output of the
application of algorithm 3 or 4 to (p*((X,b) ... |X ...)),cgif p*(X...) > 0.For X with
p*(X ...) = 0, make any choice of (vx ), with vx p > v, forall b. Thus, forall X, b, vxp >
V. Now, by lemma B.6.11, there is a distribution p*Lm with the same infinite-lag transition prob-
abilities as p* for | X| > Ly, and infinite-lag transition probabilities (vx p),eg for | X| < L.
Finally perform the construction in lemma B.2.3 to p*lm to produce a pzfnm € S(Vm), Vi, Lim).

By lemma B.6.12

* X .
log (p%; ()>()> ;p*(X) > pilm(X)
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)
. . . — 5t ..
To achieve our result, we will show the first of these terms is S m  °¢I51" and one may use a similar

proof to make the same deduction about the second term.
First we will split the term into two that represent the “distance” from p* to p*Lm and that from
p*lm o p*Lm.
(X
£l tog? (4oL ) ipkn () < ()
L (X m

j
¢ [log? (JE2 )11 < Lo () < 47 ()

TE X)) );\X\ > L, phm (X) <p*(X)]

1 2
% (me((Xl,...,XLm)...)|B|<X|Lm>

<€ [log? (A1) 511 < Lol () < 97 (0)

p*(X) . Lim *
+E |Xl_Lm)>7|X>Lm,me(X)<p(X)]

> ( (
phm(X)|B|~

<F [log? (755 51X < Ll () < ()]

plm(X)
+4E {mg? (;Z:Sé))) $|X| > Lin, pfm(X) < p*(X)}
+4log? (1B]) E[(1X] = Lim); | X| > Ly

B
<E [IogQ (p’;%ﬁ,))} +E[(1X] = L)% [X| > L] -

]
. —igt.
Now we will show each of these two terms < m 151" in turn.
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We will first consider E [(| X | — Ly, )?%; | X| > Ly ).

p*((’X’ - Lm)2 > l) :p*(eﬂx‘ > et(\ﬂ-i-Lm))

<ethm[ [et\X|] o tV1

by Markov’s inequality, so

E (] = Zn)% X1 > L] = [~ (0] = Lo)? > Dy

m

<e~tbmE [etlxl} / T e tVig)

<e HmE [eﬂXq 2t72(t\/Ly, + 1)c8_t\/m

=exp ( — tLy, — t\/Lyy, — 2logt (B.41)
+log (tvLm +1) + const.>

Sexp (—tLm)

__c2
~m  loglBl

as desired.

For the other term in equation B.39, again by lemma B.6.12,

e (i) S o ()00 =m0+ e (E05)]

In this case, we will show that the first of these terms is < e~ ¢ for some positive constant C, and

by a similar proof one may show the same for the second. This will complete the proof of part 2.
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Ifp*(X) > pPm(X) > 0, by the definition of p*Lm,

. LaViX|
p*(X) v |P(X1:i~-|X1:i—1.--)

prim(X) i=1 UX1ii-1,X;

~ L,
< (1= (1Bl - 1yvm)
with the inequality by property (5) in proposition B.6.3. Thus,

p*(X) N L C2Ome — —C'me
E |:10g2 (}M(){)) P (X) >p L (X) S L?%IVTQTZ §log2(m)e 20m™ 5 e ¢ !

for two positive constants C, C”. O

CONSISTENCY AND RATE

The proof of theorem B.6.16 relies on a consequence of theorem 2.1 of Ghosal et al. 87 which is
stated in a simplified form herein as theorem B.6.14. Intuitively, the key challenge in establishing
nonparametric consistency is that the size of the space of probability measures & (infinite dimen-
sional) may overwhelm the evidence provided by the data, leading to a posterior that is too spread
out. To establish consistency, theorem 2.1 of Ghosal et al. 87 requires that the prior over probability
measures is sufficiently large on a neighborhood of p* (denoted ®;)), and sufficiently small on the

complement of an effectively parametric (finite dimensional) subset of & (denoted Zy).

Theorem B.6.14. Say & is a set of probability measures, p* € . Xy,..., XN ~ p*iid, dis

the Hellinger distance, 11 is a distribution on &, (NN ){5—; 15 a sequence of positive numbers such that
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nn — 0and Nn3;, — 00, and (P N)S_, are a sequence of subsets of P. Define, for positive ,

B, ={p € Z|x(p*|lp) < n* Var[log(p*(X)/p(X))] < n°}.

Then if
i) logN'(nn /2, PN, d) S Nk
ii) logIl(Byy) = —Nn%
i1z) Forane > 0,11(Z \ QZN)H(%nN)_Ie(HE)Nn?V —0

Then for large enough M,

II(B(p*, Mny)| X1,...,Xn) — 1
in probability, where B(p*, §) is a Hellinger ball of radius § centered at p*

Proof. For some C,

CNn3 > logN (nn/2, SN, d) > logD(ny, Sy, d).

Defining ny = v/ Cny, condition 2.2 in theorem 2.1 of Ghosal et al. ¥7 is satisfied for the sequence

(7N )1 - Note condition 2.4 is also satisfied by the above condition ii.
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Note by lemma 8.1 in Ghosal et al. ¥

_ Al p(Xn)
D= n 1p*(Xn)dH< )
1 al p(Xn) 2
211 (H(%m/%n, gp*<xn>d“(p)> (B
ZH(%%\’)ef(lJre)an,

with probability 1 — (2 Nn/2) ~' 5 1. Call the set where this occurs A. As in the proof of theorem

2.1 of Ghosal et al. *7, for large enough M, C’, we may then use condition i to write

1 — Ep [IU(B(p*, Muy)| X1, ..., Xn)] <27 NN 4 (1 - p*(A))

+ By [D3 (T2 Py) + "N ) 4]
(B.43)

By conditions ii and iii, this last term — O for large enough M. Finally, write M1, = (M VG ) NN

to get the result in terms of 1y .

O

To work with sieves without restrictions on transition probabilities to b € B we need the follow-

ing technical lemma.

Lemma B.6.15. Assume for positive numbers (O‘k,b)L>0,keBg,beB’ SUP 50, keB9 belB Vhb < OO
andinfy e B3 beB kb > 0. Consider independent Dirichlet(ou. b ), g priors on each simplex of

Agz indexed by k € BY. Call the joint distribution I1. Then, for some C, € > 0, forallv > V' small,

353



=
“

v,V

) L. re
_— T >
log (S(0,v, L)) — CIB[™v

Proof. Define o < infy, . . p. Let Z, ~ Dirichlet(avy p)p for some k. As a property of the

Dirichlet distribution,

ren Ly AR
(Zh&ibeg kb)_ﬂ_< kb )
e Lk 2weB kY ) yep
Call this later variable Y}, and note Y}, ~ Dirichlet(cy, p)pes. Now forany b € B,v < v, since

(Y05 226 Yor) ~ Beta(ue by D g ke )

LYy es ar ) VA=) 1 _
/ _ — b'eB ) kb _ (Zb/#b ak,b/) 1
Py <v/(1 =v)) Dok, p) T (26 e ) /o m (o)

Vi
—o(1) / A
0

=0((V'/(1 —w))™2").
(B.44)

Thus, using a union bound, for some C, regardless of the choice of k,

A

P(Yip <V /(1 —v)forsomeb e B) < C(V /(1 —v))* .
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Thus, for some C" > 0, calling F}, ¢ the density of Zj, , noting P(Zj, ¢ > v) = O(1) for small v,

1
P(Zyy < V' forsomeb € B| Zy g > v) 5,/ P(Yip <V'/(1—v)forsomeb € B)dFy g(v)

v

1
SV’O‘A/ dvvs—1(1 — U)waa’“”’_l_aA.
14
(B.45)

The integral is equal to the probability of a (Beta)(ay g, > pe k,p — @) distribution being

greater than v and is thus O(1). For small enough v, v/, for some C” > 0,

(S v, L)) ,
log —————"2~ = | | log P(Zrp > V' forallb VA

8 (S0,v,L)) 25 08 P(Zp 2 v/ forallb € B[ Zis > v)
L

>log ((1 - Cv")Fil)
> - By

2 _ C//|B|LV/O/\-

We can now prove the main result, establishing posterior consistency and the posterior conver-
gence rate. We show that the prior in condition B.6.9 satisfies the conditions of B.6.14. In particular,
we use sieves S to define the effectively parametric subset &y of the infinite dimensional space of

probability measures &7, and then condition B.6.9 controls the prior probability over the 3, and

ZN.

Theorem B.6.16. Assume p* is sub-exponential and thus we can choose a prior as in condition B.6.9.
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For any large enough M,

(B(p*, MN-20-(erte2)) x, - Xy) > 1

in probability where B(p*, §) is a Hellinger ball of radins § centered at p*.

Proof. The proof will proceed by checking the conditions of theorem B.6.14. First define a mono-
tonic sequence (1/,)%_; withlog /! ~ N, &x = E(un, v, L), 2 the set of distributions

on S, and

PN ={pv|v € Ug:l‘g(V;uVan)} ={pv|ve S(VEVaVNaLN)}-

1—(c1te2))

Throughout we willuse ny = N™ 3 and so checking the conditions of theorem B.6.14

will demonstrate a posterior concentration rate of 3(1 — (c1 + ¢2)).

First we will check condition i. Define, for { € D\IBEN XB, pn > 0,

On(C) = {v € SWh,vn, Ln)| V(K. b), (1 + pn) 0 > vy > (1 + p) = 10R )

(where %, = vy if b # $ and equal to vy otherwise) so that UsOn (¢) = S(v, vn, L) (Fig.
B.3).

Note that for v1, v2 € ON(C), KL(Puy |[Poy) < log(14+pn)Ew | X| < pyvy' the last inequality
as p(|X| > L||X| > L) > vy where the last inequality comes from p(|X| = L||X| > L) > vy

and a geometric sum (this is where a distinction between v and v}y is necessary). Defining d as the
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Hellinger metric,

1 1/2 -
Apors o) < 5 lIpor = punll < KLl lpa) V< (o)
. . 4 A b log((V?\,) )
so picking pn = vn (1N /2)%, for v, v2 € ON(Q), d(Pv,, Pvs) < v /2. Cally” = Tog(1tpN)
and note (1 + p N)Vb_lu?v = 1. Thus the number of choices of ¢ € NPZx*F that give non-empty

10g((”5’v)_1) .

PN

A B%
ON((), is bounded above by [ ], 3 ('yb> Bi |. Note also that since py — 0,7° <

Now we can establish condition i of theorem B.6.14:

log N (nn /2, SN, d) <log#{C| On(¢) # 0}
<182, > log (+")
b
<IBEN S (loglog ( (%)) = log(vn (n/2)Y)
Zb:( g g(( %) ) g(vn (v ) -

SIBIEY (log(vy') + log(N))

< yertez

SN

Now we will demonstrate condition ii. Define, as in theorem B.6.14,

B, ={p € M| xL(p’||p) < 7*, Varllog(p* (X)/p(X))] < 1’}

2{p € M| Elog’(p"(X)/p(X)) < 7" A1}
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since Var[log(p* (X)) /p(X))] V k1(p*||p)* < Elog®(p*(X)/p(X)).

Fix N. First we will delineate a volume in S(y,, Vi, L) for any m > 0 that is within &,,,. Us-

ing the definition of &, we can label a v%, € S(V,, Vin, Lip, ) such that E[log(p* (X)) /pyz, (X))?] <

2¢,. Note that if there existsav € S(Vim, Vi, L) such that for some p,,, > 0andall &, b,

(1+ pm) > ”’“—:b > (14 pm)~" then
Ellog(p*(X)/py(X))?] <8 + 4Elog® (pus, (X)/pu(X))
<8 + 4log? (1 + pm)E| X .

Now pick, for large enough m,

4 4
"7N - 8§m < NN — 8§m
m = _— = - 1
P =\ TaEx 2 =P\ 4 xP2

sothatif (1 + pp) > =2 > (14 pp,) ! forall k, b, thenp, € Byy,,.
m,k,b
Fixing k, the probability under a Dirichlet(ay p)p, distribution of Wi, 1, = {vg | (1 + p) >
Ufﬂ > (1 + pm) 'V b} (depicted in Fig. B.6(A)) is, considering the case where v, is on one of
m,k,

the corners of the simplex {v, | vgp > Vi, }, atleast

Vo= (O (€400, 5

where the first term is a lower bound on the density and the second on the volume of W, j, and

(1, Cs are constants depending on \BN\ C1 > Oasinfyp oy, > 0. As well, one may check that
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the volume is minimized should v:fm ko = Vm for all but one b; in this case, the volume forms a
particular diamond-like shape with side-lengths scaled as v, py, and dimensionality | B| — 1 (Fig.

2 Ppm does

~

B.6(B)), (if vyy, pp = 1 — (|B| — 1)V, then the condition vy > (1 + pm)_lv:,m,b
not aftect the W, . for large m as v,,, — 0) (Fig. B.6).
Now we will lower bound the probability of ®,,,, by the probability of the above defined volume

for a particular m, my. Call§ = 1 — %/ZCQ) > 0 and define

—1/c
L AN
16C

so that 85, < %njlv forallm > my,and my — o0o. Now,

< N1—5

~

my =

log(I(Byy)) Zlog | w(mn) [ Vinwow

keBy,

2 log(m(mn)) + (|Bsz’ — Z@k,b A 1) log(anb}V)

k,b
—1Bg,, (1Bl = 1) log(pyny,)

> log(m(mny)) — [B["™~ log(v,,L ) — |BI~ log(p;, L, )-

For the first term, due to condition B.6.9, (¢1 + ¢2) > (1 — §)w > (1 — J)(c1 + ¢2), s0,

lOg?T(mN) ~—my 2 _NO=8)w > _Neate
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3. (B) Depiction of minimum volume possible. The dashed region r

omponents less than v.

L+ pm)~

+ pm) = =

(1

Figure B.6: (A) Example of a set Wm,k (solid gray) where

aparticular k and m when | B|
transition probabilities that have c

k,b >
kb (

m,k,

epresents those

m-
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The second term has

<y lerte) < N1=0)(cite2)

~

|B|Fmx log(v,1,)
Finally, for the third, note that since 8&,,,, < %T};lv,

log(pl) S —log(niy — 8&my) S —log(niy) < —log(NV).

Thus,

log(IL(B,,)) 2 —NU-(Hw)ez > _yleres) — _y,

Finally, for condition iii, note
N
I(Z\ Py)=m(m>N)+ Z 0 H(S(Vy, Vi, Lin) | S(0, v, Lin)))-
m=1

From lemma B.6.15, we have, for C, C’, € > 0, the second term is dominated by

N N
II(S(0, Vm, L) L,
mw(m)log |B|"m vy
mzz:l H(S(VN,Vm,Lm mzz:l

<V Ly |BIEY (B.s1)

Sexp(—2eCN®)

for some C' > 0. On the other hand, since one may check that 7(m + 1) /7(m) < 1/2forall L,
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we have m(m > N) < m(N). Thus,

logll(Z \ PN) S —N¥.

Now we may write, for any € > 0, since w > ¢1 + ¢

10g(10gH(9 \ QN)S(IJFE)NT]?VH(%WN)_l) § _NUJ + NCI+CQ _|_ N(l—é)w — —00.

O
USE IN PRACTICE
Theorem B.6.16 reveals that the choice of prior controls a kind of bias-variance tradeoff in the
model’s posterior. In particular, from condition B.6.9 we have
c3 > 2(1 — (01 +02)) (B.SZ)

Decreasing the prior hyperparameters ¢1 and cp decreases the width of the posterior distribution
(which plays the role of variance). However, reducing ¢ and ¢z forces down c3 (by the definition
of £), and this reduces the weight that the prior places on larger sieves that can match the data dis-
tribution better (i.e. sieves with lower {(v, v, L) values), consequently increasing the model’s bias.
When ¢y and ¢z become low enough, the bias becomes overwhelming, equation B.52 is violated,

and consistency is no longer guaranteed.
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In practice it is often sensible heuristically to set ,,, = 0. In the case, for instance, of short-read
sequencing data, there’s relatively little correlation between the letters of the read and where it termi-
nates. The probability of stopping is thus often similar across different kmers, even when compar-
ing among kmers of different length. As the posterior concentrates at a roughly constant stopping
probability, even a low one, v, quickly becomes irrelevant as it decays to zero exponentially. When
U = 0, the prior simplifies: it can be written as a distribution over lags 7(L) times independent

Dirichlet priors on each M, for L € {1,2,...}. The prior over lags takes the form

logm({m | Ly = L}) ~ —|B|=".

Since w > cg, we may write % as 1+ cforasmallc > 0.

B.7 Toy MODELS

In this section we describe in depth our simulation experiments.

B.7.1 FINITE LAG MODELS

This subsection describes experiments conducted to study in practice the finite lag consistency re-
sults described in Sections B.3 and B.4, and includes details on the results presented in Section 2.2

and Figure 2.2.
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SETUP

To simulate data, we used an AR model with parameters § = (A, B) defined by the function,

B
(B.s3)

L L
fk(A, B) = softmax ((1 - ,8*) Z Z Ab,l,b’kl,b’ + ﬁ* Z Z Bb,l,l’,b’,b”kl,b’kl’,b”)
be

=1V eBe LU=1Vb'cBe

where B° = BU {0} and k;  is 1 if k; = b and o otherwise. The AR model thus takes the form of
a multi-output logistic regression, with 3 controlling the contribution of the pairwise interaction

terms. In each independent simulation, rows of the matrix A were sampled following,
(Apgp )prs ~ (5/L)(Categorical), Ag;y = —1.5/L.

for each [, b/, where (Categorical) denotes a one-hot encoded sample from a Categorical distribu-

tion with uniform probabilities. The matrix B was generated similarly,
(B b )bzs ~ (5/L*)(Categorical), By y gy = —1.5/L>.

foreach,1’,b', b". Simulations were repeated five times for each 5* value. We set L = 5.

We then fit AR and BEAR models that lack the pairwise terms. In particular, we optimized A
alone, setting B = 0, i.e. § = (A, 0). For the AR models, we trained 6 using maximum likelihood,
and for the BEAR models, we trained the h, § hyperparameters using empirical Bayes. In both cases,

we trained without mini-batching, using 1000 steps of the Adam optimizer with a training rate of
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0.05 138,

To approximate the KL divergence and total variation distance between the models and the data,
2,000 independent sequences were sampled from the data-generating distribution p* and used to
calculate averages of log (p*(X) /p(X)) and 5 [1 — p(X)/p*(X)| respectively, where p is either
the maximum likelihood estimator (for the AR models) or the posterior predictive (for the BEAR
models, estimated using the maximum & posterior: value). (Note that the total variation distance is
equal to half the L' distance since the set of sequences is countable.)

The parameter A is not identifiable, so to compare between the value of A inferred by the mod-
els and the true data-generating value, we transformed A to a canonical representation. Define

Ap1y = Ap1p — Ag 1y and define the canonical representation

3 1 ~ 1 N
A = Ay~ o | Aur — 23 Ay
5] | 2 P

Proposition B.7.1. Two linear AR matrices A, A’ define the same linear AR model of lag L if and

only %'](‘Amn — A/mn‘

Proof. Define the vector space

V = {1) (= RLXBO ]Vi,j,Zva/ = Z"Uj,b’}‘
4 b’

One hot encodings of sequences of length L are contained in V. As well, it can be seen that V' is

spanned by the vectors (€;5 — €;. 1) 1<i<L bt cBe (Where e; p is the indicator of position ¢, b) and
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the vector consisting of ones in each entry. This basis of V' is made up of linear combinations of
one hot encodings of sequences of length L and thus the span of one hot encodings of sequences
of length L is V. The orthogonal complement of V' is spanned by (e; — €1)1<i<r, where e; is 1 at

position 7, bif 7 = 4 and 0 otherwise. The transformation

1 1
v | Vi~ Tor > Vi — i3 D> Vi
‘ ‘ b’ i b 1<i<L,b#b/ eBe

preserves V and annihilates the orthogonal complement of V' and is thus the orthogonal projection
onto V, Py.
Thanks to the softmax in Equation B.53, two linear AR matrices A and A’ define the same linear

AR model if there is a constant C' such that for all sequences k of length L and b € B,

L L
Z Z Ap 1 pkry = Z Z Ay ki + C.
I=1 b/ eBe

I=1b'eB°

This is equivalent to the condition

L L
SN Apwkiy => > Ak
I=1beBe° I=1beBe
for all k£, b and thus to the condition
Py Ay, = Py Aj,
for all b. =
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Figure B.7: Frobenius norm between the canonical representation (Section B.7.1) of the AR model parameters 8 inferred
by fitting an AR model with maximum likelihood and those inferred by fitting the BEAR model with empirical Bayes, in the
well-specified (ﬁ* = () case. Thick lines show the average across five independent simulations (small lines). Note that
the differences between the two models are indistinguishable relative to the variation across datasets and the variation
as dataset size increases.

REsuLrTs

We first fixed L at the same value as the simulation data, to study the effect of the structured prior
in the BEAR model. Figure 2.2A shows the convergence in KL of each model as the dataset size
increases, and Figure B.8 the convergence in total variation distance. Figure 2.2B shows the con-
vergence of the hyperparameter h in the BEAR model. In Figure B.7, we compare the parameter
A inferred with the AR model to the true data-generating value using the Frobenius norm of the
canonical representation of each; likewise for the parameter A inferred with the BEAR model. In

this well-specified case, we see that the BEAR model parameter estimate converges just as quickly as

the AR model.
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Figure B.8: As in Figure 2.2A, except using the total variation distance in place of the KL norm.

dataset size

Lag
3

— 4

— 5
9 78 312 1249 5000

9 39 ' 156 624 2499

Figure B.9: Mean of the BEAR model posterior over lags, as a function of dataset size. Thick lines show the average across

five independent simulations (thin lines).
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Next we considered inference of L. We simulated data from models with different L values
(L € {3,4,5})and * = 0. We computed the expected value of L under the posterior with a
uniform prior on lags from 1 to 8. Figure B.9 shows that the inferred lag converges to the true data-

generating value.

B.7.2 INFINITE LAG MODELS

This subsection describes experiments conducted to study the infinite lag (nonparametric) consis-

tency results of Section B.6 in practice.

SETUP

To generate from a distribution that was not a finite lag AR model, we chose the first letter in each

sequence X uniformly from the alphabet B, then sampled the rest of the sequence following,

i—1
p(XZ' = b|X1, - ,Xifl) X Z |72 Z Ab,l,b’Xi—l,b"
=1 b eBe

In each independent simulation, the parameter A was sampled as A ;7 ~ Bernoulli(0.2) for each
[,band b’ # $,and as Ay ~ (0.2)(Bernoulli(0.2)) for each [, band b/ = $.

Following Section B.6.3, we set v, = 0 and used the prior on lags (L) oc exp(—4(1T9)L),
We used a Jeffreys prior (o, = 1/2 forall k, b) and took the maximum a posteriori value of L
and v. We also considered the maximum likelihood estimator of L (i.e. with the prior dropped).

To approximate the KL divergence and the total variation distance, we used 30,000 samples; the
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Figure B.10: Convergence in total variation (A) and KL (B) between data-generating distribution and model. Thick lines
indicate averages across five individual simulations (thin lines). (C) Maximum a posteriori estimator of the lag L in an
individual example simulation.

training procedure was otherwise the same as in Section B.7.1.

REsuLrTs

We examined the convergence of the posterior predictive distribution of the BEAR model for differ-
ent values of the prior hyperparameter c. In all cases we see convergence to p* in both total variation
and KL (Figure B.10AB). Decreasing ¢ produces a longer-tailed prior, making the maximum 4 pos-
teriori value of L diverge more quickly with dataset size (Figure B.1oC). In this example, decreasing
c yields faster convergence to p*. Using the maximum likelihood value of L (equivalent to an im-
proper uniform prior) yields even faster convergence to p*. As discussed in Section B.6.3, lower ¢
corresponds to larger 2, and so is expected to yield lower posterior variance but larger bias; in this
simulation, the reduction in bias clearly contributes more to accurate density estimation. This may
be because the data-generating distribution is close enough to a finite-lag Markov model that the

asymptotics of the BEAR model behave similarly to the finite-lag case.
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B.7.3 HYPOTHESIS TESTING

This subsection describes experiments conducted to study the hypothesis testing consistency results

of Section B.5 in practice.

SETUP

We used the same setup as in Section B.7.1, including the same training and divergence estimation
procedures, and sampled datasets from a linear AR model with different values of 5*.

In the goodness-of-fit test, we set p (the model we aimed to test) to a linear AR model with the
true, data-generating value of the parameter A but 8* = 0. We embedded the same linear model,
with the same value of A and 5, in the BEAR model to compute a Bayes factor. Here we set h =
1073, and fixed L at the data-generating value, L = 5.

In the two-sample test, instead of comparing to p directly, we compared to samples drawn from
D. Here we used a Jeftreys prior rather than embed a more complex AR model. We explored both
fixing L = 5 and using a truncated uniform prior 7(L) = 1/8 for L from 1 to 8 (to evaluate both

forms of the consistency results in Section B.s).

REesuLrTs

We first examined the consistency of the goodness-of-fit test, using the Bayes factor

BF = p((Xn)nz1) /B((Xn)n1)
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which compares the probability of the data under the BEAR model to the probability under the
model of interest p. Figure B.1 1A shows the Bayes factor diverge to +-00 when the data does not
match the model (5* > 0), but diverge to —oo when the data does match the model (8* = 0).
We also explored the Bayes factor as function of h, holding the amount of data fixed at N = 2500
(Figure B.11B). In the limit & — 0, the BEAR model reduces to its embedded AR model p, and so
the Bayes factor converges to o. On the other hand, in the limit A — oo, the BEAR model becomes
diffuse and the Bayes factor diverges to negative infinity (accepting the null hypothesis). Intermedi-
ate values of h in effect “center” the test at the model p we aim to evaluate, increasing its power to
detect differences between the data and the model*".

We next examined the consistency of the two-sample test, using the Bayes factor

B = p((Xn)n_)P((X)00) /p((Xn)hr, (X000,

which compares the probability of the two samples being drawn from separate distributions to the
probability of their being drawn from the same distribution. Both when using the Bayes factor com-
puted with fixed lag L. = 5, and when using the Bayes factor computed by marginalizing over a
truncated uniform prior on L, we find consistency, with the Bayes factor diverging to +00 when

B* > 0and to —oo when 3* = 0 (Figure B.12).

B.8 SCALABLE INFERENCE

In this section we describe how BEAR models were trained at large scale on real data.
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B.8.1 STOCHASTIC GRADIENT ESTIMATES

Let S be a set of length L kmers £ in B, chosen uniformly at random (a minibatch). Then, we can

form an unbiased stochastic gradient estimate of the marginal likelihood as

3 1 1
Vo logp(Xim|L, h,0) ~ IBz| Z Vo log [F(Zb 1 fi6(0) I L fiol6) + #(k. D)) .

S| = [T, D (5 f16(6)) (4 5 fro(0) + #(k, b))

Note also that it is straightforward to parallelize the training algorithm by sending individual mini-

batches to individual processors at each step, then compiling the results.

B.8.2 EXTRACTING SUMMARY STATISTICS

KMC counts kmers in large sequence datasets, outputting a list of kmers £ and counts #k that is
typically too large to fit in memory. However, our inference procedure requires full count vectors
#(k, ). We take advantage of the lexicographical ordering of KMC’s output to merge kmer counts
into count vectors in a (single pass) streaming algorithm. We also take advantage of the lexicographi-
cal ordering to construct count vectors #(k, -) for all lags L given just KMC’s output for the largest
lag L, thus reducing the number of times KM C needs to be run; this too is done using a single pass
streaming algorithm. In order to quickly evaluate models by heldout marginal likelihood, it is con-
venient to store together the counts #(k, -) associated with both the training and testing datasets.
We accomplish this by merging the KMC output for different datasets as part of the same single pass

streaming algorithm. This dataset merging is also useful in training the reference-based models pro-
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posed in Section B.10.1, and we merge reference genome counts with sequencing dataset counts in

the same way.

B.8.3 CODE AVAILABILITY

Code for implementing BEAR models and documentation (including a tutorial for getting started

and reproducing basic results) are available at https://github.com/debbiemarkslab/BEAR.

B.9 DATASETS

Here we briefly describe each data type and dataset used in evaluating BEAR models, along with
some motivation for each. NCBI accession numbers and links for each dataset can be found in
the supplementary table, available with the published paper '*. Dataset sizes are listed in Table B.1.
All data is publicly available for research use. Patient data was anonymized by the creators of each
dataset, and further details on ethical oversight and patient consent can be found in the cited links

and papers.

B.9.1 WHOLE GENOME SEQUENCING

Whole genome sequencing is a standard technique for measuring genome sequences. It is often the
starting point for running a genome assembly algorithm or variant caller, which aims to infer (non-
probabilistically) the underlying genome from the read data. Directly modeling sequencing reads
can be interesting, however, since (a) there are typically portions of the genome that are difficult

to reliably assemble, such as centromeres and telomeres, (b) there may not be enough data to reli-
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Table B.1: Dataset sizes In nucleotides (nt). Dataset abbreviations as in Table 2.1.

Dataset Total nt Max. sequence length (nt)
YSD1 151,691,700 150
A.th. 1 3,238,613,507 100
A. th. 2 2,485,960,312 100
A th.3 6,831,756,793 100
PBMC 34,935,800,234 91
HL  24,185,778,348 91
GBM  21,506,001,361 65
HC  2,283,930,547 202
CD 1,052,405,190 202
UcC 956,179,237 202
Bact.  1,388,421,381 6,358,077

ably detect variants via standard variant callers or assembly, and (c) although the experiment may be

directed towards a particular organism’s genome other DNA may still be present.

* YSDi This is a bacteriophage found in the waterways of the United Kingdom which infects
Salmonella. It was chosen as an example of a relatively small genome sequencing experiment

(phage genomes are short). The sequencing experiment was reported in Dunstan et al. ®°.

* A. th. Arabidopsis thaliana is a small flowering plant, used as a model organism in plant
research. Structural variants are extremely complicated in plants, making traditional variant-
calling methods challenging, and kmer-based analysis approaches are of considerable ongo-
ing interest in the literature (see e.g. Voichek & Weigel *77). The datasets are from the 1001

Genomes Consortium, https://1001genomes.org/>.
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B.9.2 SINGLE CELL RNA SEQUENCING

Single cell RNA sequencing is an increasingly ubiquitous technique for characterizing the tran-
scriptional state of cells. It is used to discover new cell types, track development and disease, as a
readout in cellular engineering efforts, and more. Most analysis techniques coarse-grain the data by
just counting transcripts or isoforms. Statistical modeling of reads at the nucleotide level may lead to
new insight into the joint distribution of sequences and their expression levels, accounting for such
phenomena as somatic variation and RNA editing. Single cell RNA sequencing is increasingly used
as a method for understanding tumors and their microenvironment; cancer involves both genome

mutations as well as transcriptional changes.

¢ PBMC Samples of peripheral blood mononuclear cells are easy to collect from humans, mak-
ing this a standard type of single cell RNA sequencing dataset. These cells were taken from a

healthy donor. The dataset is from rox Genomics, using its v3 technology.

* HL These cells come from a human dissociated lymph node tumor, from a 19-year-old male

Hodgkin’s lymphoma patient. The dataset is from rox Genomics, using its v3 technology.

* GBM These cells were taken from a patient with glioblastoma, the most common primary
brain cancer in adults, and include both tumor and peripheral cells. The dataset was reported

in*7 and uses a distinct technology from 1ox Genomics methods.
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B.9.3 METAGENOMICS

Metagenomics is an increasingly ubiquitous technique for characterizing microbiomes, including
human and environmental microbiomes. Analysis often proceeds by local assembly, annotation of
genes or taxa, etc. Statistical modeling of reads at the nucleotide level avoids this coarse graining and
can enable detection and analysis of changes in the microbiome outside known genomic elements.
All three of the metagenomics datasets analyzed in the prediction experiments are from 101 g
study of inflammatory bowel disease (IBD) as part of the Integrative Human Microbiome Project,

and were taken from stool samples. IBD affects more than 3.5 million people worldwide.
* HC This dataset was collected from a control patient without IBD.

* CD This dataset was collected from a patient with Crohn’s disease, a form of IBD involving

relapsing and remitting inflammation of the gastrointestinal tract.

* UC This dataset was collected from a patient with ulcerative colitis, a form of IBD involving

relapsing and remitting inflammation of the colon.

We also examined metagenomics datasets from a study of kidney transplants**?. Viral transmis-
sion from donor to recipient has been associated with complications and increases the risk of allo-
graft failure. Schreiber et al. *** performed metagenomic sequencing on patient urine samples be-
fore and after transplant to assess viral transmission. Further description of this dataset can be found

in Section B.13.
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B.9.4 FULL ASSEMBLED GENOMES

Comparisons between distant species are challenging due to complex and large scale genomic changes
over evolutionary time. However, generative probabilistic models of protein sequences separated by
billions of years of evolution has yielded direct insight into their functional constraints, as well as
improved understanding of the large scale evolution of life on earth'***'5. As a first step towards

extending these ideas to whole genomes, we analyzed diverse bacterial genomes from across the tree

of life.

* Bact. We examined reference bacterial genomes available in RefSeq'?°. Genomes were se-
lected to be taxonomically diverse, representing different genera and families from across the
kingdom of Bacteria; the NCBI accessions are listed in supplementary table in the publica-

tion.

B.1o PREDICTION EXPERIMENTS DETAILS

Here we provide details on the results reported in the Predicting sequences and Measuring mis-

specification subsections of the results (Section 2..6).

B.1o.1 MODEL ARCHITECTURES

* Linear The linear model is the same as that used in the toy experiments,

L
fk(A) = softmax Z Z Ab,l,b/kl,b’ . (B.54)
I=1v'eBe beB
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* CNN We use a four layer convolutional neural network with the architecture: input —
convolution — elu — elu — softmax — output, where the convolution is one-
dimensional and the elu layers are exponential linear units. Layer normalization was used
before each of the elu nonlinearities '#. Exact details on the model architecture can be found

in the supplementary code (Section B.8.3, function make_ar_func_cnnin ar_funcs.py).

* Reference-based Biologists often make use of a reference genome — a canonical example
sequence that is intended to be representative of a species — in analyzing genome sequencing
data; reference transcriptomes are used similarly in RNA sequencing analysis, etc.. Reads are
aligned to the reference in order to infer the portion of the underlying genome or transcrip-
tome that the read originated from. We built on this basic idea to design an AR model that
uses a reference sequence to make predictions. In particular, let #..¢(k, b) denote the num-
ber of times the length L 4 1 kmer (k, b) occurs in the reference sequence(s). One way to
form a prediction is by normalizing these counts for each lag, i.e.

Jrw = Feet(k, b)) >y Free(k, V). We go astep further by (1) accounting for possible
mutational or sequencing noise using a Jukes-Cantor mutation model, and (2) accounting

for short reads by learning the stop symbol probability. Our complete model is

#ref(k'ab) 7 i B
> b zs Feer(F, ) +(1—e™) +vi(b=3%) (Bss)

fep(v,7) =1 —v) e " B

where 7 € [0, 00) is the (scalar) Jukes-Cantor time parameter, v € [0, 1], and [(-) is the

indicator function that takes value 1 when the expression is true and o otherwise.
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The reference sequences for each dataset are listed in the supplementary table available with
the publication. In analyzing human single cell RNAseq data we pooled multiple reference
transcriptomes. We included the reverse complement of each sequence as well as the original

sequence when constructing the reference kmer transition counts.

B.10.2 TRAINING

The maximum marginal likelihood lag L was chosen for the vanilla BEAR model (with prior con-
centration parameter o, = 0.5 forall k£, b). We found in general that the posterior under a
uniform prior on lags was strongly peaked at a particular lag (Figure B.15). All other models (both
BEAR and AR) were run with this same lag (that is, we did not integrate over all lags in the BEAR
model). Using a fixed lag L as a comparison point provides a controlled study of the effects of
switching from an AR model of transition probabilities to the BEAR model’s AR-structured prior,
and choosing L based on the vanilla BEAR model ensures that the comparison to the vanilla BEAR
model is conservative.

The kmer count summary statistics were shuffled once before training (in chunks, due to the
large size dataset size), and visited in the same order across epochs. Training was initialized only
once; preliminary experiments suggested that training was robust to changes in the random seed.
Gradient updates were computed in parallel across two GPUs, at double precision. The minibatch
size was 2.50,000. Gradients were accumulated across minibatches to reduce variance (that is, the
gradients from multiple minibatches were added together), and optimization was performed using

Adam 38, Models were trained to convergence. Detailed training hyperparameters are displayed in
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Table B.2. The CNN models used 30 filters of width 8, except in the case of YSD1 where the filter
width was reduced to 5 (for both BEAR and AR models); other neural network architecture hyper-
parameters are given in the supplementary code (function make_ar_func_cnnin ar_funcs.py).

Experiments were run on an internal cluster (Tesla K80, Tesla M40 and Tesla Vioo GPUs).

B.10.3 EvaLuaTION

Accuracy was evaluated based on the maximum likelihood prediction (in the case of AR models)
and the maximum « posteriori prediction (in the case of BEAR models). Ties in prediction probabil-
ities were resolved uniformly at random.

The perplexity was calculated based on the heldout test dataset as

Neest
[_logpuxn)n:l)] 556)

S | X |

where p((X,,) <) is the probability of the heldout data conditional on the maximum likelihood
parameter value (in the case of AR models) or the marginal probability of the heldout data under

the posterior predictive distribution (in the case of BEAR models).

B. 10.4 FURTHER PERFORMANCE RESULTS

The maximum marginal likelihood lag L (under the vanilla BEAR model) for each dataset is re-
ported in B.4. Interestingly, the optimal lags are intermediate between the large kmer lengths (e.g.

more than 30) often used for non-probabilistic assembly algorithms (e.g. ***) and the small kmer
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Table B.2: Training parameters Train-test splits and Adam optimization parameters. Dataset abbreviations as in Table 2.1.
Accum. steps stands for accumulation steps, the number of steps gradients were accumulated over. Paired end reads
were treated as separate and split into train and test sets independently.

Dataset Train/test split Epochs Learning rate Accum. steps

YSD1 3:1 on reads 500 0.01 10
A th. 1 3:1 on reads IS 0.02 100
A th. 2 3:1 on reads Is 0.02 100
A. th. 3 3:1 on reads 3 0.02 100
PBMC 3:1 on reads 3 0.02 100
HL 3:1 on reads 5 0.02 100
GBM 55:23 on cells 4 0.02 100
HC 3:1 on reads 10 0.02 100
CD 3:1 on reads 10 0.02 100
ucC 3:1 on reads 10 0.02 100

Bact.  500:166 on genomes 2000 0.01 I

lengths (e.g. less than 10) often used as features in clustering or classification algorithms (e.g.'").
The marginal likelihood was in general strongly peaked at a particular value (Figure B.15). Increas-
ing the lag generally led to slightly better performance in terms of both perplexity and accuracy for
the non-vanilla BEAR models and the AR models, but (unsurprisingly) worse performance for the
vanilla BEAR model; the increases in AR model performance were far from enough to make up the
difference with BEAR models (Table B.s).

Plots of training loss versus wall clock time for an AR model and the corresponding BEAR
model (with the same fixed lag L) are shown in Figure B.13; the loss for each is normalized by the
minimum and maximum values to be comparable (the BEAR model substantially outperforms the

AR model). The BEAR model converges at least as fast as the AR model.
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Table B.3: Predictive accuracy. Whole genome sequencing data YSD1: A Salmonella phage. A. th.: Arabidopsis thaliana, a
plant (datasets represent different individuals). Single cell RNA sequencing data PBMC: peripheral blood mononuclear
cells, taken from a healthy donor. HL: Hodgkin’s lymphoma tumor cells. GBM: glioblastoma tumor cells. Metagenomic
sequencing data HC: healthy (non-CD and non-UC) controls. CD: Crohn’s disease. UC: ulcerative colitis. Full assembled
genomes Bact.: Bacteria. Models Van: Vanilla (constant). Lin: Linear. CNN: convolutional neural network. Ref: reference
genome/transcriptome model (only applicable to datasets with a reference).

Dataset AR Lin. AR CNN AR Ref. BEAR Van. BEAR Lin. BEAR CNN BEAR Ref.

YSD1 33.73% 35.86% 90.8%  94.69% 94.75% 94.75% 94.71%
Ath. 1 35.47% 35.59% 53.81%  86.03% 86.32% 86.34% 86.50%
A th. 2 35.32%  35.61% 70.41%  85.36% 85.71% 85.77% 85.66%
A th. 3 34.94% 35.41% 60.94%  76.46% 78.51% 78.52% 77.13%
PBMC 34.36% 34.76% 67.39%  87.83% 88.16% 88.16% 87.99%

HL  34.67% 35.59% 67.17%  87.68% 87.96% 87.96% 87.82%
GBM 3071% 30.9%  61.3%  78.99% 80.44% 80.42% 81.43%

HC  32.98% 33.54% - 83.86% 85.03% 85.06% -
CD  32.13% 32.32% - 81.72% 83.30% 83.32% -
UC  32.27% 32.23% - 82.71% 84.26% 84.27% -
Bact. 33.89% 34.78% - 35.27% 35.28% 35.28% -

To evaluate performance as a function of dataset size, we subsampled reads uniformly at random
without replacement from the YSD1 dataset, and retrained the models on the smaller datasets (Fig-
ure B.14). The original dataset had ~ 1000x coverage of the bacteriophage genome, meaning that
on average 1000 reads were observed overlapping each position in the genome. Note that the vanilla
BEAR model performance falls oft substantially relative to the BEAR model below ~ 3x coverage

(in the case of the reference model) (Figure B.14BD)
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Table B.4: Maximum marginal likelihood lag L. Maximum marginal likelihood lag L for the vanilla BEAR model. Dataset
abbreviations as in Table 2.1.

Dataset L
YSD1 13
A th.1 17
A th 2 17
A th.3 18
PBMC 18
HL 17
GBM 17
HC 16
CD 16
UC 16
Bact. ¢

Table B.5: Performance with increasing lag L. The symbol J[ indicates the maximum marginal likelihood lag L for the
vanilla BEAR model. Dataset abbreviations as in Table 2.1.

Perplexity
Dataset Lag AR Lin. AR CNN AR Ref. BEAR Van. BEAR Lin. BEAR CNN BEAR Ref.
YSD:1 137 3.953 3.873 1.266 1.165 1.144 1.144 1.145
YSD1 20 3.937 3.855 1.352 1.177 1.138 1.138 1.138
Bact. of 3.831  3.794 - 3.774 3.774 3.774 -
Bact. 12 3.807 3.772 - 3.776 3.741 3.738 -
Accuracy

Dataset Lag AR Lin. AR CNN AR Ref. BEAR Van. BEAR Lin. BEAR CNN BEAR Ref.

YSD1 137 33.73% 35.86% 90.8% = 94.69% 94.75% 94.75% 94.71%
YSD1 20 34.19% 36.3% 87.21%  94.88% 94.97% 94.98% 94.91%

Bact. 9T 33.89% 34.78% - 35.27% 35.28% 35.28% -
Bact. 12 34.42% 35.13% - 35.54% 35.86% 35.93% -
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Figure B.13: Relative loss (normalized to be between 0 and 1 based on minimum and maximum values) as a function of
wall time for a CNN AR model versus the corresponding BEAR model on the YSD1 dataset (L, = 20).

B.11 GENERATION DETAILS

Here we provide details on the results reported in the Generating samples subsection of the results
(Section 2.6).

The CNN BEAR model was trained on the full (combined train/test data) Arabidopsis thaliana
1 dataset, with L = 17, using identical training parameters as in the performance experiments
(Table B.2). so bases were generated on the end of reads using the maximum 4 posteriors value of v,

and conditional on a stop symbol not occurring, i.e. following the distribution

(B.s7)

e (% o Tep(0)/h+ #(k,D)
pextr(Xi - b‘k - (Xz—L7 -~-7Xz—1)> = Zb/7g$ kab/(e)/h n #(k,b/)

forb # $and p(X; = $|k) = 0, where recall #(k, b) is the number of times b is seen succeeding

k in the data, and 6 and h are the learned hyperparameters. The values of #(k, b) are retrieved from
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Figure B.14: Perplexity (AB) and accuracy (CD) of AR and BEAR models as a function of total dataset size, measured in
terms of coverage (coverage is the expected number of reads from each position in the genome; it is linearly proportional
to the total number of reads). Subfigures A and C show results for the the linear AR model (and its BEAR embedding), and
B and D for the reference-based AR model (and its BEAR embedding). The lag was held fixed in all cases.
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Figure B.15: Marginal log likelihood under the vanilla BEAR model as a function of lag L for the bacteriophage YSD1 (A),

glioblastoma GBM (B), control metagenomic HC (C) and bacteria Bact. (D) datasets. Note the large scale (upper left) of
each plot.
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the dataset efficiently using the Jellyfish kmer indexing package '°°. 5o extrapolations each of length
so were sampled without replacement using the stochastic beam search method proposed by Kool
etal. "4+,

We performed local assembly using SPAdes, starting from the last 17 bases of the read, and recorded
the portion of each scaffold returned by SPAdes that extended in the direction of extrapolation. We
used the ----careful flag in SPAdes, following Voichek & Weigel *77.

The colors in Figure 2.3A correspond to unique paths through the 17-mer de Bruijn graph. Fig-

ure 2.3B plots the per nucleotide perplexity of the sampled extrapolations, i.e.

exp < Zpextr(b\k‘ = (Xni—Ly- Xnji—1)) 108 Pexer (W] k = (X i— L, ---aXn,il))>
b

where n indexes the sampled extrapolation and 4 the position in the sample.

B.12 VISUALIZATION DETAILS

Here we provide details on the results reported in the Visualizing data subsection of the results

(Section 2.6).

B.12.1 LATENT REPRESENTATION MODEL

As alocal latent representation model, we used a categorical probabilistic principal component anal-

ysis (pPCA) model, with automatic relevance determination***47. We trained on kmers (k¢, b;) of
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length L 4+ 1 = 18 and used D = 20 latent dimensions. The complete model was,

kq ~ Exponential ford € {1,..., D}

Wy ~ Notmal(0, 1 g, 1/54) ford € {1,..., D}

Wo ~ Normal(0z 41,5, 1) (B.s8)
z¢ ~ Normal(0p, 1)

(kt, by) ~ Categorical (softmax(W - z; + Wp))

wheret € {1,...,T} runs over all length L + 1 kmers in the dataset, O 41 5/ isan L + 1 x |B]
matrix of zeros, and Op is a length D vector of zeros. Here the local variable z; provides a representa-
tion associated with the kmer (k¢, b;), the global parameter W controls the factors of variation, and
K determines the relevance of each factor through the variance of the prior on W. We trained this
latent representation model, and embedded it into a BEAR model, in three stages.

Stage 1 First, we performed stochastic variational inference to learn the parameters of the
model 1323147 In particular, we used normally distributed mean field posterior approximations

q(W), q(z|k, b), and a deterministic approximation to «, and optimized the evidence lower bound

(ELBO)

[EWNq(W) lz #(kv b) ([Ezwq(z|k,b) lng (k;7 b‘W’ Z) - KL(Q('Z|k7 b)||p(z)))
k,b
’ (B.59)

+ logp (W|x) — xL(q(W)|[p(W)) | + logp(k)
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where #(k, b) denotes the number of kmers (k, b) seen in the data and the sum runs overall &k €
B9,b € B. For the local latent variable 2, we use a guide (recognition network) q(z|k,b) =
Normal(yu(k, b), o(k, b)) where pu(k, b) and o (k, b) are each small CNNs. Gradients with respect
to the variational approximation parameters were taken using automatic differentiation and the
reparameterization trick (elliptical standardization), with one sample for the Monte Carlo approxi-
mation at each step.

Stage 2 Once the pPCA model was trained, we approximated its conditional distribution. In
particular, we obtained a variational approximation to p(z|k, (kt, bt)1_, ), namely q(z|k), by opti-

mizing the evidence lower bound

[EWNq(W) [Z #k ([Ezwq(z|k) logp (k|VVa Z) - KL(Q(ZVC)HP(Z)))] : (B'éo)
k

Note that ¢(W') was held fixed, at the value learned in stage 1. ¢(z|k) was parameterized analo-

gously to ¢(z|k, b). Now we can approximate the conditional distribution of the pPCA model as

p(b|]€) ~ [EWNQ(W) [Ezwq(z|k:)p(b’W> Z)'

This defines an AR model.
Stage 3 Finally, we embedded the conditional pPPCA AR model into a BEAR model and op-
timized h via empirical Bayes (note that here we are not using empirical Bayes to train the BEAR

model’s embedded AR parameters 6, but instead embedding a pretrained AR model). Since the
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variational distribution ¢(W') was highly concentrated at a single point, we used a computationally
convenient approximation to the marginal likelihood of the BEAR model, moving the expectation

over the global parameters outside the log marginal likelihood:

1

Evmqw) Z log DirichletCategorical (#(k, I E[EZNQ(ZWp(b\VV, z))]
k

where DirichletCategorical (#(k, -)|a) denotes the probability of the count vector #(k;, -) under
a Dirichlet-Categorical distribution with concentration vector av,.
Training protocol and hyperparameters The entire variational inference and embedding pro-

cedure was implemented using the Edward2 263

probabilistic programming language with a Tensor-
Flow* back-end. We applied the method to the Hodgkin’s lymphoma single cell RN Aseq described
in section B.9, using the same train/test split as for the performance results in Section B.10. Opti-
mization was performed with Adam with a batch size of 125, 000. Gradients were accumulated over
200 steps. The three stages of training described above were repeated iteratively four times until each
converged. In each iteration, the first two stages were trained for s epochs, and we used a decaying
learning rate across iterations {0.02,0.02,0.01, 0.005}; the third stage was trained for 100 batches
with a constant learning rate of 0.1 across all iterations.

Inference results At the end of training, the conditional pPCA AR model had a perplexity of

4.28 on heldout data, while the BEAR model had a perplexity of 1.39.
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B.12.2 VISUALIZATION AND ANNOTATION

We next sought to understand in greater depth what the BEAR model had learned in the lymphoma
dataset.

Reference model We first aimed to understand how the model’s predictions differed from pre-
dictions based on the reference transcriptome. On the full dataset (combined train/test) we com-
pared the log probability of each read under the pPCA BEAR model to the log probability of each
read under a vanilla BEAR model trained on the reference transcriptome (Figure 2.3C; see the sup-
plementary table available with the publication for details on the reference transcriptome). We
found a substantial disparity between the two model’s predictions, with a number of reads having
high probability under the BEAR model but low probability according to the reference model.

Alignments Single cell RN Aseq analysis often begins by aligning reads to the reference transcrip-
tome; reads that do not align are typically discarded from further analysis. We performed alignments
on the read dataset with hisat2 37 using parameters --reorder --no-hd --n-ceil L,0,0.001
--no-sq -k 1 -p 4and with the default hisata Homo sapiens GRCh38 genome index with tran-
scripts and SNPs, available at https://genome-idx.s3.amazonaws.com/hisat/grch38_
snptran.tar.gz. Whether or not each read was successfully aligned is indicated in Figure 2.3C.
We observe that many of the reads with low probability under both the pPCA BEAR model and the
reference model are unaligned. We also observed a cluster with a large number of unaligned reads,
with high probability under the pPPCA BEAR model and relatively low probability under the ref-

erence model. We focused on a subset of this cluster with particularly high probabilities under the
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A. Mitochondria B. Adapter
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Figure B.16: tSNE visualization of a cluster of single cell RNAseq reads colored by (A) latent embedding distance to the
mitochondrial reference genome and (B) latent embedding distance from the sequencing adapter.

pPCA BEAR model for follow-up visualization (black box in Figure 2.3C).
Visualization The pPCA model provides a latent embedding of kmersina D = 20 dimen-
sional continuous space. We sought to visualize the representation of each sequence’s kmers in a low

dimensional space. To compare two sequences X, X', we defined a measure of dissimilarity,
infxr(q (2] Xi-ra)|la(21 X L)) + x<0(q(2 X5 o)l (2] Xi-:0))-

wherei > Land ¢’ > L index positions in X and X' respectively. This dissimilarity measure was
used to define a distance matrix over reads in the Hodgkin’s lymphoma dataset, which was passed to
tSNE 7 to obtain a low-dimensional visualization (Figure 2.3D).

Annotation Observing the clusters in Figure 2.3D, we sought to determine where the reads in
each cluster likely originated from, and, by implication, what the reference transcriptome model
had trouble explaining in the data. We started by using NCBI’s BLAST tool *® to search for likely

sources, and found hits against the mitochondrial genome and the transcript of the gene JUND,
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part of the AP-1 early response transcription factor. We found that the mitochondrial reads are
from a nonreference haplotype, which explains why the reference model gave them low probability.
The low likelihood of the JUND reads under the reference was due to a TG repeat region in the

3’ UTR; similar repeats are present in many variations in different transcripts, thus the particular
kmer-base transitions in this case become less likely. We also observed that many reads were chimeric,
consisting of fusions of sequences from various parts of the transcriptome with some portion of

the sequence CTGTCTCTTATACACATCTCTGAACGGGCTGGCAAGGCAGACCG. The
prefix CTGTCTCTTATACACATCT is a standard Illumina Nextera adapter sequence https:
//support-docs.illumina.com/SHARE/AdapterSeq/illumina-adapter-sequences.pdf,
and the remainder of the sequence is presumably part of the primer. The adapter is an experimental
artifact (presumably left in the read data due to inaccurate read trimming and quality control), and
so is not part of the reference human transcriptome.

We used the same dissimilarity measure as above to compare reads to the mitochondria refer-
ence genome and to the adapter sequence CTGTCTCTTATACACATCTCTGAACGGGCTG-
GCAAGGCAGACCG (Figure B.16). (The distance to each of these sequences was taken to be
the minimum of the distance to the forward and reverse complements.) Figure B.16, along with the

BLAST results for JUND, were the basis for the annotations in Figure 2.3D.
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B.13 HYPOTHESIS TESTS DETAILS

Here we provide details on the results reported in the Testing hypotheses subsection of the results

(Section 2.6).

B.13.1 KIDNEY TRANSPLANT METAGENOMICS

The Schreiber et al. **% data is available for public download, as detailed in the supplementary ta-
ble available with the publication. The read data was pre-sorted into viral and non-viral reads, but
we pooled each of these to reconstruct the full sequencing experiment. We compared the day zero
timepoint, i.e. before transplant, to the 4-6 week timepoint, i.e. after transplant, for each patient
for which samples from both were available (note this did not include all patients in the study). We
used the BEAR two-sample test, with the Jeftreys prior on v, and a truncated uniform prior over
lags 1 < L < 20. We cross referenced our two-sample test results with whether Schreiber et al. **?
determined there to be likely JC polyomavirus (JCPyV) transmission.

The results are shown in Table B.6, and suggest that JCPyV transmission is associated with an
overall shift in the patient microbiome at the sequence level. Patients indicated with an asterisk were
diagnosed as having JCPyV before receiving the transplant, and thus the determination of whether
the transplant transmitted JCPyV is less certain; for patient wdko36, phylogenetic analysis suggested
that the transplant did transmit JCPyV, while for jns976 phylogenetic analysis suggested that it
did not. Although the two-sample test results show close correlation with whether or not there

was transmission, we caveat them by noting that for very small lags the Bayes factor rejects the null
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Table B.6: BEAR two-sample test results, performed on patient metagenome samples from before and after kidney trans-
plant. Bayes factors that reject the null hypothesis are colored red, for easy comparison with whether or not JC poly-
omavirus (JCPyV) transmission was detected. Asterisks * indicate patients that were already infected with JCPyV before
the transplant occurred.

Patientid JCPyV transmission log Bayes factor

umerrI True 110407
vpigrz False 234361
iwv3 46 False -955252
Pags 16 False -504784
tvy6s3 True 70223
bgkos2 False -357457
wdko36* True 3152401
jnsg76* False -199006
aagos1 True 242877
qfvso6 False -155391
qnx429 True 369129
poos81 False -290382
xph346 False -254856
mek642 False -348120

hypothesis for all patients; the question of the most biologically relevant” prior on the lag L is an

open question.

B.1 3.2 A. THALIANA HYPOTHESIS TESTS

Goodness-of-fit test We trained reference-based AR models (described in Section B.10.1) via max-
imum likelihood on each 4. thaliana sequencing dataset (the full dataset, with train/test subsets
combined). Weused L = 17 in the AR model for all three datasets (corresponding the vanilla
BEAR maximum marginal likelihood lag for two datasets, see Table B.4). We embedded each trained

AR model into a BEAR model to construct a goodness-of-fit test (i.e. we used the learned f(6)).

397



We fixed L = 17 in the BEAR model (i.e. a deterministic prior over L) to determine if there was
misspecification at the same resolution as the AR model. Figure 2.3 E plots the Bayes factor as a func-
tion of h.

Two-sample tests We simulated sequencing reads based on the A4. thaliana reference genome
using the ART Illumina'*" simulator with parameters -ss HS20 -p -1 100 -m 200 -s 10
-f 30. We simulated roughly the same number of reads as was in each real dataset. We examined
the Bayes factor BF(L) = p((Xu)3Z1| L)p((X7)nZ1 |L) /p((Xn)niy,s (X0)RZ4 |L), computed
using vanilla BEAR models for each term (Figure 2.3F). As control experiments, we cut each dataset
(and the simulated data) in half, and compared each of these halves to each other using the same two-
sample test; as shown by the dotted lines in Figure 2.3F, the two-sample test correctly accepts the
null hypothesis in these cases.

Individual log likelihood ratio To understand in detail the differences between the real and
simulated data, we computed the conditional individual Bayes factor
log p(Xn|(Xn)N_1) — log p(Xn|(X2)N,) where (X,,)N_ is the real data and (X7,)N.; the
simulated data. We approximated the log likelihood using the maximum « posteriori value of the
transition parameter v under the vanilla BEAR model, and fixed L = 17. Computing this likeli-
hood efficiently for each read requires retrieving counts #(k, -) for each kmer & in the read, which

166

we accomplished using the Jellyfish kmer indexing package '°°. Histograms of the log likelihood
ratio of each read X, in two of the 4. thaliana datasets are shown in Figure 2.3G (gray).

Annotation Observing the distinct peaks in Figure 2.3G, we sought to determine where the

reads in each originated from. We discovered that many reads in the outlier peak from 4. thaliana 1
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matched Bacillus cereus, using NCBI’s BLAST tool **. To annotate the clusters further, we aligned
the reads to reference sequences for centromeres, chloroplasts, and B. cereus, as well as (if the read
did not align to one of these) the reference 4. thaliana genome (reference sequences are listed in the
supplementary table available with the publication). Alignments were performed using hisat2 on
paired end read data using parameters --reorder --no-hd --n-ceil L,0,0.001 --no-sq -k
1 -p 4 to facilitate subsequent analysis and remove reads with ambiguous bases. The alignment to
the centromere included the parameter --mp 1,1 to allow lower quality alignments. Histograms of
the set of reads that align to each reference are shown (stacked on top of one another, not overlayed)

in Figure 2.3G.
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Table C.1: Synthesis model notation.

General notation

Description

Zy The set of positive non-zero integers.
R4 The set of positive non-zero reals.
Ay The M — 1 probability simplex.
(Ax)P The set of matrices with D rows and each row in Ay.
€; The length 4 vector of all zeros except a 1 at position j.
Hyperparameter Description
MeZy Number of templates.
KeZ, Number of pools.
L,eZy Length (in codons) of templates in pool k € {1,...,K}.
L=3%,L Total length (in codons) of generated sequences.
AcZy Number of codon or nucleotide mixtures.
SeRy Substitution matrix. Sy is the probability of mutating b to b'.

Tc {07 1}64><21

ST € (Ayg)* where ST is the transpose of S.
The columns of S are linearly independent.
Translation matrix, mapping from codons
to the twenty amino acids plus the stop codon.
T(b, b3 ,b3)d = 1 if (b1, b2, b3) codes for d,
and Ty, b,,5)a = 0 otherwise.
We assume the standard (universal) codon table.
Note Zbl ba.bs T(bl,bg,bg)d >1forallde {1, ce ,21}

Codon diversification model

U= Ngy
U={v1,...,va}
U=A{v1,...,va}®{v1,...,va} ®{v1,...

,’UA}

U= {5761, ey 5764} ® {STel, ey ST64}

®{ST€1, ey STe4}

Description
Arbitrary codon miztures.
Finite codon miztures.
Finite nucleotide miztures.

Nb. in this model, the probability of a codon (b1, by, b3) is
the product of mixture probabilities va, b, Vasb,Vasbs
where a1,az,a3 € {1,...,A}

Enzymatic mutagenesis.

Nb. in this model, the probability of a codon (by, bs, b3) is
the product of mixture probabilities ST , S7 .57 ..
where a1,a2,a3 € {1,...,4}

Assembly model
Z;y ~ Categorical(w)

Zig = ...:=Zig = Zs1

Z;i, ~ Categorical(wy,) for all k € {1,. ..

7K}

Description
Fized assembly

Combinatorial assembly

Continued on next page...
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Continued from previous page...
Parameter Description
w Template probabilities.
w € Ay if using fixed assembly.
w € (Ap)*¥ if using combinatorial assembly.
v Nucleotide or codon mixture probabilities.
v € (Agy)? if using finite codon mixtures,
v € (Ag)4 if using finite nucleotide mixtures.

T Number of rounds of mutagenesis. 7 € Z.
U Template defining codon probabilities. ug.; € U
forallke{l,...,K}, z€{l,...,M} and j € {1,..., Ly}
Latent variable Description
Z;e{l,...,M}¥ Templates to generate sequence .
Zi is the template drawn from pool k.
C; € (Ags)t Codon probabilities to generate sequence i.

Cij(b1,bs,bs) 18 the probability of generating codon (by, ba, b3)

at position j.

H; ¢ {0,1}L>64 Codons of generated sequence 1.

Hij(by,b2,b5) = 1 if the codon (b, by, bs) is at position j,

and Hijp, b,,,) = 0 otherwise.

Observed variable Description
X; €{0,1}>% The ith generated protein sequence,
one-hot encoded and including the stop codon.
Xija = 1if the amino acid d is at the jth position,
and X;;q = 0 otherwise.

C.1 MODEL DETAILS AND LIMITATIONS

In this section we explain further the synthesis models proposed in Section 3.2.1, as well some of the
limitations of our mathematical idealization.

Physically, for the finite codon or nucleotide mixture models, codon diversification happens dur-
ing chemical synthesis of oligos (DNA segments). DNA in each well (or isolated reaction volume)
is synthesized position by position, with mixtures of nucleotides or codons (trinucleotides) added
in defined ratios one at a time, such that a large number of different molecules is eventually con-

structed. Twist Bioscience’s combinatorial variant libraries, which can achieve arbitrary codon mix-
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tures, rely on proprietary technology; however, it produces analogous results 264 For all of these
technologies, what we refer to as a “template” corresponds physically to a very large number of
molecules in an individual well, with independent nucleotide or codon probabilities at each site.
We assume that the number of molecules is effectively infinite in comparison to N1, such that we do
not need to account for sampling noise at this stage. We ignore the possibility of skipped positions,
where nucleotides or codons randomly fail to add to the growing oligos, a type of error that is some-
times of particular concern for trimer-based synthesis. We enforce the constraint that the number of
mixtures A is finite and small, since to the best of our knowledge commercially available technolo-
gies have this requirement, but it is not necessarily a fundamental technological constraint '9+.
Physically, for the enzymatic mutagenesis model, template oligos are synthesized deterministi-
cally, such that there is a large population of identical molecules in each well. Codon diversification
occurs only after assembly (i.e. after oligos from different wells are combined) and may take place
either 7% vitro or in vivo. We assume that there is an error correction mechanism after each round
of mutagenesis, such that each strand of each DNA molecule has effectively gone through the same
number of rounds of mutagenesis; in some ePCR protocols error correction is not used, and so al-
ternative models may be more appropriate "*»2°4. We also assume that the mutation probability
depends only on individual nucleotides, and not their sequence context, although empirically de-
pendencies on sequence context (especially the adjacent two nucleotides) can be found®. Finally, we
require that each template undergoes the same number of rounds of mutagenesis 7, with the same
enzyme and thus the same S. For small M, it can be experimentally tractable in many cases to use

different 7, and even different .S, for each template, in which case the model should be adjusted to
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make 7 and S depend on the template.

Physically, assembly requires joining oligos together using e.g. Gibson assembly®**. For the fixed
assembly model, the oligos corresponding to the kth template in each pool must be joined in an iso-
lated reaction, forall k € {1,..., K'}; in combinatorial assembly, the sets of oligos corresponding
to each template in each pool are first mixed, and then oligos from these combined pools are joined.
Assembly requires short overhangs, sequences that closely match one another, at the ends of each
oligo that are to be joined. Our synthesis model ignores any restrictions that come from overhangs
needing to match, as well as variation in assembly probability that depend on overhang mismatch.
Our model also assumes full control over the relative concentration of templates, w. While this is
tractable for low M, it may be more challenging for large M, particularly if technologies like Drop-
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synth are used for fixed assembly

C.2 OPTIMIZATION DETAILS

C.2.1 Exact SOoLUTIONS

As an example of a target sequence model which we can exactly match, consider a RegressMuE 284
which has been used for forecasting the evolution of influenza. Let B be a covariate vector (e.g. a
future time), let A be the regression coefficients, and let W be the latent alignment. The predictive
distribution p(x|B, W, A) can be written as Categorical(U), where U is a matrix of independent
amino acid probabilities over L positions. We can exactly match this distribution with a synthesis

model using M = 1 templates, fixed assembly and arbitrary codon mixtures.
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We can also approximate the posterior predictive distribution. Let p(A|D) be the posterior distri-
bution over regression parameters given the training data. The posterior predictive distribution can
be approximated as °M_, Lp(z/B, W, Ap,,) where Ay, ..., Apr ~ p(A|D) are posterior samples.
This distribution can be exactly matched by a stochastic synthesis model using fixed assembly with

w = (47, .., i) and arbitrary codon mixtures.

C.2.2 Stocuastic EM

We used the online EM algorithm proposed by Cappé & Moulines **, modified to update using
minibatches instead of individual datapoints. Here we derive the algorithm for the stochastic synthe-
sis model (Equation 3.1). Without loss of generality, we focus on combinatorial assembly models;
the fixed assembly case can be obtained by setting K = 1. The local variable of the synthesis model
is Z;, which we represent here as a one-hot encoding, i.e. Z; € {0, 1}*M . Atiteration t of the
optimization algorithm, given the current parameter estimate o0 = (w(t) cu® p® 7O ), the

conditional expectation of Z; can be written as

Whm exp (7% log(upmg - T) - X4 1,))
Z%:l Wk,m’ €Xp (Z]L; log(tpmj - T) - Xi(j+l_1k))

Tikm = l}:qe(t) [szm‘Xz] = , (C.1)
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where L, = 3"}/ L. Now we can compute the conditional expectation of the mean log likeli-

hood as
1
Q@(t)(Xl,. . .,XN;Q) = N[qum [logqg(Xl,. . .,XN,Zl,...,ZN)]
| N K M oL
NZ Z Z [Zlog Ukmy (j—&-Lk)Tzkm +10gwkmrzkm
i=1 k=1m=1 "j=1

(C.2)

In standard EM, we would optimize this function with respect to 6. However, this requires sum-
ming over the whole dataset at each step. To derive the stochastic EM algorithm, we rewrite Qg+
in terms of summary statistics of the data that can be estimated from minibatches. In particular, let

S C{1,..., N} beasubset of the data, and define the summary statistics

5D (X500 ;= 5 wankm,

€S
) (C3)
(2) (X57 e(t = Z Tikm-
|S’ i€S
Now we can estimate (Qp(:) as
5 s M (2)
Q(s;0) := Z Z {Zlog(ukmj -T)- gkm(j—i-ik) + log Wim5,, | - (C.4)
k=1m=1 *j=1
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The complete algorithm alternates between estimating summary statistics from minibatches of data

S® drawn at each step and maximizing the estimated expected log likelihood QW) ,

S+ — o) +,y(t+1)(§(XS(t>;9(t)) _ §(t))
(C.s)
0+ = argmax Q(3(+1); 9)
9

where () is the step size. As suggested by Cappé & Moulines *3, we set A1) = 706 We also use
Polyak-Ruppert averaging, as suggested by Cappé & Moulines *?, taking the mean of the summary
statistics 8*) for the last half of training, i.e. §* = ﬁ Zi’;“z fren/241) 3, and producing the final
parameter estimate 0* = argmaxgé(?‘; g).

The maximization step 81 = argmax Q(3("); #) can vary depending on the codon diversifica-

tion technology used. For all technologies, we have
w(t+1) _ 327;1‘1)(2) (CG)

For arbitrary codon mixtures and finite codon mixtures, we can without loss of generality pick one
codon for each amino acid and the stop symbol, and work with template probabilities @ directly
over amino acids, i.e. where 4y, ,, j q is the probability of amino acid d at position j of template m

in pool k. Then, for arbitrary codon mixtures,

_(t+1)(1)
_(t+1) km(j+Ly)d
Ykmjd = o1 (1D (C7)

Ld=1 S Ly
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For finite codon mixtures, let X, ; be a one-hot encoding of the codon mixture used at position j
of template m in pool k, such that Xm; € {0, 1}4. We work directly with mixtures defined over
amino acids, with @44 the probability of amino acid d in mixture a. Thus @,m; = Xim; - 0. Then

we can use the coordinate-wise update

X,(WU = argmax,, Zlog Dad) 8 t+1)i1£k)d
LD (t41) (C.8)
(H—l) Zk 12 12] 1 km(]+Lk)kam]a
Yad A(t+1) t+1
S S M s S e

For finite nucleotide mixtures, we use Xxm;1 to denote a one-hot encoding of the mixture used at
the first position of the codon at position j in template m in pool k, i.e. Xgm;1 € {0, 1}4, and
likewise for X k2 and Xxm;3. We update x by optimizing over all three positions of each codon

jointly, enumerating all combinations of a1, as and as,

21
t+1 —(t+1)(1
Xl(cr:j) = argmax Zlog( Z Ua1blUazbzUa3b3T(b1,bz,b3)d)5](mt(j)4(r£k)d' (C-9)

(a1,a2,a3) d=1 b1,b2,b3

Once X has been updated, we update v. This is harder, as there is no closed form solution. We
directly optimize Q with respect to v by taking gradients and applying s steps of the Adam opti-
mizer '** with a learning rate of 0.01 (that is, we take 5 steps of Adam for every 1 EM update). For
enzymatic mutagenesis, we can also apply Equation C.9 to update x, replacing v with S™. To up-
date 7, we directly enumerate all values of Q forT € {1,..., Tmax} and choose the maximum.

Code implementing the stochastic EM algorithm for all of the proposed stochastic synthesis

408



models is available in the Supplementary Material.

C.2.3 CHOOSING N

Recall that our proposed black-box optimization procedure is to draw X1, ..., X5 ~ p computa-

tionally and then maximize the synthesis model parameters,

N

éN 1= argmax, Z log g9 (X;). (C.10)
i=1

In this section, we argue that N should be chosen to be either equal to N1, or, if N7 is too large to
be tractable computationally, N should be as large as is tractable. In particular, we do not suggest
choosing N to be larger than N1, nor do we suggest regularizing ¢ as one would in a standard infer-
ence problem. The reason is that “overfitting” the synthesis model to the samples X, ..., X 5 can
help rather than hurt.

To be more precise, consider the extreme case where gy can exactly match the empirical distribu-
tion of X1,..., Xn, ~ pbutcannotexactly match p itself. For example, this situation can occur
when using fixed assembly and M = N7, allowing each mixture component be a point mass. If we

use N = N1, we find

N
03, (0) = = > 0w, () (C.1x)
=1

where d,/(x) is the Kronecker delta function at . In this case, variational synthesis is equivalent

to large-scale MC synthesis, and will produce Ny samples from p.” On the other hand, if we let

*Technically, variational synthesis in this case produces a size N1 bootstrap of Ny samples from p, rather
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N — 00, we have 0 N — 0. In this case, variational synthesis will produce /N1 samples from
go= # p. Thus, it can be preferable to use N = Nj as compared to N > Ny, since using N =N,
leads to synthesis of N1 exact samples from p instead of N1 samples from gg= # p.

In practice, of course, gg will rarely be able to exactly match the empirical distribution of samples
from p. Nonetheless, we expect using N =~ Nj to be useful, as in this case we avoid trying to match
44, to components of p that are too rare to occur in practice, and instead regularize . towards the

empirical distribution of samples from p.

C.2.4 VARIABLE LENGTH PROTEIN SEQUENCES

To handle variable length protein sequences, we treat everything past the stop codon as missing
data which does not contribute to the likelihood. That is, for a sequence X; with a stop codon at

position j, we have gg(X;) = qo(Xi,1;5)-

C.3 RELATED WORK DETAILS

C.3.1 DeCoDEk

DeCoDe can be applied to datasets of fixed-length (or aligned) sequences, X7, . .., X nv, which
are assumed to be unique (i.e. X] # X/, ifi # i’). Consider the empirical distribution p(z) =
SN 6/ (x) where 8,/ () is the Kronecker delta. Take gg to be a stochastic synthesis model using

finite nucleotide mixtures and fixed assembly, with 6 = (w, u, v). Let supp(p) denote the support

than directly producing N1 samples from p. Although bootstrapping introduces some additional sampling
noise, we expect it is unlikely in practice to make using g5, worse than using gg-, since the bootstrap directly

approximates p. Section C.4.1 discusses this subtlety further.
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of p, i.e. the set of all length L sequences with non-zero probability. Let ( € Z denote the maxi-
mum allowed support of gy. Then, we can rewrite the DeCoDe objective (Section 2.2.2 in Shimko

et al. *>#) in terms of the size of the intersection of supports of p and gy,

0* = argmax |supp(p) N supp(qe)|- (C.12)
0:supp(g9) <C

Note that the size of the intersection of supports does not correspond to a valid divergence between

pand gp.

C.3.2 SCHEMA

RASPP7? is an algorithm for designing site-directed recombination or combinatorial assembly li-
braries based on a crystal structure and a dataset of homologous proteins from the same family. It
chooses a set of template lengths L1, . .., L, where Lynin < L < Ly fork € {1,..., K},
in order to minimize the SCHEMA score, roughly the number of structural contacts between po-
sitions of the protein generated by different template pools. In this section we give a heuristic argu-
ment connecting RASPP to variational synthesis, in the special case where RASPP finds a solution
with no structural contacts across regions covered by each pool.

Consider a target model p that consists of a Potts model learned from the same protein family
as the dataset of homologous proteins. In general, the Potts model will infer energetic interactions
only between positions of the alignment that are in structural contact 168 et Ly denote the region

generated by template k, i.c. f}l ={1,..., L1}, I:g ={Li1+1,...,L1 + Lo}, etc. and letp(:cik)
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denote the marginal of p over these positions. For the setof L1, . . ., Ly, chosen by RASPP, we
have no structural contacts across regions, and so no energetic interactions under the Potts model,
and thus p(z; :Uik,) = p(zf, )p(xik/) for k # k'. In other words, there is no correlation
between segments under the Potts model p. When using stochastic synthesis with combinatorial as-
sembly, there is also no correlation between segments under gg. If we try to minimize the KL diver-
gence between a gy with combinatorial assembly and the Potts model p, and optimize the template
lengths L1, ..., L, we can expect in general to find a similar solution to RASPP, where both the

SCHEMA score and the correlation between templates under p is zero.

C.4 THEORY DETAILS

Note that the proofs in this section rely on the definitions in Table C.1.

C.4.1  THE MC SYNTHESIS ESTIMATOR

In our theoretical analysis we do not treat MC synthesis as variational synthesis with point mass

(deterministic) mixture components. In particular, we analyze the estimator
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which comes from measuring each synthesized sequence individually, and 7ot the alternative estima-

tor

JRL
le 7XN1 ~ 70 Z(SX;(:I:)? (C 14)
i=1
@ ._ 1 &
1a - XZ
7 2

which would come from pooling the synthesized sequences and then measuring a random sample
of size N7 (here §, () is the Kronecker delta function at 2’). Note this alternative estimator (@)
takes the form of a bootstrap estimator of size N1, taken from an initial sample of size Ny from

p, and thus in general introduces additional sampling noise as compared to 1@ There are three
reasons for focusing our analysis on 1(@) instead of ["(@), First, since IV is low, in practice it is of-
ten tractable for experimentalists to measure the Vg sequences individually (e.g. in 96 well plates),
rather than pooling them, making the estimate [ possible. Second, in the limit where /Ny is much
greater than Ny, the estimators converge, making I(®) a reasonable approximation for pooled ex-
periments in practice. Third, we want our analysis to be conservative in measuring the benefits of

variational synthesis vis-a-vis the alternative, MC synthesis, so we use the better estimator / (a),

413



C.4.2 PROOF OF PROPOSITION 3.4.1

Proof. Using Jensen’s inequality,

max feF max feF

sup E[|F@ — sup J ]\%Ep{( NO (f(X;) — ﬂ‘:p[f<X)])>2:|

1
su
= fmax s No VNo

where V[ f ()] is the variance with respect to p.

We can decompose the error in the I(®) estimate into variance and bias terms, and then apply a

similar analysis.

sup E[|I®) — 1] < sup E[[1®) — Eg,. [£(X)]]] + sup |Eg,. [f(X)] — Ep[f(X)]|

fmax feF fmax feF fmax feF

< 1 + 1v( )

>~ D, qo~+

VN1
(C.16)

where we have used the integral probability metric representation of the total variation metric
TV(-, -) ***. The result follows from application of Pinsker’s inequality. O

We can see from the proof that the bound in Equation 3.3 could be tighter if we use total vari-
ation in place of KL. It could also be tighter if we restrict the family of functions F further. In
particular, consider the metric space defined over the set of fixed length discrete sequences X’ with

the Hamming distance ||z — /||y = Zle Sty Slaja — 24| (where 2 is a one hot en-
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coding of a length L nucleotide sequence). Then, we can introduce the function family Fyy :=

{f : IfllL < Diax},thatis, the set of functions with bounded Lipschitz constant || f|| 1, :=
maxy grex zza | f(2) — f(2)|/||x — 2'|| . Biologically, the Lipschitz constant is interpretable as
the sensitivity of a sequence’s biological function to single mutations. In particular, if a point muta-
tion can dramatically change the assayed property of the sequence, then the Lipschitz constant will
be large; otherwise it will be small. If we assume the Lipschitz constant of the experimental assay is
bounded by some constant Dy, we can find an alternative error bound on the stochastic synthesis

estimator:

1 N 1 D
sup  E[I® -1 < + =W (p, go- ). (C.17)
fmax fe]-‘ml?}'w V Nl fmax

where W(p, q) := infcpp.q) [ |2 —2"|| 7y (2, ') is the first Wasserstein distance, with T'(p, ¢) the
set of couplings of p and ¢. This result follows from Equation C.16 by applying the Kantorovich-
Rubinstein duality theorem (e.g. Dudley ®*, Theorem 11.8.2), using the fact that the metric space

of finite sequences with the Hadamard distance is a finite discrete space and separable. We see from
Equation C.17 that the error bound on variational synthesis can be lower than that in Equation C.16,
so long as D,y is sufficiently small. In other words, we can get away with using synthesis models

that do not match p closely if the assay is not very sensitive to small changes in sequence.

C.4.3 IMPORTANCE SAMPLING ESTIMATES

In some cases we can get access to paired sequence and function data, and in particular the dataset

Dy = {(f(X;),X;) : f(X;) # 0}. For instance, if we deep sequence the hits of a screen, with
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f+ X — {0,1},wewillhave Dy := {(1,X;) : f(X;) = 1}. Wecan then construct an

importance-sampling estimate of I = [E,[f(X)] using samples X1, ..., Xn, ~ qo~,

N-
Mo . LNy X)) 1 | p(Xi)
ICE Nl;f(XZ)qe*(Xi) I X;%f(Xz)qe*(Xi)'

Unlike I®), this estimator is unbiased: E,,. [f(X)p(X)/gg-(X)] = I. However, I'®) still takes

do*

advantage of a large number of samples, making possible lower variance than 1@ 1n particular, we

have

1

-1 < cH1(p||qo+) (C.18)

sup Egp.
fmax feF

E

where cHI is the chi divergence, which can be defined as cH1(p||q) = \/q[%]. We can derive this

result following the same analysis as in Equation C.15,

1 A(c) qu* [f(X)qsz(X)z)] 1
— sup Eg,. [|[1'Y — I]] < sup N, < m\/CHI(})HQ@*). (C.19)

max feF max feF

Note that our suggested black-box optimization procedure for variational synthesis (Section 3.2.2)
is intended to help ensure high discovery rates (maximizing Zf\f:ll f(X;)) but not to ensure accurate
importance sampling estimates. In particular, the XL divergence does not provide a particularly tight
bound on the cHI divergence (see e.g. Proposition 2 in Dragomir ®°), so it is likely preferable to (if

possible) directly optimize the cHI divergence >*.
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C.4.4 ProOF OF COROLLARY 3.4.2

Proof. We have

E[N, I® — NoI'®] > (Ny — No)I — Ny sup E[[I®) — I|] = Ng sup E[|[I — I|]  (C.20)
feF feF

Applying Proposition 3.4.1 yields the result. O

C.4.5 PROOF OF PROPOSITION 3.4.3

Before proving Proposition 3.4.3, we first prove a lemma that shows — as long as we are not using
enzymatic mutagenesis — that we can construct templates that are arbitrarily close to a point mass
while still having full support. We use gg(|c) as shorthand for go(z|C; = ¢), and 6,/() to denote

the Kronecker delta function which takes value 1 if ¢ = 2’ and 0 otherwise.

Lemma C.4.1. Assume we are using arbitrary codon mixtures, finite codon mixtures (with A >
21), or finite nucleotide mixtures (with A > 4). For any € > 0 sufficiently small, there exists some v
such that:

forall T € X there exists a &(T) € UL such that

q(z|e(z)) > 1 —pLe (C21)

where p is a positive constant, and supp(q(z|c(z))) = X. In particular, for arbitrary or finite codon

mixtures, p = 1, while for finite nucleotide mixtures, p = 3.
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Proof. We start with the finite codon mixtures case; note that this immediately implies the arbitrary
codon mixture case, since the space I for finite codon mixtures is a subset of the space U for arbi-
trary codon mixtures. We choose (arbitrarily) one codon for each amino acid and the stop symbol,
and work with mixtures v over these 21 codons (setting the probability of all others to zero). For all

de{l,...,21}letvg = 1197 + 65121)(1 — €) where 1p is the length D vector of all ones and

D). .. _ .
egl ) is the length D vector of all zeros except a one at position d. Let £(Z) be the length of a protein
sequence Z." Given T we define the L x 21 matrix ¢(Z) = concatenate(vz,, . . - s Uiy ULy - o o5 V1)

Now note that

(Z|e@) > (1-e"@ >1— Le. (C.22)

Next we consider the finite nucleotide mixtures case, which works similarly. Forallb € {1,...,4},
letvy, = 145 + 61()4) (1 — €). Given a protein sequence Z, choose a particular codon for each amino
acid and the stop symbol. This defines a DNA sequence &, where ¥ 1 is the nucleotide in the first

position of the codon for the amino acid at position j of Z, and likewise for I j2 and ¥ ;3. We can

then choose nucleotide mixtures for each position of a template to match Z, that s,

¢(Z) = concatenate(vz,, @Uz,, @Vzyq, - - - s U1 OV g1 OV 13> V1IOVIRVL, - . V1QVIQUY).

Now we have

q(z|e(x)) > (1—e)*®) > 1-3Le. (C.23)

"Length is measured up to (and including) the first stop codon or L, whichever comes first.

418



We are now ready to prove Part 1 of Proposition 3.4.3. The basic idea is to construct a synthesis
distribution gg+ that closely approximates p by convolving with p templates that are approximate
point masses.

Part 1 of Proposition 3.4.3: When using either arbitrary codon mixtures, finite codon mix-
tures (with A > 21), or finite nucleotide mixtures (with A > 4): foranyp € P(X)and
n > 0 there exists some M and 0 such that (1) kL(pl||qe) < 1 and (2)supp(qs(z|2)) = X for

all z € {1,...,M}.

Proof. Let M = |X|, that s, set the number of templates equal to the total number of sequences
of length less than or equal to L. Since X’ is finite, we can construct for any € > 0 the synthesis
distribution gp(z) = Ex., [q(2]&(X))]. In this synthesis distribution, the weights w of each
mixture component are set by p(x), and supp(gg(x|2)) = X for all z by the construction of ¢. We

now have, applying Lemma C.4.1,

kL(pllge) = > p(x)logp(z) — > p(z)log [ Y q(z]e(z))p(z)]

reX reX zeX
<> plx)logp(x) = Y p(x)log [q(x|e(z))p(x)]
ek zeX (C.z4)
< > plx)logp(a) — Y p(x)log [(1 — pLe)p(z)]
zeX zeX
—log(1 — pLe)
Thus we can choose € sufficiently small that kL(p||gp) < 7. O
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One concerning aspect of this proof, practically, is that it requires very large M to form the ap-
proximation gy. How well can we do with smaller /2 Combining Theorem 4.2 of Zhang *7 with
the above result, we can say that for any 7 > 0 there exists an € > 0 such that KL(p||gg~ ) converges
to a value less than 77 ata 1 /M rate. Note also that our setup differs from the more common case
where a mixture model is used for density estimation based on finite data, since we can sample as
much as we want from p. We therefore do not analyze the mismatch between a target p and model
gp that may be caused by finite data.

Next, we prove the second part of Proposition 3.4.3, showing that enzymatic mutagenesis can
fail to approximate arbitrary targets p. The basic idea is that when using enzymatic mutagenesis,
the probability of a particular sequence cannot get arbitrarily close to 1, and so the KL divergence
between p and gp cannot get arbitrarily close to o.

Part 2 of Proposition 3.4.3: When using enzymatic mutagenesis: there exists some p € P(X)

and 1 > 0such that for all M and 0, we have kL(p||qp) > 1.

Proof. Since T > 0, and the entries of S are all positive, we can see that we are limited in how much

mass an enzymatic mutagenesis model can concentrate on just one sequence, i.e.
sup sup ¢(zlc,7) < 1. (C.23)

>0,ceULzeX

Choose p(z) = 0,/ () for some sequence 2’ € X, and let gy be an enzymatic mutagenesis synthesis
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model with M templates. Then,

infkL(p|lgg) > —log sup sup g(z|c,7) > 0. (C.26)
o 7>0,ceULTEX

C.4.6 PROOF OF PROPOSITION 3.4.4

Proof. Let L. denote the subset of positions generated by template k, i.c. L, = {1,..., L1},
Ly = {L1+1,...,L1 + Ly}, .... Let p(mik) denote the marginal of p over these positions. We

have, since templates are drawn independently from each pool, gg(z) = T go(x I ), and so

KL(pl|gs) Zp z) logp(x ZZP Dlogae(xr,)

k= 1-73Lk
=Y p(x)logp(x Z > p(xp,)logp(ay,) + Z ke(p(zz,)llge (e, ))
x k= 1sz
K
> xu(pl| [] pleg,))-
k=1

(C.27)

There exists p for which xr(p|| [Th_; p(z 7,)) > 0, in particular any p for which there is correlation

between templates, proving the result. O
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C.s RESULTS DETAILS

C.s.1 DATASETS AND TARGET MODELS

DHFR

We used a dataset of 3,629 sequences in the DHFR family collected using jackhmmer® from the
Uniref1oo dataset>*, and available as an example dataset from
https://github.com/debbiemarkslab/plmc/tree/master/example/protein/DHFR.a2m.
The multiple sequence alignment has a width of L = 171 amino acids. We trained a Potts model
using pseuodolikelihood maximization as in Hopf et al. *°, using the plmc package with the default
hyperparameters https://github.com/debbiemarkslab/plmc. Gaps in the alignment were
treated as missing data (not as separate symbols), following the default settings of plmc. The trained
Potts model was the target p. We sampled sequences from p using Gibbs sampling, drawing 100,000
samples using 10 parallel chains with a burn-in of 200 steps per chain.

For the analysis of unaligned sequences (Figures 3.3D and C.5), we used the training dataset of

3,629 evolutionary sequences, with gap symbols excluded and stop symbols appended. We refer to

this dataset as “DHFR raw”.

GFP

We constructed a dataset of 722 sequences in the GFP family using jackhmmer and UniprotKB

(07/2021)*°", starting from the seed sequence GFP_AEQVI with F64L (a stabilized variant used by
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Sarkisyan et al. *2¢), with a threshold of 0.3 bit score per residue. We trained an ICA model with a

284

MuE output**#, which is available as an example in the Pyro probabilistic programming language **
athttps://pyro.ai/examples/mue_factor.html. The ICA modelis similar to a probabilistic
PCA model, but uses a Laplace prior on the latent variable instead of a Gaussian; the MuE output
uses the default profile HMM-based architecture described in Weinstein & Marks ***. We used 2
latent dimensions in the ICA model, a latent sequence length of 237 in the MuE, and default priors.
The model was trained with stochastic variational inference, with a learning rate of 0.005 and batch
size of 5 over 70 epochs, annealing the prior KL divergence linearly over 35 epochs. Using 20% of
the data as heldout validation, the model achieves a per residue perplexity on the training set of 3.1
and on the test set of 4.6.

We used the ICA-MuE model to construct a target distribution p. In particular, let ¢ be the
latent alignment variable of the MuE (the state variable of the Markov chain). We estimated the
maximum & posterior: value of 1 for the stabilized wild-type GFP (GFP_AEQVI with F64L), and
then sampled new sequences conditional on this value @Eref — note that this procedure is a very weak
form of supervision, since the stabilized wild-type is known to be functional and produce fluores-
cence. To limit the diversity of the library relative to the training data, we sampled from the poste-
rior predictive over the latent representation given the observed data, rather than the prior. Explic-
itly, let ppmug (]2, k) denote the distribution of the learned ICA-MuE model conditional on the

latent alignment ¢ and latent representation . Let X7, . .., X'\, denote the training data, and let

p(k|X") denote the posterior over the latent representation of a datapoint X’ (which can be approx-
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imated by the encoder/guide network). The complete generative process p is then defined as

=1 (C.ZS)

Xi ~ pMaE (%] re, 1)

An important feature of this model is that we are zof sampling from the conditional distribution of
K given Urep, that is, we are not sampling sequences with similar latent alignments. Unlike autore-
gressive models, for example, MuE models allow variation in sequence length and latent alignment
to be treated as independent of variation at conserved sites. Thus, although the sequences gener-
ated from p are all of the same length, the pattern of amino acids at conserved sites reflects the full
diversity of the dataset. Finally, note that in the jackhmmmer constructed-dataset, the first residue
(M) of the wild-type sequence GFP_AEQVI was not included in the profile HMM envelope, but the
sequence-to-function predictor expects this position to be included; we therefore prepended an M

to each generated sequence, for a total length of L = 238.

TCR

We examined a dataset of 22,004 TCR 3 sequences measured in Ramien et al. 7, taken from CD8+
T cells from a single healthy control patient (number HC12 in the study) in the 3rd trimester of
pregnancy. We trained a ICA-MuE model as described above (Section C.5.1), with s latent dimen-
sions and a latent sequence length of 170. We used stochastic variational inference, with a learn-

ing rate of o.o1 and batch size of 5 over 2 epochs, annealing the prior KL divergence linearly over
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1 epoch. Using 20% of the data as heldout validation, the model achieves a per residue perplexity
of 2.39 on both the training and test datasets. We sampled from the model using the same strat-
egy as in Section C.s.1. The reference sequence used to construct 9es was a randomly selected
sequence from the dataset described in Section C.5.6, which Tcellmatch predicted to bind the
influenza epitope; as with the GFP example, conditioning on )y is a very weak form of super-
vision, learning from only a single functional example. In particular, the reference sequence was
MSNQVLCCVVLCOLLGANTV DGGITQSPKY LFRKEGQNVTLSCEQNLN
HDAMYWY RQDPGQGLRLIYY SQIVNDFQKGDIAEGY SVSREKKESFP
LTVTSAQKNPTAFY LCASSIRSAY EQY FGPGTRLTVIEDLKNV FPPE

VAV FEPSE. The generated sequences had length L = 149.

C.S.Z SYNTHESIS MODEL HYPERPARAMETERS

In this section we describe the details of our stochastic synthesis models and optimization procedure.
We used K = 5 pools, with Ly, of approximately the same length foreach & € {1,..., K} (the
last template was shortened as necessary since L is not always a multiple of 5). This yields templates
of length 29 to 48 amino acids across all the datasets considered, which is consistent with typical
oligosynthesis lengths of ~ 150 nucleotides. We used A = 8 for finite nucleotide mixtures; this
value is realistic, as the company IDT, for example, currently offers four custom mixtures per oligo
plus preset mixtures and single nucleotides '?*. We used A = 24 for finite codon mixtures, which

is similar to typical trimer-based synthesis projects, which use the 20 amino acids plus a few custom

mixtures '7>.
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We set the mutation matrix .S based on the ePCR enzyme Mutazyme II, available as part of
Agilent’s GeneMorph II Random Mutagenesis Kit https: //www.chem-agilent.com/pdf/
strata/200550.pdf. In particular, we converted the reported mutational spectra (Table II) into a
substitution matrix, under the assumption that the test sequences are 50% A-T base pairs and 50%
G-C base pairs: for instance, the probability of a particular base pair mutating per round of mutage-
nesis is given as 1% overall (1o bases per kilobase), and 50.7% of mutations happen to A-T base pairs,
so the probability of a particular A-T base pair mutating is 0.01 - 0.507/0.5. Proceeding in this way,

we find
0.990 0.006 0.005 0.003

0.006 0.990 0.003 0.005

0.003 0.001 0.991 0.001

0.001 0.003 0.001 0.991

where the columns and rows are each in the order A, T', G, C. We also computed a mutation matrix
S based on the Taq error prone polymerase (also in Table II of the Gene Morph II Random Muta-
genesis Kit manual), but preliminary experiments suggested worse performance than Mutazyme II
at matching the DHFR Potts target distribution, so we did not pursue it further. We limit the total
number of rounds of mutagenesis 7 to be less than 10, since large numbers of mutagenesis rounds
are rarely used in practice.

Note that since we have chosen A > 4, the set of allowed values of U for enzymatic mutagenesis
(thatis, for all 7) is a strict subset of the set of allowed values of U for finite nucleotide mixtures

(that s, for all v); thus, synthesis models using enzymatic mutagenesis are strictly less expressive than
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those using finite nucleotide mixtures. Meanwhile, I/ for finite nucleotide or codon mixtures is a
strict subset of U for arbitrary codon mixtures, regardless of the choice of v; so synthesis models

using finite mixtures are strictly less expressive than those using arbitrary codon mixtures.

C.s.3 BASELINE SYNTHESIS MODEL

As a baseline stochastic synthesis approach, we considered a method motivated by a common heuris-
tic for producing diversified libraries, which is to simply perform error prone PCR on an initial set
of sequences. In particular, the baseline approach we consider is to do MC synthesis plus enzymatic
mutagenesis: sample initial protein sequences X1, ..., X}, ~ p, inverse-translate the protein se-
quences into DNA (sampling uniformly among all codons for the same amino acid), synthesize the
DNA individually, and then mutagenize in the laboratory using ePCR. The distribution of result-
ing sequences can be described using a stochastic synthesis model for which we do 7ot optimize the
parameters. In particular, let K = 1,andform € {1,..., M}andj € {1,..., L}, letx;, ;1 = 1
if the sampled codon for X;nj has base b at the first position, and X1, = 0 otherwise. Likewise
for Xymjop and X j3p. Then, we set u1m; = S”Xmj1 @ S” Xmj2 @ S7 Xmj3. We use fixed assem-
bly, setting w = (ﬁ, cee ﬁ) Then, the complete synthesis model (Equation 3.1) describes the
distribution of sequences produced by the baseline approach.

Note that the baseline is effectively a kernel density estimate of p. It is thus unsurprising that
the baseline underperforms relative to variational synthesis, since kernel density estimates typically

underperform compared to mixture models.

Practically, we use S corresponding to a Mutazyme II enzyme (Section C.5.2) and set 7 = 5
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Figure C.1: lllustrative example of training curves for a stochastic synthesis model (enzymatic mutagenesis with fixed
assembly) with different values of M . For each value of M, training is repeated with three initial seeds. The models are
each trained on samples from the DHFR Potts model, as described in Section C.5.4.

as a typical value for proteins of the length considered here**°

. The samples from p used as initial
sequences, X .4 f\/p are subsampled from the same training dataset of 100,000 sequences used

for variational synthesis (Section C.5.4). We examined the performance of the method averaged over

3 independent sets of initial sequences.

C. S-4 OPTIMIZATION AND PERPLEXITY EVALUATION

DHEFR Potts, GFP, TCR To optimize synthesis models, we drew N = 100, 000 samples from
each target distribution p and applied stochastic EM, as described in Section C.2.2. We chose batch
sizes to be as large as possible without running out of memory. In particular, we used batch sizes of
100,000 (the full dataset) with M = 1, M = 10and M = 100, and batch sizes of 10,000 for
M = 1000. We trained for 8o epochs with M = 1, M = 10and M = 100, and 16 epochs

for M = 1000. Training took 2-5 minutes for each target-synthesis pair using a Tesla Voo GPU.
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Example training curves are shown in Figure C.1.

Each synthesis model was trained on the same set of N = 100, 000 samples from each tar-
get distribution, and evaluated based on the average per residue perplexity on the training dataset,
exp(—% Zf\ll ﬁ log go(X;)), where £(X;) is the length of the sequence X;. Note that we do
not perform heldout evaluation, as our goal is to see how well each synthesis model can match a
target library of size 100,000; overfitting the synthesis model is not a concern, and may even help
downstream performance, as described in Section C.2.3. We initialized each optimization from
three random seeds, and chose the result with the lowest perplexity.

DHEFR raw For the DHFR raw dataset, we handle variable length sequences as described in Sec-
tion C.2.4, and optimized each synthesis model using EM with batch size of 3,629 (the full dataset),
for 1oo epochs. We set L to be the maximum length of sequences in the dataset including the stop

codon, 170. We evaluated using mean per residue perplexity on the full dataset. We initialized each

model from three random seeds, and chose the result with the lowest perplexity.

C.s.s BEAR TWO-SAMPLE TEST

We use the vanilla version of the BEAR two-sample test proposed in Section 5 of Amin etal. '* to
compare the target and the synthesis distributions. The test computes the Bayes factor comparing
the hypothesis that two datasets { X1, ..., Xy} and { X7, ..., X[, } come from the same underly-
ing distribution versus different distributions. It uses pggar (X1, - - . , X y|a, ), the probability of

the dataset under a Bayesian Markov model with Dirichlet concentration parameter o and lag A. In
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particular, the Bayes factor is

peEAR (X1, -+, Xy, X1, X))

BF = C.3o
peear (X1, ..., Xg)peear (X1, ..., X)) (C30)
where
A
1
pBEAR (X1, .-+, X)) = N > peEar(X1, ... Xgla, ). (C31)
A=1

We used the training dataset of 100,000 samples from p as the first dataset in the two-sample test,
and 100,000 independent samples drawn from the optimized synthesis model 95, 2 the second
dataset. (In the case of DHFR raw, we used the 3,629 sequences as the target sample.) Note that
the goal here is to understand whether the particular set of N samples from p used for training look
like a plausible set of samples from 4> following the logic of Section C.2..3, so we do not resample
from p to compute the test. Weuse @ = 0.5and A = 8; we found that in general the posterior
over lags concentrated at values of A below 8, suggesting the test has sufficiently high resolution.
Computing the test took about 5-10 minutes for each target-synthesis pair, with 20 cores on an Intel

Xeon Eg v3 CPU.

C.s.6 SEQUENCE-TO-FUNCTION PREDICTORS

GFP: TAPE

We computed TAPE predictions of GFP fluorescence using the interface in the FLEXS package **°.

Sequences with internal stop codons were assigned the minimum log fluorescence in the Sarkisyan
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et al. > dataset, 1.2. Variants with predicted log fluorescence above 3 were classified as hits, in line

1 226

with the analysis of Sarkisyan et a who classify variants below 3 as dark.

TCR: TCELLMATCH

We used Tcellmatch, trained on the same single-cell TCR sequencing data as in the original paper?,
with the suggested model architecture (1x1 convolutional embeddings based on BLOSUM 50 and
biGRU layers). We used the mean squared logarithmic error to evaluate the model’s ability to pre-
dict MHC multimer binding counts. We trained the Tcellmatch model only on TCRf3 sequences,
since the target p was trained only on TCR 3 sequences. The Tcellmatch model uses only the CDR 3
region to make predictions. In general, techniques for identifying the CDR 3 region in TCRs rely
on nucleotide-level information, which is unavailable for generated amino acid sequences. How-
ever, we constructed the target p by conditioning on a latent alignment, which in turn is based on

a reference sequence with nucleotide-level information (Section C.s5.1). We thus use the positions
corresponding to the CDR3 in the reference sequence (109:122, as annotated by the 1ox pipeline)
to define the CDR 3 for each sampled sequence from p and gg. Although the Tcellmatch model
can be used to predict many different antigens, we focused on predictions of the GILGFV FTL
influenza antigen, since the model had the most accurate predictions for this particular antigen (ac-
cording to the R? metric used by Fischer et al.”7, in particular R? = 0.70). We conditioned on

a single donor (donor 1) when making predictions with Tcellmatch. Sequences with internal stop
codons were assigned zero counts. Variants with predicted counts above 1o were classified as hits, in

line with the analysis of Fischer etal.””.

431



EstiMaTING HiT RATES

Given a dataset of indicators for whether or not each of 100,000 samples from gg was a hit or not,
ie. {f(X1),..., f(Xn)}where f : & — {0, 1}, we estimated the overall hit rate using a
Beta(0.5, 0.5) prior (Jeffreys prior). We report the standard deviation of the posterior in Figure 3.4C

and G.

ESTIMATING THE NUMBER OF UNIQUE HITS

Based on the hit rate (Section C.5.6), we can estimate the total number of hits for libraries of any
size. However, we are also interested in the total number of unique hits, since discovering identi-
cal sequences is not as useful as discovering diverse sequences. Evaluating predictors on very large
numbers of samples, though, can be impractical since predictors (especially TAPE) can be com-
putationally expensive. Instead, we used a Good-Toulmin estimation strategy: we examined the
hits from a sample of 100,000 sequences from gy and then extrapolated to estimate the number of
unique hits in a library of 1,000,000 sequences. We used the smoothed Good-Toulmin estimator
proposed by Orlitsky et al. ***, with the recommended Binomial model. Note that the estimator
is considered trustworthy for datasets up to a factor of log IV larger than the initial dataset; since
log(10°) = 11.5 > 10, it is applicable here. We estimate the variance of the estimate under re-
sampling using the jackknife, which can be efficiently computed for the smoothed Good-Toulmin

estimator”".
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C.s.7 ERROR BARS

In this section we summarize the calculation of the error bars in Figures 3.3 and 3.4. For the base-
line model, we show the estimated standard deviation across independent samples of the initial
M sequences from p (that is, the initial sequences that are mutagenized by ePCR). We use three
independent samples for each value of M. For perplexity plots (Figures 3.3ACD and 3.4AE) we
do not include any error estimates for non-baseline models, since we have exactly computed the
total perplexity across the training dataset, and we are only interested in the match between the syn-
thesis model and the training dataset, not in the synthesis model’s generalization performance (as
explained in Section C.2.3). Bayes factors are themselves measurements of statistical significance,
so we do not include any error bars for non-baseline models in Figures 3.3B and 3.4BF. For plots
of hit rate (Figure 3.4CG), error bars show the posterior standard deviation of the hit rate under
aBeta(0.5, 0.5) prior (the Jeffreys prior) (Section C.5.6). For plots of estimated unique hits (Fig-
ures 3.4DH), error bars show the jackknife estimate of the standard deviation (Section C.s.6) For
the baseline model, in plots of both hit rate and unique hits, error bars include the variance across

different initial sequences from p, and are computed using the law of total variance.

C.5.8 ADDITIONAL RESULTS

DHFR

We further examined the match between stochastic synthesis models and the target DHFR Potts

model, examining the difference in moments of each distribution. In particular, we looked at the dif-
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Figure C.2: (A) Difference in mean between synthesis and target models, for various stochastic synthesis models with
fixed assembly applied to the DHFR Potts target. Mathematically, ||E, [X] — E,[X]||2 where X is represented as

aone-hot encoding and || . ||2 is the Euclidean distance. (B) Difference in position-wise covariance matrices between
synthesis and target models. Mathematically, let Og(‘?j)',d,d' = Covp(XLd, Xj',d’) denote the covariance under

P between the dth amino acid at position j and the d’th amino acid at position j’. The magnitude of the covariance
between positions 7 and j can be measured as cw) .= I C](Z;), |2 Then we plot the position-wise covariance error

[CP) — C(98)||5. Inboth plots, error bars for the baseline model are the standard deviation over initial sequences
(Section C.5.7).
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Figure C.3: Zoom in of Figure 3.3C.

ference in the mean sequence produced by the synthesis and target distributions, and the difference
in covariance between positions of the sequences produced by the synthesis and target distribu-
tions (Figure C.2). Comparing different variational synthesis models, we see improved perplexity
(Figure 3.3A) corresponds well with lower moment error (Figure C.2). Interestingly, the baseline
synthesis method (Section C.s.3) yields comparatively low moment error for large M despite com-

paratively poor perplexity.
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Figure C.4: Comparing fixed versus combinatorial assembly for the DHFR Potts target. (The perplexity comparison can
be found in Figure 3.3C and C.3.) (A) Two-sample test Bayes factor. (B) Difference in mean between synthesis and tar-
get models, as defined in Figure C.2. (C) Difference in position-wise covariance matrices between synthesis and target
models, as defined in Figure C.2.

We further examined the difference in performance between combinatorial and fixed assembly
models. For enzymatic mutagenesis, switching from fixed to combinatorial assembly improves the
two-sample test Bayes factor (Figure C.4A), mean (Figure C.4B) and covariance (Figure C.4C). For
arbitrary codon synthesis, switching from fixed to combinatorial assembly slightly improves the
Bayes factor (Figure C.4A), has no effect on the mean (as we expect mathematically and see in Fig-
ure C.4B), but substantially worsens the covariance (Figure C.4C). These results illustrate how the
advantages of using fixed versus combinatorial assembly vary depending on the codon diversification
technology.

We further examined the performance of different stochastic synthesis models applied to the
DHFR raw dataset of unaligned evolutionary sequences. Applying the two-sample test, we find
that using large numbers of templates with any codon diversification technology is better than using
small numbers of templates with a very expressive codon diversification technology (Figure C.s),

in line with the perplexity results (Figure 3.3D). We also see that variational synthesis is capable of
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Figure C.5: Two-sample test Bayes factor for synthesis models with fixed assembly applied to the DHFR raw dataset. For

perplexity comparison, see Figure 3.3D.
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Figure C.6: Predicted mutational effects of substituting each position of the stabilized wild-type GFP sequence with an
alanine (i.e. an in silico alanine scan). Dotted line shows the threshold for classifying a variant as functional.

matching the target closely enough to pass the two-sample test, but so is the baseline method in this

case.

GFP

We examined the difference in moments between the target GFP distribution and the stochastic
synthesis models. The results (Figure C.7) are qualitatively similar to those described for DHFR
(Section C.s5.8 and Figure C.2), with the baseline model performing better than its perplexity would

suggest.
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Figure C.7: (A) Difference in mean between GFP synthesis and target models, as defined in the caption of Figure C.2. (B)
Difference in position-wise covariance matrices between GFP synthesis and target models, as defined in the caption of
Figure C.2.
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Figure C.8: Average log predicted fluorescence of samples from various stochastic synthesis models and from the GFP
target p itself (MC synthesis). Error bars are estimates of the standard deviation of the mean (for the baseline model, this
includes variance across different initial sequences, as described in Section C.5.7; for the rest of the models, it is just the
standard error, and negligible in these plots).

We examined the difference in average log fluorescence between samples from various stochastic
synthesis models, as compared to exact samples from the target (that is, as compared to the average
log fluorescence under MC synthesis) (Figure C.8). Interestingly, we find that while using finite
codon mixtures with M = 1 yields relatively low hit rates compared to arbitrary codon mixtures
with M = 1 (Figure 3.4G), it yields nearly equivalent average log fluorescence (Figure C.8).

We examined the difference in performance between combinatorial and fixed assembly methods

applied to the GFP target distribution. On statistical measures of the difference between the syn-
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Figure C.9: Fixed versus combinatorial stochastic synthesis applied to the GFP target distribution. (A) perplexity, (B)
two-sample test Bayes factor, (C) mean error (as defined in Figure C.2), (D) covariance error (as defined in Figure C.2), (E)
average log fluorescence, (F) hit rate and (G) number of unique hits with V| = 106 and Ny = 103. Error bars are as
described in Section C.5.7.

thesis and target distribution (Figure C.9ABCD), we find broadly similar effects to those observed
for DHER Potts: for instance, we see moderate improvements in perplexity for enzymatic mutage-
nesis at large M when switching from fixed to combinatorial assembly, but little effect for arbitrary
codon mixtures, and substantially worse covariance for arbitrary codon mixtures. On measures of
function, using combinatorial assembly leads to dramatically worse performance (Figure C.9EFG):
using arbitrary codon mixtures with combinatorial instead of fixed assembly drops the number of
unique hits by three orders of magnitude. This result suggests that passing the BEAR two-sample
test with large Bayes factors is not enough to ensure high hit rates when using combinatorial assem-

bly; one should also inspect the covariance error.
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Figure C.10: Predicted binding effects of substituting each position of a natural CDR3 sequence
(CASSTRSAY EQY F)with each of 20 amino acids (in silico deep mutational scan). The threshold for functional-
ity (10 counts) is marked by a dotted line in the colorbar.
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Figure C.11: (A) Difference in mean between TCR synthesis and target models, as defined in the caption of Figure C.2. (B)
Difference in position-wise covariance matrices between TCR synthesis and target models, as defined in the caption of
Figure C.2.

TCR

We examined the difference in moments between the target TCR distribution and the stochastic
synthesis models. The results (Figure C.11) are qualitatively similar to those described for DHFR
(Section C.s5.8 and Figure C.2), with the baseline model performing better than its perplexity would
suggest.

We examined the difference in average binding counts between samples from various stochastic

synthesis models, as compared to exact samples from the target TCR model (that is, as compared to
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Figure C.12: Average predicted binding counts of samples from various stochastic synthesis models and from p itself (MC
synthesis). Error bars are estimates of the standard deviation of the mean (for the baseline model, this includes variance
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Figure C.13: Same as Figure 3.4H, but for the EBV epitope RAK F' K QL L instead of the influenza epitope.
MC synthesis) (Figure C.12). Unlike for GFP, we find that the average value of the assay output is
roughly proportional to the hit rate.

We examined additional viral epitopes, besides the influenza epitope, for which decent Tcell-
match predictions were available. The second highest quality Tcellmatch predictor (R? = 0.43)
was for an Epstein-Barr virus (EBV) epitope, RAK F K QLL. MC synthesis with Ny = 103
generates just 0.05 hits on average across independent libraries, while variational synthesis with
Ny = 10°, using arbitrary codon mixtures and M = 10, generates an expected 30 unique hits

(Figure C.13). Here, variational synthesis makes the difference between likely failure and likely
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Figure C.14: Same as Figure C.12, but for the EBV epitope RAK F K QL L (A), the EBV epitope RLRAEAQV K (B)
and the CMV epitope K LGGALQAK (C).

success. We also examined two viral epitopes for which the target TCR model had an estimated
hit rate of zero (based on a sample of 10° sequences from the model): a cytomegalovirus epitope
(KLGGALQAK, Teellmatch R? = 0.40) and another EBV epitope (RLRAEAQV K, Tcell-
match R? = 0.36). Note that a hit rate of close to zero is unsurprising, given that the Tcellmatch
predictor has low accuracy, and that the individual patient which the TCR model was trained on
may not have TCRs that bind these epitopes. For these two epitopes, we found that variational
synthesis was still able to closely match the average binding counts under the target TCR model

(Figure C.14).
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Supplementary Material for Chapter 4

D.1 EVOLUTIONARY DYNAMICS MODELS

Application of the Sella & Hirsh **° model (Eqn. 4.1) in JFPMs rests on a number of assumptions;
we briefly the most relevant here.
When applying Eqn. 4.1 to amino acid sequences, as is typical for fitness estimation models, we

ignore biases that come from the genetic code, which can modify the steady state probability of
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amino acids (in the absence of fitness effects) away from a uniform distribution. This is justified
practically by the small effect sizes: if at steady state an amino acid has probability 1/64 instead of
1/20, the total difference in log probability is log(1/20) — log(1/64) ~ 1, which is small compared
to (for instance) the log probability differences relevant for disease risk prediction with fitness mod-
els, which are ~ 10 (Frazer et al. *°, Extended data Fig. 3). Moreover, this bias only contributes an
overall shift in amino acid probabilities, independent of position, and so does not change our main
theoretical results. We ignore biases caused by asymmetric mutation rates for analogous reasons
(though note they are often included in PMs in practice)**°.

The constant 3 depends on the effective population size, as well as the underlying population
genetics model (Moran or Wright) and organismal ploidy (Sella & Hirsh *3°, Table 1). Following
standard practice, we treat 3 as fixed for simplicity, though in reality it may vary over time and across

lineages. Taking into account these possible changes clearly would not contradict our main theoreti-

cal result, that fitness and phylogeny are non-identifiable.

D.2 ProOOFS

D.2.1 PROOF OF PROPOSITION 4.2.3

N.b. this result is known in the literature (Ho € Ané'’*, Egn. 1) but we are unaware of a proof; so we

provide one here for completeness.

Proof. For notational convenience, we will work with a standardized OUT, with 4t = Oand o = 1.

The final result can be obtained by translating and scaling the distribution of leaves. The transition
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Figure D.1: Tree labeling for the proof of Proposition 4.2.3

distribution from point ' at time ¢’ to point X at time ¢ under the Ornstein-Uhlenbeck (OU)
process is

X ~ Normal (a:/e_%(t_t/), 1-—- e_(t_t/)) . (D.1)

This distribution can be reparameterized in location-scale form as

€ ~ Normal(0, 1)
X = le 201 4 V1 — e (t=t)e,

Ast — oo we reach the stationary distribution Normal(0,1). Letb € {1,...,B} index the
branches of the tree, let A be the length of branch b, and let j € {1, ..., N} index the leaves
(observed species or sequences); see Fig. D.1. We have assumed that the most recent common an-
cestor of the observed sequences was sampled from p>°; this can be represented by adding a single
branch length (indexed b = 1) to the root with length A\ = o0. Let ¢, be the noise describ-

ing the OU diffusion over each branch. Let £; j, be the total time from leaf j to the nearest vertex
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on branch b, so long as branch b is on the path from leaf j to the root; otherwise, set £, = oo.
For instance, in the diagram in Figure D.1, wehave {14 = 0,&12 = A1, &1,1 = A + Ao, and

€15 = &1,6 = 1,7 = &1,3 = 00. We can now write the leaf position as
1
X; = Z e"250/1 — e~ ogy, (D.2)
b

Define the matrix

M;, = e 281 — e, (D.3)

such that X; = >, M; €. We can now describe the complete leaf distribution as

€ ~ MultivariateNormal(0, Ip)

XI:N:M'G_:

where Ig is the B-dimensional identity matrix. Thus, according to the location-scale representation

of the multivariate normal,
X1.N ~ MultivariateNormal(0, M M T). (D.4)
We can simplify the covariance matrix ¥ := MM T First

iy = > MipMyy =Y e 2 & (1 — e,
b b
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Figure D.2: In red are the leaves considered in the examples in the proof of Proposition 4.2.3; in green is their most recent
common ancestor.

Before introducing the notation required to derive the general result, it’s helpful to get a sense of

how the derivation works; in the example tree (Figure D.1),

S1g = e 3TN (] Lo h2) 4 om3atAs ) (1 o)

— e 5(ats) 4 (76—$(A4+A5+2A2) + e—%(A4+A5+2Az)) e 3R As 220 -20)

_ 6_%0‘4—’—)‘5).

The sum over b telescopes, leaving only the initial term, which corresponds to the total time between
leaf node 1 and leaf node 2. To construct the general result, define i)j, ;¢ as the branch whose later
node is the most recent common ancestor of leaves j and j'. In the example in Figure D.2, 5274 = 4.
Let R be an ordered list of branches from b; js tob = 1, the earliest branch. In the example in
Figure D.2, R = [4,2, 1]. Finally, let ¢+ be the length of the shortest path from leaf j to leaf 5/, the

time from the most recent common ancestor to j plus the time to j'. In the example in Figure D.2,
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to.4 = A5 + Ag + Ag. We now have

B
¥ = Z 6_%(£j,b+§j’7b)(1 _ G*Ab)

b=1
= e 2t p) (1 — )
beR
. Sl ) Bl ke
=e 2l —e 2 TN 4 Z e 2t 22 Rk’)(l — 6_)‘Rk).
k=2

Breaking down the telescoping sum, and using the fact that the final element of Rist; = oo,

1 _1 IR 1
— ety — o3t Ary) =Bt

So we have the simple result that the covariance matrix depends just on the divergence times be-
tween leaves,

E A —%t .y
gt = e 277, (D:s)
Translating the distribution Eqn. D.4 by 1 and scaling by o yields the result. U

D.2.2 PROOF OF THEOREM 4.3.3

Before proving the result, we briefly clarify a definition in the statement of the theorem:

Definition D.2.x1 (Exchangeable in leaves). Let H be a tree with countably infinite leaves and let Hy
be a permutation of a phylogeny in its leaves, i.e. the same tree H with the leaves observed in a different

order, according to a permutation 7. A distribution over phylogenies is exchangeable in its leaves if
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p(H) = p(Hy) for any permutation .

Proof. Outline: First, using the results from Sarkar®*3 , we construct an embedding for each tree into
the hyperbolic plane, being careful that the embedding preserves exchangeability. Second, we apply
de Finetti’s Theorem to obtain the conditionally independent representation of the joint distribution
of Z1, Za, ... Third, we use the distortion bound from Sarkar*’ to bound the Wasserstein distance
between p(v) and p(D).

First we describe the Sarkar** (1 + €) distortion embedding algorithm setup. Vertices in phylo-
genetic trees have maximum degree three, and, by assumption, the minimum edge length in a tree H

is greater than 77 > 0 with probability one. For any €’ > 0, choose a p < 7/3 and a scale factor

1+ €2k
)\>( +6)logtang, (D.6)

where k is the Gaussian curvature of the hyperbolic plane H (for most hyperbolic geometry models,
and in particular the Lorentz manifold, k = —1). Then, let h; (H), h2(H), ... be the position of the
leaves in the embedding of H produced by the (1 + €) distortion embedding algorithm in Sarkar **3,
using edge scale factor A, and p separated cones with cone angle 27 /3 — 2p. Taking the last line of
the proof of Theorem 6 in Sarkar ***, we are guaranteed that even for a countably infinite number

of leaves,

(D.7)




wherei, i’ € N := {1,2,...},and d(-, -) is the hyperbolic distance function.

Next we will modify the embedding function h to ensure that the distribution of embedded
leaves is exchangeable. Let [H] be the set of phylogenetic trees that are equivalent to H up to re-
ordering of the vertices. For each equivalence class [H] we choose one ordering of the vertices to
be the canonical tree H([H]), and for any tree H let 7°(H) be the leaf permutation such that the
reordered tree Hye(gy = H([H]). Now define the modified leaf embedding function h/(H) :=
P a) (Hre(m)) where 7(H) is the inverse permutation of 7¢(H). Since by assumption the prior
p(H) on the phylogenetic tree is exchangeable, we can rewrite p(H) using the induced distribution

over equivalence classes p([H]) as

[H] ~ p([H])
7 ~ Permutation

H := H([H])~,

where Permutation is the uniform distribution over all permutations of N := {1, 2,...}. We now

define the distribution over leaf embeddings as

H ~ p(H) D)
8

Lo 1= hlloo(H)>
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which we can rewrite as

[H] ~ p([H])
7 ~ Permutation

oo 1= hw(ﬁ([H]))

The distribution p(Z7, Zs, ...) is therefore exchangeable. Applying de Finetti’s Theorem'** we
have a.s.
G~¢G
(D.9)
Z; " Gfori e {1,2,...}
where G is a random measure distributed according to a prior G. Moreover, the embedding distor-

tion bounds (Eqn. D.7) are preserved for each H, since

1+ € >max —= (ﬁ([H] )A) = max —= )\tmwi/ (HFC(H))
~ I A <[ ) e (D)) 8 e, (o) e, (o))
= max — tiir(H)
1,1’ d(h/( ),hz,(l‘l))7
and by the same logic
1 = max I(hi(H([H])), ha (H([H]))) _ iy Q(Ri(H), b, (H)) (D.11)
Mz (H([H])) Wi AMgp(H) '
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We will now construct the Wasserstein bound. Define the joint distribution over v and 7,

H ~ p(H)
Vi (H) = log(%tii/ (H)) (D.12)

Dy (H) = log(d(h;(H), iy (H)))

where we have chosen d(-,-) = %d(, -). Note that the marginal distribution of v matches its
definition in the statement of the theorem, and that, applying Eqn. D.8 and Eqn. D.9, the marginal
distribution of 7 also matches its definition. Using the fact that log is a monotonically increasing

function, Eqn. D.10 gives

exp (v (H))

log sup ) <log(l+e¢)

i,i eXp ﬁii’ (H

suplvii (H) — 73 (H)] < e,

i

and similarly using the bound from Eqn. D.11, sup, ., [7; #» (H) — v; + (H)] < 0. Thus, with proba-

bility 1 under p(H),

(H) — #(8) o0 = sup vis (H) — 730 (HD)]| < e.

i

Recall that the Wasserstein distance between the distribution of two random variables v and 7 can

be written as

Wi(p(v),p(7)) = nf Ey(lly = 7lloc]
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where J is the set of joint distributions with marginals corresponding to the distributions of v and

7 (Dudley *, Chap. 11.8). Using the joint distribution in Eqn. D.12, the Wasserstein distance is

bounded by

Wi(p(v),p(7)) < BEapg [lv(H) — 2(H)[[o] < e. (D.13)

Now consider the case where W (p(v), p(7)) = 0. (N.b. in this case, we do not need to assume
that the minimum time between nodes in H is greater than 17 > 0.) Since the Wasserstein metric is a
metric on the space of probability distributions (Dudley ** Lemma 11.8.3), p(v') = p(¥) a.e.. Using
the standard properties of Gaussian processes (Williams & Rasmussen **, Chap. 2), the GPLVM

model (Eqn. 4.5) can be written as

G~G
id .
Z; ~ Gfori € N
17“‘/ = logd(ZZ, Zz’)

X1.00 ~ MultivariateNormal(j1, X5 := 02 exp(— exp 417)),

which is equivalent to the OUT distribution,

H ~ p(H)
Vit 1= log[%tw (H)] (D-IS)

X100 ~ MultivariateNormal(1, ¥; i := 0% exp(— exp v; 1))
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So the distribution p(X 1.4 ) produced by the GPLVM is equivalent to the distribution p(X7...)

produced by the OUT model a.e.. O

D.3 SIMULATION DETAILS

In both scenarios, we generated sequences of fixed length | X| = 30, with an alphabet size of B +
1 = 4 (corresponding to nucleotides).

Scenario 1 We simulated from a Potts model

1

Prorrs(T) = Z oXp (Z S hwrn+ > Y > Y ezz/bbfl‘lbﬂﬁlb/)
I b

L U>l b v

where h is the sitewise energies, € is the pairwise energies, « is a one-hot sequence encoding, [ indexes
sequence positions and b indexes letters. Following the simulations in Ingraham & Marks '*', which

were intended to roughly match the statistics of typical real protein Potts models, we drew hy, ~

InvGamma(2, 0.8) and

1 ifl'=1+1
Ay =

Bernoulli(0.1)  otherwise

By ~ Normal(o, 1.2)

Cl'by — All’Bll’bb’-

The energies h and e were drawn once, and the same values used across independent simulations.
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We sampled from the model using a Gibbs sampler with 1oo steps of burn-in and 10 parallel chains
using the code from Ingraham & Marks '*'
(https://github.com/debbiemarkslab/persistent-vi). We shuffled the resulting samples
to remove autocorrelation.

Scenario 2 We used a site-wise independent fitness function:

30

@)= hprn,

=1 b

with site-wise residue biases 1, where 2 is a one-hot encoding of the letter at the [-th position of

x. To generate phylogenetically correlated sequences, we sampled phylogenetic trees from a King-
man Coalescent (Bertoin **, Def. 2.1) with rate 1. Starting from a random sequence drawn from the
steady state distribution at the root, we evolved the sequence simulating a Wright process in a hap-
loid population (Sella & Hirsh *3°, Eqn. 3) according to the tree and fitness function. In particular,

for sequences g, = that are one mutation away, the mutation rate is

. (2 (@)~ F@o)) _ 1
7!1_>rno ;P ($7$0) = NeffGQNeﬂf(f(x)—f(xo)) 1

where we set the effective population size to Neg = 10000. This stochastic process has steady state
p™(x) o< exp (2(Neg — 1) f () ,

(Sella & Hirsh **°, Eqn. 7).
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SWI model We fit the SWI model with maximum likelihood estimation.

BEAR model In these simulations, we used a vanilla BEAR model with a uniform embedded
AR model (i.e. a Bayesian Markov model) for simplicity. We set the Dirichlet prior concentration to
the constant @ = 0.5. Based on the theoretical analysis in Amin etal. " (Thm. 35), we used a prior
on lags of the form

p(L) o exp(—BF) (D.16)

where B is the alphabet size (4 for nucleotides). We inferred the prior via empirical Bayes, marginal-
izing over the transition probabilities following the protocol in Amin et al. '*. Conditional on

lag L, sampling from the posterior over the BEAR model is straightforward thanks to Dirichlet-
Categorical conjugancy.

Evaluation We defined S following standard protocols for fitness estimation models. In partic-
ular, we let S¢(p) be the Spearman correlation between p(x) and f(z) for x € A where A consists
of all possible single point mutations (i.e. single letter changes) of an initial (“wild-type”) sequence.
The wild-type sequence was chosen as the most likely sequence under p>°, computed exactly for
Scenario 2 and estimated based on the 108 samples for Scenario 1.

To estimate model perplexity (Fig. 4.4C and D.sB), weused N = 10, 000 independent se-

quences from po and computed the per-residue perplexity

1 N
exp | ————— logp(Xy) |, D.1
) )
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Figure D.3: (A) Same as Fig. 4.4A, for four independent simulations following Scenario 1. (B) Same as Fig. 4.4B, for four

independent simulations following Scenario 2.

where | X, | is the sequence length and p(X,) is the probability of the sequence under the model.

To estimate the KL to the fitness distribution in Scenario 2 (Fig. 4.4D) , we sampled N =

10, 000 independent sequences from p>°, { X1, ..

., XN} and estimated

1 N
k(p™|lp) = H(p™) - + > logp(Xy),
n=1

where H (p™) is the entropy of p°°, which can be computed analytically. For BEAR, we plotted the

KL to the posterior predictive, which, using Jensen’s inequality can also be seen to lower bound

[EHBEAR(p|Xtrain) [KL(poo‘ |p)] ’

where IIgpar (| Xirain) is the BEAR posterior learned from the training dataset.
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Figure D.4: Probability of each nucleotide at each position learned by the SWI model (above) and in the stationary distri-
bution p>° (below), for a simulation from Scenario 2.
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Figure D.5: (A) Fraction of independent simulations (out of 10 total), following Scenario 1 (Sec. 4.6), in which Hypothesis
2 was accepted at level @« = (0.025. (B) Perplexity on heldout data of the BEAR and the SWI models in Scenario 1. Thick

line corresponds to the average over 10 individual simulations (thin lines).
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D.4 EMPIRICAL RESULTS DETAILS

D.4.1 DaAta

Prediction task #1 (functional effect) Following standard practice, we report the absolute value
of the Spearman correlation as S¢(p), since in some assays a negative change in the measured quan-
tity corresponds to larger fitness (note that in all cases the predicted directionality of the effect un-
der each model was correct). We focused on single amino acid substitutions, taking only those for
which EVE was able to make a prediction (EVE is limited by its reliance on a multiple sequence
alignment). We used the same data as in Shin et al. **5, Table 1, taking the 37 experiments per-
formed on the following 32 proteins: UBC9_ HUMAN, UBE4B_MOUSE, P84126_THETH,
HIS; YEAST, BLAT ECOLX,IF:_ECOLL PTEN_HUMAN, B3VIss_ LIPST, GAL4 YEAST,
POLG_HCV]JF, PABP_YEAST, CALM1_HUMAN, AMIE_PSEAE, TRPC_THEMA,
RASH_HUMAN, YAP:_HUMAN, TRPC_SULSO, DLG4_RAT, BG_STRSQ, KKA2_ KLEPN,
HSP82_YEAST, B3VIss_LIPST (stabilized), MKo1_ HUMAN, HIV BF520 env, SUMO1_HUMAN,
RL4o1_YEAST,PA FLU,HG _FLU, TPMT HUMAN, HIV BGsos env, TPK1_ HUMAN, and
MTH3_ HAEAE (stabilized).

Prediction task #2 (pathogenicity) We used the pathogenicity labels of single amino acid sub-

148

stitutions curated from ClinVar'#® in Frazer et al. *°. We considered labels for 87 human proteins

less than 250 amino acids in length: AICDA, AQP2, ATPF2, BoD2, CAHsA, CAV3, CD40L,

CF410, CHC10, CIA30, CLD16, CLN8, COQ4, CRBB2, CRGD, CTRC, CXB1, CXB2, CXB3,
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CXB4, CXB6, CY24A, DERM, DGUOK, DHDDS, EDAD, EFTS, ELNE, ETFB, ETHET,
EXOS3, FGF1o, FGF23, FOXE3, FRDA, GP1BB, HBB, HEM4, HSPB1, HSPBS, IFM5, IFT27,
JAGN1, KAD2, KCNE1, KCNE2, KITM, LITAF, MMAB, MMAC, MPU1, MYPR, NDP,
NDUSS8, NFU1, NKX25, NMNAT1, OPA3, PAHX, PDYN, PMM2, PMP22, PNPH, PNPO,
PROP1, PSPC, PTPS, RASH, RNH2A, SsA2, SAP3, SBDS, SCO1, SDHB, SDHF2, SIX1, SIX3,
SOMA, TMM7o, TNNT2, TPK1, TPM2, TR13B, TWST1, VHL, XLRS1, ZC4H2.

Training data All models were trained on datasets of protein sequences gathered as described
in Shin et al. **5 for pathogenicity effect prediction tasks and as described in Frazer et al. *° for func-
tional effect prediction tasks. SWIand EVE were trained on the multiple sequence alignment, while
Wavenet and BEAR were trained on the raw sequences as described in Shin et al. **5. All datasets

were uniformly subsampled to produce a 75%/25% train/test split.

D.4.2 MODELS AND CODE

The SWI model was trained via maximum likelihood.

The Wavenet model was trained via maximum likelihood with the default architecture, hyperpa-
rameters and training protocol described in Shin et al. **%, for 100,000 steps. Code is from https:
//github.com/debbiemarkslab/SeqDesign. We did not apply the Wavenet model to the sec-
ond prediction task, as it has only previously been developed for the first task.

The EVE model was trained via variational inference, using the same architecture, hyperparam-
eters, and training protocol described in Frazer et al. 8¢ Codeis from https://github.com/

debbiemarkslab/EVE. To match the protocol of the original paper, EVE was — unlike SWI, Wavenet
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and BEAR - (a) trained on the full dataset rather than the training set alone, and (b) used a se-
quence reweighting heuristic.

The BEAR model used an embedded convolutional neural network (the same architecture as
used in Amin et al. **, with layer 1 width of 16, filter width of 5 and 30 filters total) and a uniform
prior over lags 2, 3, 5,7, and 9. Code is from https://github.com/debbiemarkslab/BEAR.
The model was trained using empirical Bayes, as described in Amin et al. *?, for soo steps with a
batch size of 500000 kmers. To construct posterior credible intervals, we used 41 samples from the
posterior for prediction task #1, and 1000 samples for prediction task #2.

We computed the heldout perplexity (Eqn. D.17) for the BEAR posterior predictive and for

Wavenet to produce Fig. D.6.

D.4.3 CONVERGENCE EXPERIMENTS

To plot the convergence of the posterior over pg as a function of IV (Fig. 4.5CD, D.7 and D.8), we
used a vanilla BEAR model, a nonparametric Bayesian Markov model. Note that here we fixed the
embedded AR model, rather than refitting with larger V, so that we could analyze the the conver-
gence behavior with reference to the asymptotic results of Thm. 35 in Amin etal. '*, which does
not take into account empirical Bayes. We set the Dirichlet concentration to 10 and used a prior

over lags as in Eqn. D.16.
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Figure D.6: Ratio of the per residue perplexity on heldout data of the Wavenet model and of the BEAR model posterior
predictive, across the 37 assays used for the first prediction task. Note lower perplexity corresponds to better density
estimation performance.
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Figure D.7: Same as Fig. 4.5CD, for 5 additional assay examples. A-C are each distinct 5-Iactamase assays; D is from GAL4
(DNA-binding domain); E is from UBE4B (U-box domain).
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Figure D.8: Convergence of the BEAR posterior over AUCs with IV (green distributions), compared to the AUC of SWI
(blue line) and EVE (yellow line), for the second prediction task. (A) is for the CXB1 gene, (B) CXB6, (C) EXOS3, (D) FGF23,
(E) OPA3, (F) PAHX, (G) PROP1, (H) S5A2.

D.4.4 INTERPOLATION EXPERIMENTS

We fit a BEAR model using the architecture and training protocol described in Sec. D.4.2, opti-

mizing both the parameters of the AR model and A via empirical Bayes. We then varied h from its
optimized value, and recalculated the total marginal likelihood and the posterior distribution over
S¢(p) (Fig. 4.5EF and D.9). We also computed the value of S¢(g;) for the fit BEAR model in the

h — 0 limit (Fig. D.1o0).
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Figure D.10: Same as Fig. 4.5AB, with the addition of the AR model inthe h —>

0 limit (purple). In prediction task 1

(A), Hypothesis 2 is accepted in 28/37 assays (75%) while Hypothesis 1 is accepted in 6/37 (16%) for the AR model. In
prediction task 2 (B), Hypothesis 2 is accepted in 16/97 genes (16%) and Hypothesis 1 is accepted in 17/97 genes (18%)
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E.1 METHODS DETAILS

E.1.1  CALIBRATING T’

The SVC contains a hyperparameter 7' > 0. To choose an appropriate value of T', we aim, roughly,

to match the coverage of the generalized posterior

TR0 = exp( - N3 (po() a(e16) )7 (6)do

to the coverage of the standard Bayesian posterior

N

KL 1 %

when the model is well-specified.

Let 6, be the true parameter value, such that po(x) = ¢(z|6.) almost everywhere. Let G**(6) :=
V2E x~po [~ logq(X|0)] and let 0% := argmax > ; log ¢(X ?|6) be the maximum likelihood
estimaror. Let WX} be the density of v/ N (0 — 0%F) when 6 ~ 7§F. Under regularity conditions 7,
according to the Bernstein—von Mises theorem, h'{y converges to a normal distribution in total varia-

tion,

RS (z) — N (z | 0, G*(0,) ) |de —=>— 0.

N—oo

.

According to Theorem 5.6.9, the generalized posterior associated with the SVC has analogous be-

havior. Let G*V¢(0) := V3 NksD(po(z)|q(x|0)) and let 3Y° := arg min NKsD(po(z) | q(z[6)).
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Let hi\© be the density of VN6 — 6%°) when @ ~ 73/°. Then by Theorem 5.6.9, h}y© converges

to a normal distribution in total variation,

5

For the uncertainty in each posterior to be roughly the same order of magnitude, we want

e (z) — N (@ | 0, G5C(0,) ™) [de —2— 0.

N—oo

det G¥1(0,) ~ det G*7°(8,),

or equivalently,

} (det (V3] NK5D(po () |a(210)] )” "
det [V3],_p Ex~po[~loga(X10)] ]

To choose a single 1" value, we simulate true parameters from the prior, generate data from each
simulated true parameter, and take the median of the estimated 7" values. That is, we use the median

T across samples drawn as

0, ~ 7(0)

% g(al0.) (E.1)

— 1/m
s [ It [V5lg—p. N%D(po(x) [l (]0))]|
| det [V3]5_p, & i1 —logg(XD1(6)]]

x @

In practice, we find that the order of magnitude of T is stable across samples 0, from 7(6). See

Section E.4.3 for an example.
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E.1.2 KERNEL RECOMMENDATIONS

To obtain subsystem independence (Proposition 5.6.6), we suggest using a kernel that factors across
subspaces, such that k(X,Y) = kr(Xr, Yr)ks(Xp, YB) where kr and kg are integrally strictly

positive definite kernels. In the applications in Sections 5.7 and 5.8, we use the following kernel.
Definition E.x.1. The factored inverse multiquadric (IMQ) kernel 75 defined as

d
k(,y) = [] (& + (2 —yi)?)"*

i=1
forz,y € RY, where 3 € [—1/2,0) and ¢ > 0.

Note that this kernel factors across any subset of dimensions, thatis, if S C {1,...,d} and 5¢ =
{1,...,d} \ S, then we can write k(z,y) = ks(zg,ys)kse(zge, yse). Thus, if the foreground
subspace Xz is the span of a subset of the standard basis, such that x 5 = Ve = agforsome S C
{1,...,d}, then it follows that k factors as k(z,y) = kr(zr,yr)ks(zs,ys). Along with this
observation, the next result shows that the factored IMQ satisfies the conditions of Theorem 5.6.9

that pertain to k alone.

Proposition E.x.2. The factored IMQ kernel is symmetric, positive, bounded, integrally strictly

positive definite, and has continuous and bounded partial derivatives up to order 2.

Proof. Ttis clear that k(x,y) = k(y,x)and k(x,y) > 0. Next, we show that k has continuous

and bounded partial derivatives up to order 2. Note that we can write k(x,y) = [1% 1 ¥ (z; — yi)
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where 1(r) = (¢2 + 72)%/% for r € R. Differentiating, we have

, 2
Yi(r) = §02_:T2 (1)

W) = (5 - 2) () ) + 5 2w

c2+r? de? +r2

Since7? > 0and 8 < 0, [¢(r)| < c2P/d for allr € R. Further, it is straightforward to verify that
|4’ (1)] and |)"'(r)| are bounded on R by using the fact that |r|/(c* + r?) < 1/(2¢). By the chain
rule, it follows that for all 4, j, the functions k(z, ), |0k /0x;|, and |0*k/dx;0y;| are bounded.
Thus, we conclude that k, | V&||, and || V2K are bounded.

Finally, we show that k is integrally strictly positive definite. First, for any d, for z,y € R?, the
function (2,y) + (¢ + ||z — y||3)%/?is an integrally strictly positive definite kernel (see, for
example, Section 3.1 of Sriperumbudur et al. *#*); we refer to this as the standard IMQ kernel. Since
the factored IMQ is a product of one-dimensional standard IMQ kernels, it defines a kernel on R?
(Lemma 4.6 of Steinwart & Christmann *#7) and is positive definite (Theorem 4.16 of Steinwart
& Christmann *#7). By Bochner’s theorem (Theorem 3 of Sriperumbudur et al. *#*), a continuous
positive definite kernel can be expressed in terms of the Fourier transform of a finite nonnegative
Borel measure. In particular, applying Bochner’s theorem to (1), we have

d
k(z,y) = V(z—y) = [[ (@i —v) = H/[Rexp( — V=1 — yi)wi)dA° (wy)
=1

i=1

_ /[Rd exp( — vV_1(z — y)Tw)dA(w)
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by Fubini’s theorem, where A is the finite nonnegative Borel measure on R associated with ¢/ (r)
and A = AY x - x AU is the resulting product measure on RY. Applying Bochner’s theorem in
the other direction, we see that W is a positive definite function. Moreover, since the standard IMQ
kernel is characteristic (Theorem 7 of Sriperumbudur et al. >#), it follows that the support of A is
R (Theorem 9 of Sriperumbudur et al. *#+), and thus the support of A is RY. This implies that the
factored IMQ kernel k is characteristic (Theorem 9 of Sriperumbudur et al. *#*) and, since & is also

translation invariant, k must be integrally strictly positive definite (Section 3.4 of Sriperumbudur

etal.>#3), O

Our choice of the factored IMQ kernel is motivated by the analysis of Gorham & Mackey 3,
which suggests that the standard IMQ is a good default choice for the kernelized Stein discrepancy,
particularly when working with distributions that are (roughly speaking) very spread out. In particu-
lar, it is straightforward to show that the factored IMQ kernel, like the standard IMQ kernel, meets
the conditions of Theorem 3.2 of Huggins & Mackey '*°. However, we do not pursue further the
question of whether the NksD with the factored IMQ detects convergence and non-convergence
since our statistical setting is different from that of Gorham & Mackey 3, and we are assuming the
data consists of i.i.d. samples from some underlying distribution rather than correlated samples

from an MCMC chain which may or may not converge.
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E.x .3 EXACT SOLUTION FOR EXPONENTIAL FAMILIES

Here, we show that when ¢(z|6) is an exponential family, the estimated NKsD has the form

NksD(po(x)||q(z]0) =0T A0+ BTo+C (E.2)

where A, B, and C depend on the data but not on 6. Since go(x) = q(z]0) = \(x) exp(8 " t(z) —
K(0)), we have 54, (v) = V log A(z) + (V,t(z)) "0 where (Vt(x));; = Ot;/Ox;. Thus, we can

write

ug(w,y) = 54(2) " 5, (YIR(2.y) + 59, (2) T V(2. y) + 54, (y) " Vik(a, y) (E3)
+ trace(V,V, k(z,y))
=0T [(Vat () (Vyt(y)) T k(2, )]0
+[(Valog A(2)) T (Vyt () Tk(z,y) + (Vy log A(y)) T (Vat(2)) Tk(z, y)
+ (Vak(z,9) (Vyt(y) " + (Vyk(z,9) " (Vat(2)) 10
+[(Valog A(2)) T (Vy log A1) (2, y) + (Vy log A1) T (Vok(z,y))

+ (Vi logA(2)) " (Vyk(z,y)) + trace(VxV;k(x, v))]. (E.4)
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Then the estimated NksD takes the form in Equation E.2 if we choose

A= Zv HX NV (XN TR(X®, x0))
ZZ;&] k(X 7 ’L;ﬁ]
B' = : 3 (Ve log AX D) TV 4(X D) T(X D, X))

Diti E(X®, X0)) Py

+ (Vo log AX D) TV, (XY TR(x @, x0))
+ (Vok(X®, X)) T, 4(x )T

+ (V k(XD X)) T, ¢(XO)T]

1 ) . ) .
= : : V, log M XONT (Y, log \( X D) k(XD x @)
¢ Z#jk(X(Z),X(]));[( og A(X')) " (Vg log \(XV)) k(X X))

+ (Vg log )\(X(j)))Tka(X(i)’ X(j))
+ (Vo log \(XD)N TV, k(XD, X))

+ trace(VxV;—k(X(i), X(j)))] :
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If the prior on € is N (1, 3o), then the SVC is

mp/2
K= G\f) (2m) "™ /2 (det B) /2

x /exp( - %[QTM +BT0+C]) exp( = 5(0 - 1) %51 (0 — p)) o

1
2
mp/2
:(%) (2) ™7 /2 (der 33g)~1/2
1 T 2N -1 N T Ty—1 N 1 Ty—1
2m\ mB/2 2N
= <]\7;> (detZo)_1/2<det (TA‘F Zal>)

con(p(= 5o o) sty (<o )

—1/2

T
N _, 1+,
——C-Zu's

7C 3k 0M>

Meanwhile, if ¢(x]0) = N (6, X) where X is a fixed covariance matrix, then we have V, log A\(z) =

Y trand V, t(xr) = XL

E.I.4 COMPARING MANY FOREGROUNDS USING APPROXIMATE OPTIMA

Here, we justify the technique described in Section 5.2.3. As in Section 5.2.3, define £;(0) =

NksD(po(z 7, )||lq(zF,|0)) for j € {1,2},and let Oy (w) = argmin, L(w, ) where

L(w,0) == (1(0) + w(la(0) — £1(6))
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forw € [0, 1]. We assume that the conditions of Theorem 5.6.9 are met, over both X'z, and X'r,.

Since (0L/00;)(w, On(w)) = 0, we have

2 2
0= a‘?ﬂ(gg’i(w, On(w))) = aigei (w, O (w)) + ij agiaﬁaj(w’ eN(w))(aieN,j(w)),

or equivalently, in matrix/vector notation,
0= Vu(VoL(w,On(w))) = VoVuL(w, On) + VEL(w, 05) Vi (O (w)).
Rearranging, we have
Vuln(w) = —(V3L(w,0x)) " VoV L(w,Oy).

Atw = 0 we find, plugging back in the definition of £,

Vuwln(0) = =V (0n5(0) " (Vola(0n(0)) — Vol1(6x5(0)))

= —V201(0n(0) "1V ela(On(0)).

Applying a first-order Taylor series expansion gives us Oy (1) =~ On(0) + V,,0n(0), which yields

Equation 5.13.
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Figure E.1: Behavior of the Stein volume criterion /C, the foreground marginal likelihood with a background volume
correction /C(a), and the foreground marginal nksd IC(b) on toy examples. The plots show the results for 5 randomly
generated datasets (thin lines) and the average over 100 random datasets (bold lines). Here, unlike Figure 5.2, the Pitman-
Yor expression for mp isused, withaw = 0.5,0 = 1,and D = 0.2.

E.2 ASYMPTOTICS OF THE ALTERNATIVE SELECTION CRITERIA

Theorem 5.6.17 shows that the SVC exhibits all four types of consistency: data selection, nested
data selection, model selection, and nested model selection. In this section, we establish the consis-

tency properties of the alternative criteria considered in Section s.3.
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E.2.1 SeETUP

We first review the asymptotics of the standard marginal likelihood, discussed in depth by Dawid 5°

and Hong & Preston "%, for example. Define

= ——Zlogq xX@g), oy = argmmf (0),

JE(0) := —Exp, [log q(X10)], O = arg;nin 1(0).

176

Let m be the dimension of the parameter space. Under suitable regularity conditions '7°, the Laplace

approximation to the marginal likelihood is

(LN)y _ (1N 19 _ep (= NI OR)n(65) (27 m/2
((XE) = [ (X 0)r(0)do e o () (Es)

almost surely, where any ~ by indicates thatan /by — 1as N — 0o. We can rewrite this as

log g(XN)) + N(f(05) — F5(05)

+ N(fN(657) = F05)) + N (65F) (E.6)
KLY (9 )m/2 s
+ m lOgN _ IOg 7['(9* )( 7T) 1/2 8.
2 |det vngL(eiL)| N—o00
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As shown by Dawid 5° and Hong & Preston °®, under regularity conditions,

N(fy (08) = [N (655) = Opy (1)

N(fN(05%) — f(65*)) = Op, (VN)

(E7)
N f(05") = Opy(N)
KL m/2
& 2 1/2 0
| det V2 f<r(6%)|
The NxsD marginal likelihood has a similar decomposition. Following Section 5.6, define
FN®(0) = Nksb(po(2)lla(210)), ON*" == arg min IN(0),
1
fYER() = TNKSD(po(Q?)HC](Q?‘H)), O = arg;nin YR (0).
As shown in Theorem 5.6.9,
exp( — N FNKSD (GNKSD) ) efKSD o1 m/2
ZN = /CXp(—NfRI[KgD(G))W(G)de ~ P( fN ( N )) (1/2 ) (N)
‘ det vngKSD (GEKSD)‘
almost surely as N — oo. As above, we can rewrite this as
log 2x + N (03°0) — FF°(0)
_|_ N(f]];I[KSD (GEKSD) _ fNKSD (GEKSD)) + NfNKSD (HEKSD) (E'S)

(655 (27)™/2 )

m
+ - IOgN — log
2 ( ’ det vngKSD(QEKSD)’1/2 N—oo
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By Theorem 5.6.12, we have

N(fJIRI]KSD (Q%KQD) _ f]IiI]KSD (Q#I:IKSD )) — OPO (1 ) ,

N(fNSP(0P) = fY2(67)) = Op, (VN),

(E-9)
N P2(§3550) = 0 (N),
NKSD) (9.-)™M/2
log m(03) (2m) 75 | = 0m(D),
| det vszKSD (GEKSD)|
and further, when the model is well-specified, such that NxsD(po(z)||g(z|03?)) = 0,
NS (6557) = Fn(83557)) = O (D). (E.10)

For ease of reference, here are the various scores that we consider for model/data selection.

Marginal likelibood of the augmented model (foreground+background):

ax 1) = [ [axE10) g X8, 6m)m(0)ms(6s)dodos.

Foreground marginal NKSD, background volume correction (a.k.a. the SVC):

k= (2)™" [ exp(— Xsmiooterlateslo) m(o)as.
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Foreground marginal likelihood, background volume correction:

mp/2 )

FOVEgVO%}’ld mﬂ}"gl'ﬂﬂ[ NKSD:

KO s= [[exp (~mw () la(o10) ) w(0)ao.

Foreground marginal KL, background volume correction.:

T mp/2
k0= (32) [ ew (Nl la(ar10)) w(0)ao.

Foreground NKSD, background volume correction:

27\ "8 /2 L\ —
K = (]\7;) exp (—Tmein NKSD(pO(x;)Hq(xfw))) .

Foreground NKSD, foreground and background volume correction (a.k.a. BIC for SVC)

o\ (mFr+mz)/2 N
BIC .__ (47 — Z_ min NKSD
Ko = (N) exp( T melnNKSD(po(a:]:)Hq(x]:\G))).
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E.2.2 DATA SELECTION

Assume mp; = o(N/log N) for j € {1,2}. By Equations E.6 and E.7,

1 ’C(a) P KL KL
185 T Exnl= g )] ~ B [ loga(Xn 612 (E.11)

= xku(po(z7,)l4(27,1035)) + Hr, — ki(po(er)|lg(27105%)) — Hr

50 KC(®) does not satisfy data selection consistency. The SVC satisfies data selection consistency by

Theorem 5.6.17 (part 1). We show that the other scores also satisfy data selection consistency. Since

K®) = (27 /N)~"8/2)C where K is the SVC, by Theorem 5.6.17 (part 1),

T L 1
N 10g@ o pNksD(po(z7,)|a(2 7, |055°7)) — nksp(po(em)lla(zA [017))-
(E.12)
By Equation E.11 and the fact that K(©) = exp(N H7)K®, we have
1 ’C§C) Fo KL KL
N 108 5 voo Kelpo(zr)lla(z7.1025)) — kelpo(zm) (2 101L))- (E.13)
,C2 N—o0

Since K@) = (27 /N)™8/2 exp(— N <P (93F5P)), then by Equation E.o,

1 K(d) P 1 NKSD 1 NKSD
198 8 o SRR lal@nlE) — ks (ot (s )

(E.14)
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Similarly, since KBI¢ = (21 /N)"F/2C(d),

1 KBIC 51 , 1 ,
V198 I 5w P Po(en)llalan 855)) — gvso(po(az)la(az 915))

(E.1s)

These methods therefore satisfy data selection consistency. For the marginal likelihood of the aug-

mented model, suppose mp, and mg, do notdepend on N. Then by Equation E.6,

il Q(X(LN)LFl) Py
N %8 (XM Fy) Nooo

[EXJ-‘2 ~Ppo [_ lOg q<X]:2 ‘95;)] + [EXNPO [_ log Q(XBz ’X}-w ¢§,L*)]
(E.16)

- [EX]-‘l ~Ppo [_ log q(X.Fl |011(,L*)] - [EXNPU [_ IOg q(XB1 ‘X}—l ) (Zﬁll(,L*)H

We can rewrite this in terms of the KL divergence. First note the decomposition,

H= —/po(m) log po(z)dx = —/po(xfj)logpo(:vfj)dx;j —/po(x) logpo(x5j|x;j)dac

for j € {1,2}. Adding and subtracting the entropy H in Equation E.16, and using the fact that the

background model is well-specified,

1 q‘ X(I:N) fl P i
108 T i ke (e ot 052)) + Kool o) o o, 052)

— xu(po(zr)lq(x 7 01,) — xupo(es, 7)) |3(2s, [ 7, 15))

= KkL(po(27,) 427, 1025)) — xi(po(er)lg(x7107))- (E.17)
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E.2.3 NESTED DATA SELECTION

In nested data selection, we are concerned with situations in which Xz, C Xz, and the model
is well-specified over both X7, and X'z,. Assume further that mp, — mp, does not depend on
N. First, consider K4 and KB, Since K& = (27 /N)™5/2 exp(—N fN<(63?)) and by

Theorem 5.6.12, fNP(O3°°) = Op,(1/N), we have

1 ’ng) Py Mp, —Mp,
log N log ]ng) N—00 2 ’ (E.18)
Likewise, since KCBIC = (27 /N)"#/2K4) it follows that
1 o /C]f’IC Py MF, +mp, —mrp —mpg, (E.1o)
log N & KBIC N—oo 2 ' 0

As in Section 5.6.4, it is natural to assume mpg, > mpg, and mz, + mp, > mr, + mp,, in which
case these criteria satisfy nested data selection consistency.

None of K@, K®) and £ are guaranteed to satisfy nested data selection consistency, because
the contribution of background model complexity is negligible or nonexistent. To see this, note that

assuming mp, = o(N/log V'), by Equation E.1 1 we have

1 /Cga) Py
N lOg Kéa) m} H]-‘2 - H]-‘l. (E.ZO)
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Meanwhile, since K) = (27/N)~™8/2C then by Theorem s5.6.17 (part 2),

1 K§b) Py Mp, —MF
log N log ngb) N—soo 2 (B.21)

Since X7, C Xr,, wehavemr, < mz, except perhaps in highly contrived scenarios. If mz, <
m, then Equation E.21 shows that log(K{" /KS™) L% —oco. On the other hand, if mz, =
m,, then by Equations E.8 and E.9, log(K\" /KS™) = Op, (1), so itis not possible to have
log(K{™ /K$”) L2 oo, Therefore, K®) does not satisfy nested data selection consistency.

Since K(©) = eNHF[C() = NHF (27r/N)mB/2q(X§_-1:N)), then by Equations E.6 and E.7,

© N )
1 1 X X
g™ :VN(NZIOgPO( ?)*[E(logpio( fl)))+0PO(N‘”210gN)-

\/ﬁ ,Céc) i=1 po(X Do (X.FQ)

(E.22)

Ifo? := Vp,(logpo(Xx,)/po(Xx,)) is positive and finite, then by the central limit theorem and
Slutsky’s theorem, N=1/21og(K\9 /K{) 25 A7(0, 02). Thus, K randomly selects Fy or F
with equal probability, and therefore, it does not satisfy nested data selection consistency.

For the marginal likelihood of the augmented model, suppose mp, and mp, do not depend
on V. The marginal likelihood achieves nested data selection consistency because the augmented
models are both well-specified and describe the complete data space X’; this guarantees that the

Op,(V/N) terms in the marginal likelihood decomposition cancel. Specifically, po(z) = q(z |
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HKL KL
%2 7 ,%)

Fj) for j € {1,2}, and thus, by Equations E.6 and E.7 applied to the augmented model,

1 lo QN(X(LN)L’Tl) Po Mg, +mp, — My, — Mg,
logN 8 G(XTN|Fy) Nooo 2 ‘

(E.23)

Nested data selection consistency follows assuming mr, + mp, > mz, + mp, as before. This can
be contrasted with Equation E.22, where although both foreground models are well-specified, they

describe different data (X g_-llzN) versus X 5_—12:N)), so the Op, (V/N) terms remain.

E.2.4 MODEL SELECTION

All of the criteria we consider satisfy model selection consistency. To see this, we apply the same
asymptotic analysis as used for data selection in Section E.2.2, under the same conditions on mp,

obtaining

—xL(po(27)la2(w71055)) — xu(po(wr) a1 (zF(07%)),  (E-24)

7108l ol a5 — e @ 0E). ()
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1 ’C(b) P NKSD 1 NKSD
N8 o TR0 e ) = oo )l (2rBE)),
(E.26)
1 IC§C) Po KL KL
N %8 @ o Ko ez 05) — )l 05D, (Ea)
1 ]C(d) P 1 NKSD 1 NKSD
N8 0 o TSP [aa(a7IO8) = qvksp(pote ) (27 057)),
(E.28)

BIC
1 ]Cl Py NKSD

1 1 <sp
Nlog@ oo ksp(po(zF)lla2(z7102577)) — ks (po(z7) g (@ F[017))-

(E-29)

Note that in contrast to the data selection case, KC () satisfies model selection consistency since the
entropy terms H z; cancel due to the fact that F is fixed. We can think of this as a consequence of
the KL divergence’s subsystem independence; if we are just interested in modeling a fixed foreground

space, there is no problem considering the foreground marginal likelihood alone>#+35*'%,
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E.2.s NESTED MODEL SELECTION

In nested model selection, since both models are well-specified, we have ¢; (x ]:\9;(;)

qj(zF|075) for j € {1,2}. Thus, the estimated divergences cancel:

NKS

)) = NksD (po(v7)[lg2(z 7|05 5)),

Zlogql X( Zlogqg D)

=1

NKSD(po(a7) g1 (2710}

KL(po(z 7)1 (z7|07%)) = KL(po(zF)llq2(zF|05)))-

= po(zF) =

Using this along with Equations E.6-E.10, under the same conditions on m as in Section E.2..2,

1 o QXTI FY  p mpa—mzr
log N 8 Go( XN F) Novoo 2 ’

1 o ’C(a) P, MF2—MF]
log N gK(a) N—oo 2
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@

log ﬁ = Op, (1), (E-34)
2
1 K¥C  py  mrpa—mrs
log - ° : : E.
log N 8 ICSIC N—oo 2 ’ (E:35)

where we are using the assumption that the background model is the same in the two augmented
models g1 and g2 and somp 1 = mpg 2. Only K fails to satisfy nested model selection consis-

tency.

E.3 Proors

E.3.1 Proors oF NKSD PROPERTIES

Proof of Proposition 5.6.3. By assumption, the kernel is bounded, say |k(x,y)| < B, and

Sp, 8q € L1 (P). Thus, by the Cauchy—-Schwarz inequality,

[ [ s0(0) = @) (540) = sp(w) kG (el dady
X Jx

< B(Julsg(a) — sp(@)p(@)de)” < oc.

Since the kernel is integrally strictly positive definite and |k(x,y)| < B,

0§AAM%WMWMM@SB<w. (E36)
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Thus, the NksD is finite. Equation s5.30 follows from Theorem 3.6 of Liu et al. *5%. O

Proof of Proposition 5.6.4. The denominator of the NKsD is positive since & is integrally strictly

positive definite. Defining §(x) = s4(x) — sp(z), the numerator of the NKsD is

d
[, 5 Sk ptpdedy =3 [ [ S8k p@p)dd. 3

If §;(x)p(x) = 0 almost everywhere with respect to Lebesgue measure on X, then the ith term on
the right-hand side is zero. Meanwhile, if 6; () p(x) is not a.e. zero, then [, |;(z)|p(x)dx > 0,
and hence, the ith term is positive since k is integrally strictly positive definite and §; € L*(P) by
assumption. Hence, the NKsD is nonnegative, and equals zero if and only if 6 (z)p(2) = 0 almost
everywhere.

Suppose 6(z)p(x) = 0 almost everywhere. Since p(x) > 0 on X by assumption, this implies
sp(x) = sq(x)ae,andin fact, sp(z) = s4(z)forallz € X by continuity. Since X is open
and connected, then by the gradient theorem (that is, the fundamental theorem of calculus for line
integrals), p(xz) o ¢(x),and hence, p(x) = ¢(x) on X. Conversely, if p(z) = ¢(z) almost

everywhere, then §(z)p(z) = 0 almost everywhere. O

Proof of Proposition 5.6.6. Define

51($1) = vasl IOgQ(v’U) - v:ﬂ 10810(55) = vm 10gQ(9€1) - vm logp(fﬂl)

52(1'2) = V:rg IOgQ(fU) - vmz logp(x) = vmg 10g Q(xQ) - vmg 10gp(952)-
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Let X, Y ~ p(x) independently. Note that E[k; (X7, Y1)] > 0and E[ka(X2,Y2)] > Osince k;

and ko are integrally strictly positive definite by assumption. Therefore,

E[(Valogg(X) — Vi logp(X)) " (Vi logq(Y) — Vi logp(Y))k(X, V)]
Elk(X,Y)]

E[61(X1) T61(Y1)k1(X1, Y1)|E[k2(X2,Y2)]  E[62(X2) T 62(Ya)ka(X2, Y2)|E[k1 (X1, Y1)]

Nksp(p(z)|lg(z)) =

(
E[k1 (X1, Y1)]E[k2(X2,Y2)] E[k1(X1, Y1)]E[k2(X2, Y2)]

)
_ B0 (X0) "o (YD)k1 (X1, Y1)] | E[62(X2) T2 (Ya)ka (X2, Y2)]
E[k1(X1,Y1)] E[k2(X2,Y2)]

= Nksp(p(21)]|g(21)) + NksD(p(z2)[g(22)).

O
The following modified version applies to the estimator NksD(p||q) (Equation s.s).
Proposition E.3.1.
NxsD(p()|lg(x)) = NKsD(p(21)|la(71)) + NKSD(p(72)|lg(x2)) (E-38)

where

) -ul(X(i),X(j))kQ(X(i),X(j))
NRSB(p(an )|l q(w1)) =B L S
Ei;ﬁjkl(Xl » X1 >k2(X2 , Xg )

ur(@r,y1) =sq(@1)  sq(y)ki(z1,91) + sq(21) TV ki (@1, 91) + 84 (y1) T Vayka (a1, 91)
+ trace(Vy, V; k1(z1,91))

sq(x1) =V, logq(z1),
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and vice versa for NKsD(p(x2)||q(z2)) with the roles of 1 and 2 swapped.

Proof. Recall the definition of NksD(p(z)||q()) in Equation s.s5. Note that V, k(z,y) =

ka(x2,y2) Ve ki(z1,y1) and Vy, logq(z) = V4, log g(21). Examining u(z, y) term-by-term,

Valogq(z) " Vyloga(y)k(z,y) =[Va, loga(e1) " Vy, loga(yr)kr (21, y1) ka2, 12)
+ [Va, logg(2) "'V, log a(y2)ka (2, y2) |k (21, 1),
Vi logq(z) T Vyk(z,y) =[Va, logq(z1) " Vy k1 (21, 91)]ka2(22, y2)
+ [Va, log q(wa) ' Vi, ka(wa, y2) k1 (21, 91),
Vek(z,y) Vylogq(y) =[Va, ki(21,11) " Vy, logq(y1)]ka(za, y2),
+ [V, ko (w2, y2) TV, log g(ya)k1 (1,51
trace(Vo V, k(z,y)) = trace(Va, Vy k1 (21, y1)) k2 (22, y2),

+ trace(Vy, V; ko(z2,y2))k1(x1,91)-

Thus, defining u; and ug as in Proposition E.3.1, we have

uw(x,y) = ui(r1, y1)k2(r2, y2) + ua(x2, y2) k1 (21, Y1),

k(z,y) = ki(z1,y1)k2(z2,y2).

The result follows.
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To interpret Proposition E.3.1, note that

Exy~plun (X1, Y1)ka(Xo, o) Ex, vimp(ar) (w1 (X1, Y1)]
Exy~plk1 (X1, Y1)ka(X2,Y2)]  Ex, yiep(a) [F1(X1,Y1)]

= Nksp(p(71)]g(1)),

so NKsSD(p(z1)]|g(z1)) is an estimator of NksD(p(z1)]|¢(21)), and likewise for NKsD(p(x2)||g(x2)).

E.3.2 PROOF OF THEOREMS §.6.9 AND 5.6.11

Our proofs in this section build on the proof of Theorem 3 of Barp etal. 7.

Proposition E.3.2. Under the assumptions of Theorem 5.6.9, for any compact convex C C ©,

sup |y (0) — f(6)] = 0. (E.39)
beC

Proof. First, we establish almost sure convergence for the denominator of f (6). Since £ is as-
sumed to be bounded and to have bounded derivatives up to order two, we can choose B < 00

such that B > |k| + ||V, k|| + HVIV;]CH In particular, the expected value of the kernel is finite:

[ [ Ik p) Poda) Pofay) < B < o, (E.40)
X Jx

By the strong law of large numbers for U-statistics (Theorem 5.4A of Serfling*3"),

N(Nl_l)ZMX“%X(”)ﬁ /X /X k(z, y) Po(dz) Po(dy). (E.41)

i#]
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Note that the limit is positive since k(x,y) > 0forallz,y € X. For the numerator, we establish
bounds on up and Vyuy. Let C' C O be compact and convex. By Equation 5.5, forall € C'and

alzx,y € X,

Jug (2, y)| < |sq5(2) "5y ()k(@, y)| + |5g5(2) " Vyk (2, y)]
+ 159y () ' Vak(z, )| + | trace(VoV k(z,y))]
< N[5q0 (@) [[1Sq0 (WIIB + [sqe (2)| B + [|Sq, (y)[| B + Bd (E.42)
< go,c(x)g0,c(y)B + go,c(x) B + go,c(y)B + Bd

= hO,C(x7 y)

Similarly, forall @ € C'andallz,y € X,

IVoue(z, )l < [Vo(sq(2) "0 (), y)ll + Vo (s, (2) T Vyki(z, )]

+ IVo (3¢, () " Vak(z,y))|| + [ Vo trace(Vo V) k(z, 1))
(E.43)

< g0.c(x)g1,0(y)B + go,c(y)91,c(x) B+ g1,0(x) B + g1,c(y) B

= hl,C(xv y)

Note that hg ¢ and hy ¢ are continuous and belong to L (Py x Pp).
Let 51 € Sy C -+ C X beasequence of compact sets such that U3;_; S = X. Note that
this implies U3;_; Sy X Sy = & x X Suppose for the moment that, for each M, the following

collections of functions are equicontinuous on C: (A) (6 +— wug(x,y) : =,y € Spr)and(B)
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(0 — [ug(z,y)Po(dy) : x € Spr). Assuming this, Theorem 1 of Yeo & Johnson *¢ shows that

1 ‘ .
. @ xWy _ as._, E
P | T %:jue(X LX) /X /X ug(z,y) Po(dz) Po(dy)| =0, (E.44)

and that 0 — [ [ ug(z,y)Po(dx)Py(dy) is continuous. (Note that although Yeo & Johnson *°
assume X = R, their proof goes through without further modification for any nonempty X C IRd.)
Combining Equations E.41 and E.44, we have

SUPgec ‘N(]\}'—l) > itj ug(X®, X0)) — I Juo(z, y)Po(dx) Po(dy)| as.

N iy (X0, X)) Nooo

0.

Thus, it follows that supy_ [ fn(0) — f(0)] — 0a.s. by Equations E.41 and E.42. To complete the
proof, we must show that (A) and (B) are equicontinuous on C'.
(A) Since 6 — ug(x,y) is differentiable on C, then by the mean value theorem, we have that for

allfy,05 € Candallz,y € Sy,

[ug, (2, y) — ug, (2, y)| < [[Volg_guo(z, y)[|[161 — 02|
< hio(z,y)[101 — b2

< sup hae(@,y))l6n - 62 < 0o
T, YESN

where @ = ~0; + (1 — 7)6 for somey € [0, 1]. Here, the second inequality holds since fecC

by the convexity of C', and the supremum is finite because a continuous function on a compact set
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attains its maximum. Therefore, (6 — up(z,y) : ,y € Sir) is equicontinuous on C.

(B) To see that (0 — [ ug(x,y)Po(dy) : © € Sar) is equicontinuous on C, first note that

[ uotw )l Potds) < [ hocte,n)Potdy) < .

Further, due to Equations E.42 and E.43, we can apply the Leibniz integral rule”® Theorem 2.27
and find that Vg [ ug(z,y) Po(dy) exists and is equal to [ Voug(x, y) Po(dy). Now we apply
the mean value theorem and the same reasoning as before to find that forall 61,60 € C andall

.%'GSM,

[, (2, 9) Po(dy) — Jua, (w,9) Po(dy)| < |[Volos Juo(z,y) Po(dy) 161 — 2]
< (61 — 6] / 1Volp_g 1oz, )| Pody)

< |01 = 62 sup [ hic(x,y)Po(dy) < oo
TESN

where 0 = 70, +(1—7)0; for some y € [0, 1]. The supremum is finite since  — [ hy o (x, y) Po(dy)
is continuous, which can easily be seen by plugging in the definition of h1 ¢. Therefore, (6

Juo(z,y)Po(dy) : & € Sar) is equicontinuous on C. O

Proposition E.3.3. Under the assumptions of Theorem 5.6.9, (f§f : N € N) is uniformly bounded

on E.

Proof. First,forany z,y € X,if wedefine g(0) = s4,(z)and h(0) = s4,(y) thenuy =

(g"h)k + g"(Vyk) + hT(Vk) + tracc(VxV;—k). By differentiating, applying Minkowski’s

493



inequality to the resulting sum of tensors, and applying the Cauchy-Schwarz inequality to each

term, we have

IVgua(. »)| < IV2gllI1RlIk + 3IV2g [V Allk + 3V gl V2R[E + l|gll| V*R] &

+ Vgl Vykll + V2RIV okl

Using the symmetry of the kernel to combine like terms, this yields that

H ZV%U@(X(i), X(j)) H
i#]

< 3 (20 VE500 (X550 (XD)IB + 6] V554, (X D) |[[[ Vs, (XD B + 21| Visg, (X D) B)
i#]
where B < oosuchthat B > |k| + ||V k|| + ||V, V, k|. Since fx(0) = 0 when N = 1by

definition, we can assume without loss of generality that N > 2, so ﬁ = % (1+ ﬁ) < 2/N.
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Since each term is non-negative, we can add in the ¢ = j terms,

H]V(]\[l_l);vgue(X(i)jX(j))H

5> (20198520 (X D)0 (X DY + 61 V550, (X D) Va4 (X D) | + 2] Vi, (X D))

1B (5 2 Vs, (X) 0 (x z”s% x9)]) (E45)
+12B( 3 IVsas (xX) ||)( Zuvasqg )
+4B(5 X 1985, (X)),

By assumption, {4 32, || V354, (X®)|| : N € N,0 € E} is bounded with probability 1, and
similarly for { & 3=, |V sg, (X X@)|: N € N,0 € E}. We show the same for &3 545 (X )|

and & 3, | Vsq, (X @)||. By Equation 5.40, we have

[ sup 0 (@) Po(de) < [ g0 ) Po(de) < o

0cE

Hence, by Theorem 1.3.3 of Ghosh & Ramamoorthi ®, & 37, ||sq, (X ))|| converges uniformly
on E, almost surely. In particular, 4 3; ||, (X )| is uniformly bounded on E, almost surely.
The same argument holds for 3 3, || Vs, (X @)|| using g j(x). Therefore, by Equation E.4s,
it follows that || xry—gy 2y Viue(X®), X19) | is uniformly bounded on E. Since & is positive
by assumption, xry—qy izj K(X ), X)) > Oforall N > 2and by Equations E.40 and E.41,

m Ditj k(X x0) converges a.s. to a finite quantity greater than o. We conclude that
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almost surely,
Hfm(e)H . l Hm Z@gj VEUQ(X(i)’ X(j))H
T >y kXD, X))

1
NN=T)
is uniformly bounded on E, for N € {2,3,...}. Recall thatfor N = 1, fx(#) = 0 by definition.

Therefore, almost surely, (f3/ : N € N) is uniformly bounded on E. O

Proof of Theorem §.6.9. We show that the conditions of Theorem 3.2 of Miller 17 are met, from
which the conclusions of this theorem follow immediately.

By Condition 5.6.10 and Equation 5.35, fn has continuous third-order partial derivatives on
©. Let I be the set from Condition 5.6.10. With probability 1, fy — f uniformly on F (by
Proposition E.3.2 with C' = E) and (%) is uniformly bounded on E (by Proposition E.3.3). Note
that f is finite on © by Proposition 5.6.3. Thus, by Theorem 3.4 of Miller '7°, f” and f” exist on E
and fy; — f” uniformly on E with probability 1. Since 0 is a minimizer of f and 0, € E, we
know that f/(6,) = 0and f”(0,) is positive semidefinite; thus, f”(6,) is positive definite since it is
invertible by assumption.

Case (a): Now, consider the case where © is compact. Then almost surely, fx — f uniformly on
© by Proposition E.3.2 with C' = ©. Since 0, is a unique minimizer of f, we have f(0) > f(6.)
forall@ € © \ {6.}. Let H C E bean open setsuch that, € Hand H C E. We show that
liminfy infpc g\ 7 fv(0) > f(6x). Since © \ H is compact,

inf_ f(0) — f(0x) =:€e>0.
9cO\H
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By uniform convergence, with probability 1, there exists N such that forall N' > N, sup, ¢ | fn+(6)—

f(0)| < €/2,and thus,

inf _ fn/(0) > inf_ f(0) —€/2 = f(0y) +€/2.
0O\ H 0cO\H

Hence, lim infy infyc g g7 fn(0) > f(6s) almost surely. Applying Theorem 3.2 of Miller '7¢, the
conclusion of the theorem follows. Note that f3(0n) — f”(04) as.since Oy — 0, and f; — f”
uniformly on F.

Case (b): Alternatively, consider the case where © is open and fy is convex on ©. Forall§ € ©,
with probability 1, fx(6) — f(8) (by Proposition E.3.2 with C' = {6}). However, we need to
show that with probability 1, forall @ € O, fx(0) — f(6). We follow the argument in the proof
of Theorem 6.3 of Miller '7°. Let W be a countable dense subset of ©. Since W is countable, with
probability 1, foralld € W, fx(0) — f(0). Since fy is convex, then with probability 1, for
all§ € O, thelimit f(A) := limy fn(6) exists and is finite, and f is convex (Theorem 10.8 of
Rockafellar *'9). Since fy is convex and f(#) is finite, f(8) is also convex. Since f and f are convex,
they are also continuous (Theorem 10.1 of Rockafellar *'?). Continuous functions that agree on
a dense subset of points must be equal. Thus, with probability 1, forall @ € ©, fx(0) — f(6).

176

Applying Theorem 3.2 of Miller '7°, the conclusion of the theorem follows. O

Proof of Theorem 5.6.x1. Our proof builds on Appendix D.3 of Barp et al. '7, which establishes
a central limit theorem for the ks when the model is an exponential family. The outline of the

proof is as follows. First, we establish bounds on s, and its derivatives, using the assumed bounds
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on Vt(x) and V, log A(x). Second, we establish that f”(6) is positive definite and independent
of §, and that f};(0) converges to it almost surely; from this, we conclude that f”(6..) is invert-
ible and fx(€) is convex. These results rely on the convergence properties of U-statistics and on
Sylvester’s criterion.

The assumption that log A(z) is continuously differentiable on X" implies that A(x) > 0 for

x € X. Since go(x) = \(z) exp(0 " t(x) — K(0)), we have

500 (1) = Vs log (@) + (V,t(2)) 76
Vosg (@) = (Vot(z)T € RO

Vgsqe (z)=0¢€ Raxmxm

where (Vt(z));; = 0t;/0x;. Thus, s¢, () has continuous third-order partial derivatives with
respect to 6, and Equations 5.41 and 5.42 are trivially satisfied. Equation 5.40 holds for all compact

C C Osince |V, log A\(x)|| and ||V zt(x)|| are continuous functions in L (Py) and

540 ()] = IV log A(@) + (Vut(2)) 6] < [|Vlog A(@)|| + [|Vat(2) [[|6]],
IVosqy ()| = [[Vat(z)]-
Hence, Condition 5.6.10 holds. By Equation 5.36 and Proposition 5.6.3,

1

£6) = pxsoio(@)la(el0) = 7 [ [ wolep)Poldn)Poldy)  (40)

498



where K := [ [ k(x,y)Py(dz)Py(dy). By Equation E.3,
U@(‘Tvy) = 0TB2(:C7y)0+Bl(xay)T0+BO(x7y) (E'47)

where

Bs(w,y) = (Vat(2))(Vyt(y) k2, y),
Bi(z,y) = (Vyt(y)) (Ve log AM(z))k(z, y) + (Vat(2))(Vy log A(y)) k(z, y)
+ (Vyt () (Vak(z,9)) + (Vo (2)) (Vyk(z, ),
Bo(,y) = (Valog A(x)) " (Vy log A(y)k(z,y) + (VylogA(y)) " (Vak(z,y))

+ (Ve log () (Vyk(z, ) + trace(VxV;—k(x, Y)).

By Condition 5.6.7, |[k(z,y)|, || Vok(x,y)||, and ”VIV;—IC(I, y)|| are bounded by a constant, say,
B < oo. Thus, it is straightforward to check that By, By, and By belong to LY (Py x Py)since
[Vat(z)| and ||V log A(x) | are in L' (Py). Further, 0 < K < cosince 0 < k(z,y) < B < oo

by assumption. Thus,

£(0) = %// (07 Ba(2,)0 + Bi(2,y) 0+ Bo(x, ) Po(d) Po(dy) € R.

Since k is symmetric, By (7,y)| = Ba(y,z). Hence, V(0 Ba(x,y)0) = (Ba(z,y) +
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Bs(y, x))6, so by Fubini’s theorem,

50 = gz [ [ @200 + Buta,) Podn) Pl € R™

£(6) = % / / By(x, ) Po(dz) Po(dy) € R™™.

Here, differentiating under the integral sign is justified simply by linearity of the expectation. Note
that f”(6) is a symmetric matrix since Ba(z,y) T = Ba(y, x). Next, to show f”(6) is positive def-
inite, letv € R™ \ {0}. By assumption, the rows of V() are linearly independent with positive
probability under Py. Thus, thereisaset E C X such that Py(E) > 0and (Vt(z)) Tv # 0 for
allz € E. Define g(x) = (V,t(x)) "vpo(z) € RY Then [y |gi(x)|dz > 0 for at least one i, and

Sy lgi(2)|dz < ||v|| [y | Vat(x)||po(z)dz < oo foralli. Thus,

vl ()0 = T2K//9(fv)Tg(y) (z,y)dzdy = 72//91 2)gi(y)k(z, y)dzdy >0

since k is integrally strictly positive definite. Therefore, f”(6) is positive definite. In particular,
1"(6.) is invertible.

Finally, we show that with probability 1, for all N sufficiently large, f (€) is convex. By Equa-
tions 5.35 and E.47,

13525 [0T Bo(X®, XD 4+ B (XD, XD)TH + By(XD, X))

fn(0) == > K(X@, X 0))
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Thus,

B zz#j By(X®, x0))

v (0) = . .
T iz k(X xX0))

By the strong law of large numbers for U-statistics (Theorem 544 of Serfling*'), we have f%(6) —
1" (0) almost surely, since [ [ || B2(x,y)||Po(dx)Po(dy) < coand0 < K < occ. Forasym-
metric matrix A, let A, (A) denote the smallest eigenvalue. Since A, (A) is a continuous function of
the entries of A, we have A (f4(6)) = Au(f"(8)) as.as N — oo. Thus, with probability 1, for all
N sufficiently large, £ () is positive definite, and hence, fi is convex. Further, for such N, since

[ is a quadratic function with positive definite Hessian, we have My := infyco fn () > —o0

and zy = [g exp(—N fn(0))7(6)dO < exp(—NMpy) < oc. O

E.3.3 PROOF OF THEOREM 5.6.12

To establish Theorem 5.6.12, we use the properties of U-statistics described in Chapter 5.5 of Ser-
fling3*. When the data distribution matches the model distribution, NKSD converges more quickly
than when it does not match; this same property was used by Liu et al. ** to develop a goodness-of-

fit test based on the xsD.

Proof. We first study the asymptotics of f};(6s). Denoting V| 9—p, U0 by Vgug, for brevity,

1 7 j
fr0,) — LI Xz Vouo. (X, X))

T yov—n gy H(XO, X0))
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The denominator converges a.s. to a finite positive constant, as in the proof of Proposition E.3.2. It
is straightforward to verify that Ex.y~p, [[|Voug, (X,Y)||*] < oo since sq,, and Vgl,_, s, are

in L?(Py) by assumption. By Theorems s.5.1A and 5.5.2 of Serfling >3,

> Voup. (X, XD) — Exyop,[Vouo, (X, Y)] = Op, (N7/2).

1
N(N =1) &

Further, by the Leibniz integral rule”® Theorem 2.27,
Ex,y~r[Vous, (X, Y)] = Vo|y_p Exymr[ug(X,Y)] = TEx yp [K(X,Y)]f'(6,) = 0,
using the fact that f’(6.) = 0 since 0, is a minimizer of f. Thus,
i (0.) = Op,(N~Y/2). (E.48)

Next, we examine the convergence of 0 to 6. For all N sufficiently large, f7 (6n) = 0by

Theorem 5.6.9 (part 1), and thus, by Taylor’s theorem,

0= fy(On) = fn(0:) + [N (OF) (On — 0s),

where 07, is on the line between 6y and 6. As in the proof of Theorem s5.6.9, 3, — f” uniformly
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on the set F defined in Condition 5.6.10. Thus, since f}; is continuous on F and 9}} — 0.,

N (0% <= 1"(6.). (E.49)

In particular, f};(67) is invertible for all N sufficiently large, since f”(6.,.) is invertible by assump-

tion. Hence,

On — 0u = —fN(08) " v (6s), (E.s0)

and therefore, by Equation E.48,
108 — 6.l < [LF%(63) M Il i (8] = Oy (N72). (E.s1)
This result matches Theorem 4 in Barp et al. 7. By Taylor’s theorem,

F(0.) = v (On) = S (Ox)T (0 — 0x) + 50, — 0x)T SR(OK7)(6. — )

1
= 56— 03) T FR (OO, — On)

for all N sufficiently large, where 97\}"_ is on the line between 0y and 0. Therefore, using the same

reasoning as for Equations E.49 and E.51,

[fn(0:) — fn(On)] < %Hf;@(e;ﬂune* —On|? = Op, (N7H). (Es2)
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This proves the first part of the theorem (Equation 5.43). Next, consider fn (6) — f(6s). Recall

that

n(0,) = 1 Ny L e, (X0, X))
T Nov=p Sin KX O, X))

It is straightforward to verify that Ex yp, [Jug. (X,Y)|?] < oo since sq,_isin L?(Py). By Theo-

rems 5.5.1A and 5.5.2 of Serfling >3,

> g (XD, X)) — Ex iy fug, (X,Y)] = Op,(N71/2),

1
N(N-T1) &

Similarly, since k is bounded,

1 ; ) B
N(N—l);k(X( ) XD) — Exyop [k(X,Y)] = Op,(N1/2).

It is straightforward to check that the second part of the theorem (Equation 5.44) follows.
For the third part, our argument follows that of the proof of Theorem 4.1 of Liu et al. **. Sup-
pose NKsD(po(x)||¢(x]6x)) = 0, and note that Py(z) = Qy, (z) by Proposition 5.6.4. Given a

differentiable function g : R — R%, define V] g() := Y%, 8gi(x)/0z;. Then

ey . )] = 30 (0) [ ((Tamo()k(2,9) + Do) (Vak(z, 1))
+ [ ((Fa0(@) TV, k() + po(a) (VI Vyh(z, ) ) do

= 50@)" | Velpo(@lk(z,p)dz + [ VIV, (o(@)k(z,)de. (Es3)
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The first term on the right-hand side of Equation E.s3 is zero since, by assumption, k is in the Stein
class of P (Condition 5.6.2). The second term is also zero since, by the Leibniz integral rule”® The-
orem 2.27, [ V;Vm (po(z)k(z,y))dx = VyT J Va(po(z)k(x,y))dz, which again equals zero
because k is in the Stein class of . Therefore, Ex~p,[ug, (X,y)] = Oforally € X, and in par-
ticular, the variance of this expression is also zero: Vy . p)[Ex~p,[ug, (X, Y)]] = 0. By Theorem

5.5.2 of Serfling***, it follows that

1

NV 1) & o (XX = 0n (N (Es59

i

since Ex y~p,[ug, (X,Y)] = 0. Although Serfling *** requires Vx y~p, [ug, (X,Y)] > 0, Equa-
tion E.s 4 holds trivially if Vx y . p, [ug, (X, Y)] = 0. As before, since the denominator of fx (6s)
converges a.s. to a finite positive constant, we have that fx(6.) = Op,(N~1). Equation 5.45

follows since f(6.) = 0 when NksD(po(x)||q(x|0x)) = 0. O

E.3.4 PrRoOOF OF THEOREM 5.6.17

Proof. Applying Theorem 5.6.9 (part 3) to each foreground model j € {1, 2}, we have

1 a.s.
logzjn + N fjn(0jn) —logm(0;.) + log | det f]{'(ej,*ﬂl/z — omg; jlog(2n/N) —— 0.

2 N—oo

505



Since Kj n = (2m/N)"5i /2zj7N, this implies

1
logiC;n + Nfin(Oin) — =

2(m]:j,j + mBj) log(27r/N) +C; N:L(xf 0

where C} is a constant that does not depend on N. Hence,

K
log K:g + N(fin(01,n) — fon(02,n))

1 a.s.
- §(m]:1’1 +mp, —mr,2 — m52)log(27r/N) +C1 —Cy —— 0. (E.ss)
N—o00

By Theorem 5.6.12, f; v (6, N) Lo, [(0j.+), and therefore,

’CI,N Py
N 108 ’CZ,N + fl(‘gl,*) f2(92,*) m 0.

Plugging in the definition of f; (Equation s5.36), this proves part 1 of the theorem.
For part 2, suppose f1(01,+) = f2(02,+«) = 0and mp, — mp, does not depend on N. Then by

Theorem 5.6.12, f; N (0;5) = Op,(N1). Using this in Equation E.s’5, we have

1 Kin 1 Py
1 Ny 2 — — L. E.56
log N %8 KCy + 2(mf1,1 HmE, — MEy —mE,) (E.56)

For part 3, suppose f1(01+) = fa(f2.)andmp, = cp,v/N. Then by Theorem s5.6.12,
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fin(O;n) = £i(0;.4) + Op,(N~1/2). Using this in Equation E.s’5, we have

1 Kl N ]. Po
| — + —(cp, —cp,) —— 0. E.
/N logN o8 ICQ,N 2( B1 32) Nooo (E-57)
0

E.4 ADDITIONAL PROBABILISTIC PCA DETAILS

E.4.1  OrrtiMizing THE NKSD

Computing the Laplace or BIC approximation to the SVC requires finding the minimizer of
NKsD(po(z)|lq(z]0)) with respect to 6. In this section, we describe how components of the NxsD
can be pre-computed to speed up this optimization process. The generative model used for pPCA

can be rewritten using the properties of multivariate normal distributions as

X ~N(O,HH" 4+ vly). (E.58)

The Stein score function for the pPCA model is then

540(2) = Vi logg(z|H,v) = —(HH" +vly) 'a.
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Define the matrices

Kij = (i # j) k(X®, X)),

N
: Ok
Ky =Y (i # j) 8—()(( ), X0,

i=1 Lb

where [(E) is the indicator function, which equals 1 when E is true and is o otherwise. Define the

scalars

B N
K=Y Kjj,
ij=1
N d
Bom 30 Y16 #) 5o (x0,x0)
- g Oxp Oy, ’ '

-
&
Il
=
S8
Il
—

Letting X € RYV*? be the data matrix, the NKSD can be written as

1

NksD (po(z) || (x| H, v)) = Z [trace( X "KX(HH" +vl) Y (HH" +vI;)™)

— 2 trace(X 'K(HH" +vly)™") + K],

where we have used the fact that the kernel is symmetric. The terms X TKX and X T K are the
only ones that include sums over the entire dataset; these can be pre-computed, before optimizing

the parameters H and v.
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To compute the matrix inversion (HH ' + vI;) ™" we follow the strategy of Minka 72,

(HH" + o)t —v Uy = (HH" +vl) Y1y —v Y HH" +vly))
= —(HH" +vl) 'HH v !

= —(U(L —vl)U" +0ly) 'U(L — vI)U v~ L.
Thus, applying the Woodbury matrix identity and using [qU = U = Ul I}, = U] UTU,
(HH +vly) ™ v 'y = —[v ' Iy = v 2U((L = vl) " + 0 ) UT UL = vI)U o}
= U™ — v 2((L—v) + o Y)Y YL —vl)U v !

= UL YL —vl)UTv !

=UL—ovt)U'.

Therefore,

(HH" +0l) ' =U@L = o t)U " + 07,
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Computing L1 is trivial since the matrix is diagonal. Returning to the NksD we have

NksD(po(2)[lq(x|U, L, v))
1
== [trace (XTKX[UL™ =o' R)2UT + 207 UL =0 ) U T +0721))

— 2 trace (XTK[U(L_l — U_llk)UT + U_lld]) + K

1
=% [trace (UTXTKXU(L™! —v711,)?)
+trace (UT[20 ' X TKX —2XTKJU(L™' — v 'I))

+ v~ ! trace (U_lXTKX — 2XTK) + K|.
We optimized U, L and v using the trust region method implemented in pymanopt 262

E.4.2 DaTta sELECTION WITH THE SVC

We used the approximate optimum technique in Section s.2.3 to estimate the SVC for different
foreground subspaces. Following Section E.1.2, we used the factored IMQ kernel with 3 = —0.5
andc = 1.

We focused on foreground subspaces that correspond to subsets of the data dimensions. More
specifically, recall that Xz = VT X then, we impose the restriction that each column of V is a
standard basis vector e(®) € R% where elgb) = land e,(f) = Oforb’ # b. A subspace Xr is then
characterized by the set of included dimensions Sz C {1, ..., d}. The marginal distribution of the

model ¢(z £|H, v) is now straightforward to compute based on Equation E.s8 and the properties
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of multivariate normals:

X ~N(0,Hs, Hg, +vljs,))

where Hg is the submatrix consisting of rows of H indexed by S, and | S| is the size of the set
Sr.

In the projected model, some of the parameters are nuisance variables with no contribution to
the likelihood. Since the dimension of ad x k matrix on the Stiefel manifold is dk — k(k + 1)/2,
the total dimension of the foreground model (including contributions from parameters U, L and v)
ismr = |Srlk —k(k+1)/2+ k+ 1, assuming | S| > k.

Code is available at https://github.com/EWeinstein/data-selection.

E.4.3 CALIBRATION

The T" hyperparameter was calibrated as in Section E.1.1. In detail, we sampled 10 independent true
parameter values from the prior, with @« = 1 and d = 6. (We used a slightly less disperse prior than
during inference, where we set « = 0.1, to avoid numerical instabilities in the T estimate.) Then,
for each of the true parameter values, we simulated N = 2000 datapoints. For each simulated
true parameter value, we tracked the trend in the T estimator (Equation E.1) with increasing N

(Figure E.2). The median estimated 7" value at N = 2000 was 0.052 across the 10 runs.
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Figure E.2: Estimated 7" for increasing number of data samples, for 10 independent parameter samples from the prior.
The medianvalueat N = 2000is 7" = 0.052.

E.4.4 POLYA TREE MODEL

In this section, we describe the Pélya tree model7*'7"*5! following the construction of Berger &
Guglielmi®'. Let €, := (€1, ..., €,) denote a vector of length n, where each €; € {0,1}. Eache,

vector indexes an interval in R, given by
Be, = (F1 (S /%), P (S0, /2 +1/27)],

where F~ 1 is the inverse c.d.f. of some probability distribution. Foralln € {0,1,2,...} and all
€n € {0,117, let

Y:En ~ Beta(§§n07 §§n1)7
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where the £’s are hyperparameters. We say that a random variable X € Ris distributed according to

a Pélya tree model if

n
P(X € Be,) = [[(Ve,_)"9=0(1 — v, _ )&=,
7j=1

where [(£) is the indicator function, which equals 1 when E is true and is o otherwise. We follow

Berger & Guglielmi*' and use

W(Be,) = F(F7H (S, /2 +1/2%) = F(F7H (S, /27)).

LT /Y 1/ )Y
p(gn) o 77( : N(Bgn) > 7
_ /"L(B_Eno)
€en0 = plen) (Bot)

where F'and f are the c.d.f. and p.d.f. respectively of some probability distribution, and > Oisa

scale hyperparameter. We denote this complete model as X ~ PolyaTree(F), F, n).

E.4.5 DATASETS AND PREPROCESSING

We downloaded two publicly available datasets. The first dataset was taken from human peripheral

blood mononuclear cells (PBMCs):

https://support.l0xgenomics.com/single-cell-gene-expression/datasets/1.1.

0/pbmc3k. This is a standard dataset used in the tutorials for Seurat**” and Scanpy*?”, for exam-
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ple. The second was taken from a dissociated extranodal marginal zone B-cell tumor, specifically
a mucosa-associated lymphoid tissue (MALT) tumor: https://support.10xgenomics.com/
single-cell-gene-expression/datasets/3.0.0/malt_10k_protein_v3.

We pre-processed the data using Scprep“°, following its example: we normalized the total expres-
sion of each cell to match the median total expression in the dataset, to account for variability in

library size, and then square-root transformed the resulting normalized counts.

E.5 ADDITIONAL GLASS MODEL DETAILS

E.s.1  GLASS MODEL INFERENCE

We place a standard normal prior on each entry of H; and a Laplace prior on each entry of .J;; with
scale 0.1 to encourage sparsity. To enforce that 1 > 0 (since scRNAseq counts are nonnegative) and

7 > 0, we place priors on a transformed version of these parameters, as follows:

1 = log(1 + exp(j1))
7~ N(0,1)

7 = log(1 + exp(7)) + 1.

For posterior inference, we employ a mean-field variational approximation: independent normal
distributions for the entries of H;, normal distributions for i and 7, and Laplace distributions for

each entry of J; ;7. We use the factored IMQ kernel for the NKSD, with 8 = —0.5and ¢ = 1.
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To optimize the variational approximation (Equation 5.14), we construct stochastic estimates of
its gradient. At each optimization step, the expectation E, [NksD(po(27)||q(xF[6))] is estimated
using a minibatch of 200 randomly selected datapoints and a single sample from the variational ap-
proximation r¢. The rest of the variational inference algorithm follows standard practice in stochas-
tic variational inference, as implemented in Pyro: automatic differentiation to compute gradients,
reparameterization estimators for Monte Carlo expectations over the variational distribution, and
the Adam optimizer %3

We also used stochastic optimization to perform data selection, as follows. Let I = (I1,...,I5)"
be an indicator variable that specifies for each gene j whether it is included in the foreground sub-
space (I; = 1)ornot(f; = 0). We place a distribution on I such that I; ~ Bernoulli(1/(1 +

exp(—¢;))) forj = 1,...,dindependently. Then, to perform data selection over all possible

subsets of genes, we optimize

argmax ; E(IC(I) | @) (E:s9)

where the expectation is taken with respect to I, where IC(1) is the (estimated) SVC when genes
with I; = 1 are included in the foreground space, and ¢ = (¢1,. .., #q)" € R¥isavector of
log-odds. This stochastic approach to discrete optimization has been used extensively in reinforce-
ment learning and related fields. We use the Leave-One-Out REINFORCE (LOORF) estimator as
described in Section 2.1 of Dimitriev & Zhou °* to estimate gradients of ¢, using 8 samples per step.
We interleave updates to the variational approximation and to ¢, using the Adam optimizer with

step size o.01 for each. We ran the procedure with 4 random initial seeds, taking the result with the
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largest final estimated SVC. We halt optimization using the stopping rule proposed in Grathwohl
et al. ”#, stopping when the estimated mean minus the estimated variance of the SVC begins to de-
crease, based on the average over 2000 steps.

Code is available at https://github.com/EWeinstein/data-selection.

E.s.2 DATASETS AND PREPROCESSING

In addition to the two datasets in E.4.5, we also explored a dataset of E18 mouse neurons: https:
//support.l0xgenomics.com/single-cell-gene-expression/datasets/3.0.0/neuron_
10k_v3.

We preprocessed each dataset using Scprep°° in the same way as in Section E.4.5. After prepro-
cessing, we used the top 200 most highly expressed genes from among the top soo most variable
genes, according to the Scprep variability score. We log transform the counts, that is we define

xi; = log(1 + ¢;5) where ¢;; is the expression count for gene j in cell <.
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Figure E.3: Posterior mean interaction energies AEjj/ for all selected genes, sorted. Dotted lines show the thresholds
for strong interactions (set by visual inspection).
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Figure E.4: Posterior mean interaction energies AEjj/ for the glass model applied to all 200 genes in the MALT dataset

(rather than the selected 187). Genes shown are the same as in Figure 5.8, for visual comparison.
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Figure E.5: Comparison of the 187 selected genes and 13 excluded genes using data selection. (a) Violin plot of E'j over
all excluded and selected genes 7, respectively, when applying the model to all 200 genes, where 5j is the mean posterior
standard deviation of the interaction energies A E; - for gene j, thatis, 0 := ﬁ Zj/;éj std(AEjj/ | data). (b)
Violin plot of fj over all excluded and selected genes 7, respectively, where fj is the fraction of cells with count equal to
zero for gene j. The data selection procedure excluded all genes with more than 85% zeros and selected all genes with
fewer than 85% zeros.
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